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Abstract: Agricultural sectors all over the world are facing water deficiencies as a result of various
factors. Countries in the Greater Mekong Subregion (GMS) in particular depend on the production of
agricultural products; thus, drought has become a critical problem in such countries. The average
water level in the lower part of the Mekong River has been decreasing dramatically, resulting in
the wider agricultural area of the Mekong watershed facing a lack of water for production. The
construction of community reservoirs and associated water supply networks represents a strategy
that can be used to address drought problems in the GMS. This study aims to solve the agricultural
community reservoir establishment and water supply network design (CR–WSND) problem in
Khong Chiam, Ubon Ratchathani, Thailand—a city located in the Mekong Basin. The CR–WSND
model is formulated using mixed-integer programming (MIP) in order to minimize the cost of
reservoir construction and water irrigation. An adjusted variable neighborhood strategy adaptive
search (A-VaNSAS) is applied to a real-world scenario involving 218 nodes, and its performance
is compared with that of the original variable neighborhood strategy adaptive search (VaNSAS),
differential evolution (DE), and genetic algorithm (GA) approaches. An improved box selection
formula and newly designed improvement black boxes are added to enhance the quality beyond the
original VaNSAS. The results reveal that the quality of the solution from A-VaNSAS is significantly
better than those of GA, DE, and VaNSAS (by 6.27%, 9.70%, and 9.65%, respectively); thus, A-VaNSAS
can be used to design a community reservoir and water supply network effectively.

Keywords: water reservoir; location–allocation sizing problem; genetic algorithm; differential evolution;
variable neighborhood strategy adaptive search

1. Introduction

A drought is defined as a period of unusually dry weather lasting long enough to
produce major issues such as agricultural damage and/or water shortages. Droughts are
brought on by a lack of precipitation over a long period of time caused by a variety of
factors, including climate change, ocean temperatures, and changes in the local topography.
Thailand has been suffering from its worst drought in at least four decades, especially in
the northeast. Ubon Ratchathani is a province located in the northeast of Thailand as well
as being located in the Mekong Basin, as shown in Figure 1.
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Figure 1. Map of Thailand showing the study location.

There are a great number of tributary rivers in the Mekong Basin, including the Ruak,
Kok, Ing, Mun, and Chi rivers. In the past five years, in northeastern Thailand and the Lao
PDR, the water levels of the Mekong rivers have been significantly below average. Levels
at mainline measurement sites in Chiang Saen, Chiang Khan, Luang Prabang, Vientiane,
Nong Khai, Nakhon Phanom, Mudaharn, and Ubon Ratchathani are all lower than they
were previously. All of the mainstream water levels north of Stung Treng are much lower
than average for the time of year and have been predicted to continue to fall. Similarly, river
levels in southwestern China have been at their lowest in 50 years with water flowing at
about half of what is considered average for February. The drought conditions in northern
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Thailand and Lao PDR have resulted in low water levels on the main Mekong as part of a
larger regional drought upstream in China’s Yunnan Province.

The lower water level in the Mekong enhances water flow from the Mekong’s tributary
rivers. The result of this is that the large reservoirs along the rivers must provide water
to the rivers in order to maintain water usage, especially throughout the agricultural
production process, which is the primary occupation of people living in Ubon Ratchathani
and other provinces in northeastern Thailand. The large reservoirs constructed in the
northeast of Thailand comprise around 11,462 million cubic meters, while the water use
requirement in the area is around 10,815 million cubic meters. Thus, the northeastern part
of Thailand has not been considered to be likely to experience water supply problems.
However, according to the statistics of the drought reported, in the northeastern part of
Thailand, especially Ubon Ratchathani, more water is needed for agricultural production—
around 2496 million cubic meters. It has been proven that the amount of water available
during the year is theoretically sufficient; however, due to the lower level of the Mekong,
water from its tributary rivers tends to flow down into the Mekong and finally down to the
South China Sea through Vietnam as a result of the drought in this area [1].

Ubon Ratchathani is a province in northeast Thailand located in the Mun Basin. The
Mun River is one of the three main tributary rivers of the Mekong. Its watershed area
covers more than 69,700 square kilometers. The Land Development Department, Ministry
of Agriculture and Cooperatives, Royal Thai Government, has reported that the Mun
River Basin contains large and small reservoirs with a water retention capacity of around
3979 million cubic meters, which is not enough to meet the water use demand in the area [2].
The water required in this area equates to around 3061 million cubic meters, which is
lower than the full capacity of all the reservoirs established in the area; nevertheless, the
Department of National Parks, Ministry of Natural Resources and Environment, Royal
Thai Government [1], has reported that in this area, the lack of water supply is still the
main problem for agriculture, and the extra water needed in this area equates to more than
1188 million cubic meters annually. This is because the lower water level of the Mekong
causes the Mun River to flow down faster to the Mekong, making drought occur in the area.

The Thai government plans to invest THB 1408 million in constructing small commu-
nity reservoirs (CRs) in the next few years in order to retain as much rainwater as possible,
as well as using underground water to fulfill the water supply demand. The key aims of
this research are: (1) to design community reservoirs for the target area; (2) to discover
the correct number, size, and location of the CRs; and (3) to design a network for the
located reservoirs in order to distribute water from the CRs to neighboring agricultural
communities that do not have a CR.

Figure 2 shows a drought risk plot of Khong Chiam City. Khong Chiam is located in
the Mun Basin and is the last city in Thailand before the water from the Mun River flows
down to the Mekong. Khong Chiam has a vast drought risk area, around 1,217,600 m2 [1],
which must be managed before it has a significant effect on the agricultural production
supply chain. Drought has been particularly harmful to the rice yield in the Mun River
Basin, which has the lowest rice yield in Asia [3]. Future arid conditions in this region are
expected to have a greater impact on the agricultural production supply chain [4]. Along the
Mun River and between the provinces of Nakhon Ratchasima and Ubon Ratchathani, seven
large dams have been constructed. Even though they can gather more than 3900 million
cubic meters of water, the number of regions with a high danger of drought is expanding.
This suggests that the water supply in this region must be revised in order to preserve
the agricultural supply chain from damage caused by drought. In many regions of the
world where hydrological variability is considerable, Hughes, D. and Mantel, S. [5] have
demonstrated that even a small reservoir can boost water supply reliability. Thus, we
expect that increasing the number of small reservoirs will have a positive effect on the
downstream flow volumes and patterns of water in the examined area.
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Figure 2. Khong Chiam City, Ubon Ratchathani, Thailand (case study).

The construction of small reservoirs in regions of the Mun River Basin with a high risk
of drought may lessen the likelihood that these regions experience drought. We were unable
to discover any research demonstrating the consequences of constructing small reservoirs
in the Mun River Basin based on an examination of existing research on drought risk
management in the Mun River Basin. Thus, our first research question is: “Can establishing
small reservoirs in the Mun River Basin, particularly in the province of Ubon Ratchathani,
reduce the likelihood of drought in this area and the impact of drought on agricultural
goods production?”
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As shown in Figure 2, the regions of Ubon Ratchathani with a high risk of drought
are widespread. Establishing small reservoirs in a certain region might not alleviate the
problem in all of the nearby regions with a high risk of drought. Do Guen Yoo et al. [6]
presented a model for identifying the optimal pipe diameter to connect the reservoir region
to the water demand points. They discovered that the optimal water supply pipe size has
lower construction costs than the existing size while still ensuring adequate water supply.
This research leads us to combine two difficult problems: (1) the problem of determining
the optimal placement of small reservoirs and (2) the problem of constructing a pipe water
supply network connected to the established small reservoirs in order to deliver water to
water demand sites. It is anticipated that by solving these interrelated problems, the chance
of drought may be reduced. This prompts us to expand our first research question to: “Can
creating small reservoirs in the right locations and designing a pipe water supply network
to connect the established reservoirs reduce the number of high-drought-risk areas in the
province of Ubon Ratchathani?”

The combination of these two problems is referred to as the capacitated location–
allocation problem and is a form of a logistics network design problem. In general, the
location–allocation problem involves building a logistics network that can satisfy demand
at all demand points, and the objective of a typical location–allocation problem is to
minimize operating costs [7,8]. In this study, the model’s objective function considers not
only the lowest operating/construction costs but also the total area of the high-drought-
risk locations. In addition, the number of established reservoirs and their total capacity
are unknown in this research, yet Church, R. and ReVelle, C. [9] and Drezner, Z. [10]
created models to decrease the maximum network distance when the number of established
locations is known. Capacitated location–allocation problems are known to be NP-hard [11];
thus, many researchers have attempted to solve them using heuristic approaches such as a
genetic algorithm (GA) [11,12], differential evolution algorithm (DE) [13,14], evolutionary
simulated annealing (ESA) [15], and simulated annealing (SA) [16,17].

Pitakaso, R. et al. [7] recently introduced the variable neighborhood strategy adaptive
search (VaNSAS) method to address the logistics design network for agricultural products
in the northeast of Thailand. The authors demonstrated that VaNSAS can outperform
SA and other heuristics, such as variable SWAP (VSWAP) and iterated local search (ILS)
in terms of locating the optimal solution. They even demonstrated the effectiveness of
VaNSAS in solving combinatorial optimization problems, but also revealed the algorithm’s
flaws; namely, it can only find a satisfactory solution during the last phase of the simulation.
This is due to the absence of guidance from the current best solution when selecting
an improvement technique in VaNSAS, which results in sub-optimal behavior of the
intensification search. Thus, in this study, the formula used to select the improvement
methods is modified to incorporate the guidance from the current best solution with the
expectation that the modified version of VaNSAS—adjusted VaNSAS (A-VaNSAS)—will
improve upon the solution quality of the original VaNSAS; this is the second research
question of this study.

In the following section, a literature review and related work are described. In Section 3,
the CR design is presented; then, in Section 4, the MIP mathematical model formulation
for the reservoir’s water supply network design is detailed. Finally, the proposed method,
computational results, and conclusion are provided in Sections 3–5, respectively.

2. Literature Review and Related Works

In this section, a systematic review of previous articles related to the proposed problem
is detailed. The adjusted variable neighborhood strategy adaptive search (VaNSAS) is used
to select a location suitable for locating the community reservoirs and designing their water
supply networks to solve the drought problem in Khong Chiam City, Ubon Ratchathani,
Thailand. This city is located in the Mekong River Basin. The review of the previous
research provided in this section is divided into three subsections: (1) the Mekong River
Basin; (2) drought management; and (3) VaNSAS and metaheuristics.
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2.1. Mekong River Basin

The Mekong River originates on the Tibetan Plateau and runs through China’s Yunnan
region, Myanmar, Lao People’s Democratic Republic, Thailand, Cambodia, and Vietnam
before emptying into the South China Sea. With a length of 4909 km, a drainage area of
795,000 km2, and an average annual discharge of 14,500 m3/s, the Mekong River is one
of the world’s longest and greatest rivers [18,19]. Plateaus, terraces, hills, valleys, and
mountains dot the upper Mekong River and its environs, and the land-cover types shift
from grassland to a mix of farmland, agroforestry, and shrubs from west to east. Myanmar,
Thailand, Vietnam, Cambodia, and parts of India are all part of the Lower Mekong River
Basin and its neighboring areas. It is densely forested and is characterized by a large
amount of agriculture.

Over the last ten years, the water level of the Mekong River has dropped drastically.
One explanation for this is that twelve hydroelectric dams have been erected (with a few
more in the works) obstructing the flow and filling upstream, particularly upstream of
China, with around 70% of the water obstructed and the flow shifted.

Furthermore, the availability of water in this region is particularly vulnerable to the
effects of climate change [20]. Climate change may result in unanticipated water phenomena
in the river. As a result, the flow is dry, particularly in downstream nations such as Thailand,
Laos, and Vietnam, during the dry season. Drought is caused by a shortage of water, which
promotes saline intrusion and prevents the accumulation of alluvium, resulting in nutrient
poverty for plants and ecosystems [21].

The Mun River in Thailand is the Mekong River’s greatest tributary, supplying roughly
20 × 109 m3 of water to the Mekong River each year (Li et al., 2020). As a result, changes in
the Mun River’s water contribution can have a significant impact on the Mekong River’s
water resources in the middle and lower sections. The Mun River Basin (MRB) is a major
agricultural zone both locally and worldwide, with agricultural land accounting for over
80% of the whole basin area. Due to water scarcity, rain-fed rice yields in the MRB are
often lower than potential yields [3,22]. Changes in streamflow as a result of future climate
change may have an impact on agricultural water demand in this area [23], increasing
hydrological uncertainty and complicating local water resource management.

In this study, we aim to control the water supply for agricultural areas in the Mun
River Basin at a local level. When the water supply from the major reservoirs and the main
river is cut off, the community reservoirs are to be used to collect natural water in certain
spots. Following this method, the drought issue may be alleviated to some degree.

2.2. Drought Management

Drought is a global issue that is becoming more urgent every year. Water scarcity was
expected to have affected more than one billion people globally by 2020 [24]. Drought types
can be classified into three categories: meteorological, hydrological, and agricultural [25].
Drought in agriculture mostly impacts agricultural production, which is important for
food security, the economy, and stability [26]. Many papers have been written on drought
management from both social science and engineering standpoints.

The majority of past research has focused on the impact of drought on society and
the cooperation of parties involved in drought areas from a social science perspective.
The construction of a large dam in the high reaches of a river may cause drought in the
lower reaches of the river, thus creating conflict between villages. As a result, conflict
management is required to deal with such a circumstance [27]. Other social science-
based suggestions for reducing the effects of drought have been proposed, including:
(1) drought risk management organizations, which make it easier for different water and
land users, meteorologists, and watershed management professionals to communicate with
one another and (2) communication and discussion between all stakeholders in a particular
region about the present drought situation in order to determine whether regular water
scarcity periods have occurred or whether the current situation is the result of persistent
and severe drought conditions [28–31].
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Other research has focused on the operation and construction of huge reservoirs from
an engineering standpoint. A reservoir, in theory, can mitigate the effects of droughts.
Since it affects hydrological systems and downstream socio-economic aspects as well as
the environmental sustainability of local lakes and wetlands, the construction of a new
dam may not be a comprehensive solution to preventing drought [32–34]. Drought—
defined as periods of extreme scarcity of water that significantly influence human activities
or environmental needs—can be exacerbated (or induced) by the construction of large
reservoirs [35,36]. This can lead to a disparity in water availability and, as a result, societal
pressure to build more reservoirs, further exacerbating the problem. Both large, publicly
controlled reservoirs and smaller, privately held reservoirs can play a role in such a process.
Understanding the hydrological impact of a dense network of (small) reservoirs (DNR) is
critical from both a socio-economic and water management standpoint.

In many parts of the world, small reservoirs and accompanying water supply networks
are the preferred solution to the drought problem, such as in Australia [37], Northeast
Brazil [38], Ethiopia [39], Ghana [40], India [41], South Africa [5], South Brazil [42], and
Thailand [43,44]. Small reservoirs are unlikely to have a significant impact on a hydrological
system as their maximum storage capacity is minimal. In fact, the cumulative effect of tiny
reservoirs in resolving the drought problem may be greater than the influence of a single
large reservoir.

In this study, small reservoirs are employed for placement in high-drought-risk lo-
cations in order to mitigate the potential impacts of drought. The water supply network
of minor reservoirs is to be developed as the water supply network of community reser-
voirs after they are built. The reservoirs employed in this study are considered to be of
three different sizes, all of which are adapted from the clay pond designed by Thailand’s
Ministry of Agriculture and Cooperatives Land Development Department. In the decision-
making field, the proposed problem is viewed as a location–sizing problem combined
with a location–allocation problem. The location–allocation problem, often known as the
facility location problem [45,46], is NP-hard. As a result, an efficient method is required to
handle the complex problem of facility localization. A review of metaheuristics methods,
particularly the variable neighborhood strategy adaptive search (VaNSAS), is undertaken
in the following subsection.

2.3. VaNSAS and Metaheuristics

A metaheuristic is a higher-level technique or heuristic used to locate, produce, or
select a heuristic that can provide a good solution to an optimization issue, especially when
there is incomplete or defective information or limited computational capability [47,48].
Metaheuristics can solve optimization problems faster than exact methods such as simplex,
branch and bound, branch and cut, etc. The downside of metaheuristics is that they do not
promise that the solution will always be the best, in contrast to exact approaches, which
guarantee that the best solution will always be found. Exact methods cannot always be
used to tackle real-world problems, which may be too large and complex. As a result,
metaheuristics are becoming increasingly popular as they can deliver high-quality solutions
in a short amount of time.

The genetic algorithm (GA), particle swarm optimization (PSO), differential evolution
algorithm (DE), simulated annealing (SA), and tabu search (TS) are examples of well-known
metaheuristics. Such methods have been utilized to handle a variety of issues, including
vehicle routing problems, traveling salesman problems, lot sizing problems, and facility
location problems. The genetic algorithm (GA), particle swarm optimization (PSO), flower
pollination method, simulated annealing (SA), and improved harmony search algorithms
are heuristic approaches that have been utilized in past research to solve location and
sizing problems [49–53]. The adjusted variable neighborhood strategies adaptive search
(A-VaNSAS) is used to solve the proposed problem in this study.

Pitakaso et al. [7] initially proposed VaNSAS to solve the location routing problem.
VaNSAS includes four steps: (1) generate an initial set of tracks; (2) run the track touring
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procedure; (3) update the heuristics information; and (4) repeat steps 2 and 3 until the
termination condition is reached. The basic idea behind VaNSAS is that several types of
heuristics are used to improve the quality of the present solution. Metaheuristics, basic
heuristics, and the well-known local search technique are among the heuristics utilized in
VaNSAS, and three to four heuristics are usually constructed. In black box optimization,
the track chooses the heuristic independently. With varied probability, an appropriate
improvement process (IP) is chosen. The likelihood of selecting an IP is changed repeatedly
based on the average solution quality of the tracks that have previously used that IP.
VaNSAS has been utilized to handle a variety of problems, including the location routing
problem [54], assembly line balance problem [55], and scheduling and routing problem [56].

2.4. Most Recent Research in Reservoir Construction and Water Supply Network Design

Existing study proposals about reservoir construction and water supply network
design are mostly concerned with the environmental impacts that have occurred or may
occur when a reservoir was or is constructed. Residents’ perspectives on the effects of
the Metolong Dam and Reservoir were studied by Sekamane et al. [57]. The qualitative
methodology utilized document analysis, field notes, and semi-structured interviews. The
findings indicated that locals saw the overall social, economic, and environmental effects
of the dam and reservoir as mixed. Environmentally, the area was impacted by noise and
air pollution, soil erosion, and habitat loss during construction, despite efforts to protect
endangered species. Ahmed, M., Cho, G. and Choi, K. [58] assessed the performance
of 400 main agricultural reservoirs in South Korea as a function of climate change from
1973 to 2017, taking into account the components of reservoir water balance, including
watershed runoff, irrigation water demand, and evaporation loss. Using the Territorial Life
Cycle Assessment (T-LCA) methodology, Rogy et al. [59] sought to evaluate the conditions
wherein hydraulic projects may be viewed as an environmentally efficient choice for
securing the water supply of agricultural areas. Zhang et al. [60] proposed a new integrated
modeling approach to estimate the agriculture water supply risk in the Baojixia Irrigation
Area (BIA) of northwest China. Their results showed that this integrated methodology is a
complete, modern, and efficient instrument for assessing farm water supply risk. A weak
correlation between BIA precipitation and upstream runoff might create unpredictability in
natural and irrigated agriculture water availability.

Existing research has also focused on predicting or forecasting the amount of water in
a dam or large reservoir in order to plan for reducing or maintaining the volume of water in
the large reservoir. Using AI approaches, artificial neural networks (ANN), support vector
regression (SVR), and long short-term memory (LSTM), de Araújo et al. [61] estimated the
reservoir volumes of two reservoirs (the Ladik and Yedikir Reservoirs). Various parameters’
influence on the performance of the models were studied. Using artificial neural networks
and data from 141 monitored dams, Özdoğan-Sarıkoç et al. [62] determined that the
implementation of a water management system dramatically increased the siltation ratio.
Since the commencement of this management, water withdrawal has increased, resulting
in decreased reservoir levels at the beginning of the rainy season. This decreased the
likelihood of overflowing—the primary mechanism of sediment discharge—resulting in
excessive siltation.

The following contributions are made in this study: (1) A mathematical formulation
of the CR–WSND problem regarding an agricultural water reservoirs is introduced; (2) A-
VaNSAS is adjusted for application to the proposed problem; and (3) a real case study
facing drought problems is effectively solved. A mathematical model is presented in the
next section, demonstrating the proposed problem.

3. Research Methodology

This study has two primary goals: (1) to present a model to reduce a high-drought-risk
area by utilizing a community reservoir water supply network and (2) to present an efficient
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approach for solving the suggested model. Executing these two objectives requires two
major parts of the research methodology: model building and model testing.

3.1. Model-Building Phase

The model-building phase presented in this paper is composed of two parts: (1) the
formulation of a mathematical model to represent the proposed model in order to solve
the high drought risk area problem and (2) the adjusted variable neighborhood strategy
adaptive search (A-VaNSAS) in order to solve the proposed mathematical model.

First, the model representing the considered problem was mathematically constructed.
A mathematical model is a model that represents the problem statement and the require-
ments or constraints of the designed model. The capacitated location–allocation problem
provided by Chandra, S. et al. [63] and Demir, I. et al. [64] was modified to be more suitable
and applicable to the community reservoirs and the associated water supply network given
their individual limitations. The original purpose of both papers mentioned above was to
tackle the capacitated facility location–allocation problem for wastewater treatment in an in-
dustrial cluster and the multi-objective capacitated multiple allocation hub location problem,
respectively. These two models attempted to determine the minimal total cost and minimize
the maximum travel time required by the route flow, and their corresponding goals were to
minimize the total construction cost and maximize the area that the designed water supply
network could serve. In this study, the cost terms needed to be revised, as presented in
Section 4.1. Using knowledge of relevant operations, each model’s conditions/constraints
and limitations were developed independently. Both linear and non-linear algebra could be
used to develop the mathematical model in accordance with the requirements of the model
that the researchers intended to build. The community reservoir water supply network
design required the addition of the following key components to the model:

(1) The flow of water between two locations may not be possible due to a drainage divide
or because the level of the area where the community’s reservoir is established is
lower than the water demand points.

(2) As the sizes of the reservoirs vary, the model must incorporate the size of the commu-
nity reservoirs. Considering the appropriate land size or topography at a particular
site, reservoir size can render some areas unsuitable for establishment. Therefore, it is
imperative that this constraint be introduced into the proposed model.

(3) Gravity flow is utilized to transport water from reservoirs to water demand nodes
in the model. Consequently, the maximum distances of the pipes connecting to the
reservoir must be enforced so that water can effectively flow from the reservoir to the
demand node.

These three restrictions needed to be introduced into the formulation of the mathemat-
ical model in addition to those described by Chandra, S. et al. [63] and Demir, I. et al. [64].
The mathematical model could be solved to optimality using exact methods that yielded
the optimal solution or heuristic approaches that could obtain a promising solution (albeit
one that was not guaranteed to be optimal). While an exact technique can locate the ideal
solution, it requires extensive processing time, which grows exponentially as the problem
size increases. With a typical personal computer, resolving a capacitated location–sizing–
allocation problem with less than one hundred demand points could take up to one month.
Therefore, a heuristic approach needed to be developed to solve the proposed model.

The second phase of model building consisted of developing an effective heuristic for
solving the mathematical model proposed in the first phase. As noted in the introduction,
the suggested model was solved using A-VaNSAS, which was adapted from the variable
neighborhood technique adaptive search (VaNSAS). VaNSAS consists of four general
processes: (1) the initial set of tracks is generated; (2) the tracks select the improvement
approach to enhance the quality of the solution; (3) the heuristics information is updated;
and (4) steps (2) and (3) are continued until the termination requirements are met. In the
proposed method, VaNSAS was improved in order to increase its search capability. The
following details of VaNSAS were modified for A-VanSAS:
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(1) Step 2 of VaNSAS was updated to allow the current best tract to guide the search space.
(2) Instead of employing three improvement approaches to enhance the solution quality

of the tract solutions as in VaNSAS, we utilized five improvement strategies.
(3) The newly constructed decoding method extracted the solution to the provided math-

ematical model. Pitakaso, R. et al. [7] proposed a decoding approach for solving
the green 2-echelon location routing problem, whereas in this study, we solved the
location–sizing–allocation issue. As mentioned in the section on mathematical model
formulation, these two types of problems have different model attributes and char-
acteristics; hence, the decoding method from real numbers was required to be the
suggested model solution (this is explained in the following section).

3.2. Model Testing Phase

In this section, the numerical example of the case study is examined and analyzed.
The proposed model and methods for solving the model are disclosed in order to evaluate
their efficacy in answering the study objectives. The high-drought-risk area in the city
of Khong Chiam, Ubon Ratchathani (see Figure 1), was used as a case study in order to
evaluate the effectiveness of the model. Khong Chiam is located in the Mun Basin and is
the final Thai city before the waters of the Mun River flow into the Mekong. In this research,
we identified the optimal placements for community reservoirs that could lessen the risk
of drought in the target area. We then built the water distribution network for lower-risk
regions. The goal was to minimize the total cost of construction while maintaining the
lowest possible risk of drought in the target area.

The proposed methods were compared with existing heuristics, including differential
evolution (DE), the genetic algorithm (GA), and the original VaNSAS. All of the methods
were programmed in Python and tested on an Intel(R) Core (TM) i7-7500U CPU with two
cores and four logical processors running at 2.70 GHz. All of the proposed methods were
tested in a real-world scenario including 218 nodes representing potential water reservoir
locations. The computational duration was set to 30 min as is the termination condition
of A-VaNSAS, DE, and GA. Khong Chiam City, Ubon Ratchathani Province, Thailand,
which is located in the Mun River Basin, was the case study area that was tested using all
the methodologies. Data and information were gathered from each node, consisting of x
and y coordinates, the height above sea level, and the average crop water requirements
(CRW). Approximate construction costs for water reservoirs, irrigation systems, and water
receiving systems were computed following the criteria for calculating the median prices
of irrigation construction. Three sizes of agricultural water reservoirs were considered:
small, medium, and large. The capacity and irrigation distance limitations of each reservoir
varied with size. The ranges of the values for the parameters used in the case study are
given in Table 1.

Table 1. Ranges of the parameters used in the case study.

Parameters Range of Value Unit Name Parameters Range of Value Unit Name

I 218 Locations s 0.84 Baht/m2 [300]
K 3 (SC, LC, AW) Types ri [0.25, 0.95] -
fk [43.47, 12.14, 22.5] Thousand Baht mk [30, 80, 100] km
J 218 Locations G 5760.9 Thousand cubic meters

dij [0, 15,000] Meters Uk [1260, 3780, 4520] Thousand cubic meters
Cij [28, 56] Baht/meters wj [0.04, 169.21] Thousand cubic meters
ni [8000–160,000] m2 × 103 -

4. Results and Discussion

Implementing the research procedures described in Section 3 helped us to answer the
research questions. This section presents the model and method proposed to solve the
problem of high-drought-risk locations. There are three major components to the results:
(1) model development, (2) model validation, and (3) model discussion.
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4.1. Model Building

The following subsections detail the mathematical model formulation and the devel-
opment of A-VaNSAS.

4.1.1. Mathematical Model Formulation for Establishment of the Community Reservoir
and Water Supply Network Design (CR–WSND)

This section introduces the CR–WSND mathematical model for agricultural applica-
tions. To analyze the benefit of establishing CRs in a high-risk region, the objective function
was used to reduce the building costs associated with the community reservoirs and network.
Figure 3 is a graphical representation of the cost terms in the objective function.

Figure 3. Graphical illustration of the proposed mathematical model.

We define the indices as follows: (1) i denotes the candidate areas to locate the CRs,
I = 1, . . . , I; (2) j denotes the agricultural areas or water demand nodes, j = 1, . . . , J; and (3)
k denotes the types of CRs, k = 1, . . . , K. As Thailand’s weather conditions are well known
with respect to its heavy rain, the great intensity and variability of the precipitation levels
were assumed sufficient to fill all the reservoirs constructed.

Figure 3 is a graphical illustration of the mathematical model, including a set of
candidate locations to establish the CRs (j = 1, . . . , J) and a set of candidate types/sizes
of CRs (k = 1, . . . , K). We located the different types of CR to generate the associated
construction cost (fk). Xik is a binary decision variable, which is equal to 1 if location i is
selected to construct a reservoir of type k, and 0 if it is not; fk is the fixed construction cost,
which corresponds to the size/type of CR that is selected to be built in area i. Equation (1)
is used to calculate fk. Denote by Z1

k the unit cost per square meter of CR type k and by Z2
k

the volume of CR type k (in square meters).

fk = Z1
k Z2

k . (1)
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By multiplying fk by Xik, we obtain the construction cost (Z3
ik ) for area i:

Z3
ik = fkXik. (2)

Yij denotes the presence of a water supply network distributing from location i to
location j, and Cij is the construction cost of the water supply network from nodes i to j
(THB/km), including the construction of the water receiver. Z4

ij is the construction cost of
the water supply network and dij is the distance from node i to node j. Equation (3) is used
to calculate Z4

ij :

Z4
ij = cijdijYij. (3)

The construction cost is defined as the first two cost terms, while the drought risk
mitigation incentive (DRMI) is the third term in the objective function. This is a term
used in the incentive function to increase the likelihood of establishing a reservoir in a
high-drought-risk zone, and the danger varies depending on the candidate area (ri). The
chosen location for the CR (Xik) should be in an area with a higher risk of drought in order
to lessen the likelihood of that area experiencing a drought problem.

Next, s is specified as the subsidiary cost per aridity risk unit (THB/m2); this is the
cost that will be activated when the drought occurs. In this case, the government must
compensate farmers for agricultural products that have been damaged as a result of the
drought. Furthermore, ni is defined as the agricultural area of location i and Z5

ik is the
incentive profit of location i with a type k community reservoir or the so-called drought
risk mitigation incentive:

Z5
ij = sriniXik. (4)

As the goal of solving the CR–WSND is to have the lowest system cost, the objective
function is the sum of Equations (2)–(4), stated in Equation (5):

Min Z =
K

∑
k=1

I

∑
i=1

Z3
ik +

J

∑
j=1

I

∑
i=1

Z4
ij −

J

∑
j=1

I

∑
i=1

Z5
ij . (5)

Decision variables Yij and Xik will be revealed under certain limitations, such as (1) the
maximum distance of the water supply network from the selected location to CRs in other
locations; (2) the total water supply to other locations in a certain network must be under
the maximum capacity of the CR; and (3) the total budget constraints. The parameters used
to formulate the constraints are as follows:

Parameters
fk Cost of constructing agricultural water resources with size k (THB/cubic meters)
Uk Volume of available water for CR of size k

(
m3)

v
Cost of constructing irrigation system per distance from agricultural water resource i to demand
node j (THB)

wj Water requirement at node j (m3)

bij

{
1 if water from node i can have gravity flow to j (drainage divide and obstracle)
0 otherwise

dij Distance from agricultural water resource i to demand node j (m)

cij Construction cost of linking nodes i and j (THB/meters)
mk Maximum distance of water flow from water resource with size k (m)
ri Aridity risk in area of node i
G Amount of water supply required by the target area population

Oik

{
1 if reservoir type k can be located at location i
0 otherwise
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Decision variables

Xik

{
1, if node i is selected to be an agricultural water resource with size k
0, otherwise

Yij

{
1, if water from node i is assigned to demand node j
0, otherwise

Constraints:
J

∑
j=1

Yijwj ≤ ∑
k∈K

UkXik
i ∈ I (6)

∑
k∈K

Xik ≤ 1 i ∈ I (7)

dijYij ≤ ∑
k∈K

mkXik i ∈ I, j ∈ J (8)

∑
j∈J

Yij ≥
K
∑

k=1
Xik

i ∈ I (9)

Yijhj ≤ hi i ∈ I, j ∈ J (10)
Yij ≤ bij i ∈ I, j ∈ J (11)
∑
i∈I

∑
k∈K

UkXik ≥ G (12)

∑
i∈I

Yij ≥ 1 j ∈ J (13)

Xik ≤ Oik i ∈ I, k ∈ K (14)

Constraint (6) is used to ensure that the water supply from node i is a sufficient volume
of water to supply its entire network. Constraint (7) is used to limit each water resource i to
only have one size k. Constraint (8) is used to ensure that the distance of the water supply
from node i to node j does not exceed the maximum distance of water flow from a water
resource of size k. Constraint (9) is used to ensure that the water flow from i to j occurs
only when i establishes at least one reservoir. Constraint (10) is used to ensure that the
water flows from a higher altitude to a lower altitude; for example, if location a has a height
148 m above sea level and location b has a height 190 m above sea level, the restriction in
this constraint is that Yab cannot be 1, as b is higher than a and, thus, gravity water flow
from a to b is not possible. Constraint (11) is used to limit the flow if a drainage divide or
another water flow obstacle blocks the waterway from node i to node j.

The MIP decides to site the CR at position 1 and create a network from (1) to (2);
however, this is not possible due to the drainage divide between (1) and (2). Connecting
(1) to (2) is difficult. Therefore, the value of b12 is set to be zero. bij are pre-defined
parameters derived from the real landscape of the target area. If a pip cannot be installed
between locations i and j, the value of bij for that connection will be set to zero. Constraint
(12) guarantees that the total amount of water gathered from all the CRs exceeds the total
amount of water required by all the demand nodes. Constraint (13) ensures that each water
demand node is served by at least one CR, whereas Constraint (14) ensures that only those
locations that are suitable for locating reservoir type k are allowed to do so.

4.1.2. Model Testing

In this section, we evaluate the efficacy of the proposed model and method. An
improved version of the variable neighborhood strategy adaptive search (A-VaNSAS) is
introduced in this study. A-VaNSAS has four processes: (1) creating initial tracks (set of
WPs); (2) running the track touring process; (3) updating the heuristics information; and
(4) repeating steps (2) and (3) until the system terminates. Before explaining the proposed
method (A-VaNSAS), the case study information utilized to test the model and method is
described in the following section.

Case Study Data for Community Reservoir and Water Supply Network Design

In this section, the process followed to design the community reservoirs is discussed.
We designed three sizes of clay pond as the reservoirs, and all the community reservoirs
used a gravity flow water distribution system. This is a system in which the water is
provided by gravity flow such that the distribution reservoir must be located at a higher
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elevation than the target community. When the source is a river or an impounded reservoir
at a sufficient height above the target settlement, this method is considerably more appro-
priate. The advantages of this system are as follows: (1) the system requires no energy to
operate, as the water is transported by gravity; (2) it is not necessary to have a pump; and
(3) it is cost-effective in the long term.

The small, medium, and large clay ponds were modified from the model presented by
the Land Development Department, Ministry of Agriculture and Cooperatives, Thailand.
A diagram of the water flow system and the pressure conditions in the water supply system
is provided in Figure 4. The small, medium, and large clay ponds had the capacities for
water retentions of 1260, 3780, and 4520 cubic meters, respectively. Details regarding the
sizes of the small, medium, and large clay ponds are given in Table 2.

Figure 4. Diagram of the gravity flow system of the designed water supply.

Table 2. Details of small and large community reservoirs.

Parameter Small Medium Large

Capacity (cubic meters) 1260 3780 4520
W1 (meters) 19.0 19.0 19.0
W2 (meters) 15.0 15.0 15.0
L1 (meters) 39.0 39.0 39.0
L2 (meters) 35.0 35.0 35.0
H (meters) 2.0 6.0 7.2

Maximum distance of water
Network pipe (meters) 50,000 100,000 150,000

Construction cost (thousand baht) 43,470 121,440 255,000

In Figure 4, Bernoulli’s principle is a seemingly counterintuitive statement with which
to describe the pressure conditions in the water supply system; Zi is the elevation head, Pi

γ

is the pressure head, v2
i

2g is the velocity head, and hL is the head loss.
In the specified water supply system, gravity watering was considered since it does not

require any energy to convey water through a pipeline and generate pressure at the trough.
The energy due to gravity at a location is equal to the difference in elevation between sites,
such as between the water supply and the trough. The term “head” is used to represent
this difference in altitude in meters. In the case of water, this energy is comparable to
either 0.3048 m of height drop, which corresponds to 0.433 psi of pressure head, or 0.704 m
of height drop, which corresponds to 1 psi of pressure head [65]. The water pressure in
the trough is determined by the pipe size, the pipe material, and the water supply of the
watering system. Different pipe sizes and pipe materials have varying flows for a given
change in elevation due to their varying friction losses. Through the translation of energy
into heat, the friction losses are exclusively lost to the water system.

As indicated previously, water flow pressure is also dependent on the quantity of
water supply reservoirs, and seasonal variations may occur. For example, the constructed
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reservoirs’ water sources were groundwater and precipitation. Water was supplied to stand
posts and agricultural area connections from the reservoir. In order to maintain the steady
flow, all the troughs needed to be of sturdy construction. To design a pipeline, companies
must conduct a site inspection, choose a route, and, if necessary, examine the location of
the valves and the break pressure area. The required pipe size should be determined by
an engineer based on the elevation difference and anticipated flow rates (in our case, the
details of the designed water supply system are shown in Figure 3). Valves and pipe fittings
were used for controlling the water flow. Taps and valves were necessary for creating
connections between the agricultural fields and stand posts.

The clay ponds had varying construction costs due to their different sizes; the cost of
building a small, medium, and large clay pond was THB 43,470, THB 121,400, and THB
255,000, respectively.

The demand for water from agricultural areas is determined by the amount needed
to produce each type of agricultural product in that region (in terms of daily water used).
The water that flows into built reservoirs from both rain and groundwater will flow out
proportionally to the demand that each reservoir serves. Thus, the size of a reservoir to be
be constructed in a given region must be determined according to the demand of all the
regions that it must serve.

These three types of community reservoirs were chosen for the placement and distri-
bution of water to the desired areas. Due to their limited capacity, it is only possible to
supply water to a restricted number of sites. Thus, the considered problem is composed of
three sub-problems, collectively known as the location—-sizing–allocation problem. While
deciding on the locations of community reservoirs, it was necessary to identify the sizes of
the reservoirs to be used. Finally, a water supply network also needed to be built in order to
meet the needs of neighboring towns, which was referred to as the location–sizing–allocation
dilemma. The data provided in this section are used in the subsequent section in order to
evaluate the proposed model and the efficacy of the suggested approach, that is, A-VaNSAS.

Adjusted Variable Neighborhood Strategy Adaptive Search Solving Community Reservoir
and Water Supply Network Design

The steps for using A-VaNSAS to solve the CR–WSND problem are outlined below.
The track for the depiction of the CR—-WSND was designed as a 1 × D track in the
production of a set of starting tracks, where NT was the number of tracks. For example,
when D equaled 10, the track was composed of 10 real numbers, which were 0.67, 0.43, 0.03,
0.10, 0.69, 0.72, 0.54, 0.56, 0.58, and 0.68. This number was decoded to obtain the result of
the proposed problem, which is explained below. An example of five randomly selected
tracks (NP = 5) is given in Appendix A.

The decoding procedure was divided into nine steps: (1) sort the values in the WP’s
position in ascending order; (2) choose the value node with the lowest value as the water
reservoir; (3) determine the reservoir sizing criteria by assigning the same probability to
each reservoir size; (4) as a result of (2), generate a random number for the node; (5) based
on this new random value, determine the reservoir size using the criteria stated in step (3);
(6) sum the water demand from all the nodes as denoted by T; (7) repeat steps 2–5 until
the total capacity of all the established reservoirs exceeds 1.2 T; (8) assign the remaining
demand nodes to the selected water reservoirs; and (9) repeat steps (8) and (9) until all the
reservoirs have been assigned.

The demand nodes should be assigned to the first established reservoir until it runs
out of capacity, at which point the remaining demand nodes are sent to the next established
reservoirs. The following constraints must be considered when assigning the network:
(1) the distance limitation for irrigation; (2) the crop water requirements of the assigned
demand nodes, which must not exceed the capacity of water reservoirs in supply nodes;
and (3) the height above sea level of the supply nodes, which must be greater than that
of the demand nodes. Example supply and demand node information is provided in
Appendices B and C. The results of the assignment method are shown in Table 3.
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Table 3. Results of the assignment method.

Water
Reservoir Size Supply to Node CR Construction Cost

(baht)

Water Network
Construction Cost

(baht)

DRMI
(baht)

Total Cost
(baht)

3 AW 3,8,9,1,10 255,000 95,700 10,900 339,800
4 SC 4 43,470 0 7875 35,595
2 SC 2 43,470 0 8559 34,911
7 LC 7,5,6 121,440 52,890 10,060 164,270

Grand total cost 463,380 148,590 37,394 574,576

From Table 3, nodes 2, 3, 4, and 7 were selected to locate the water reservoirs. Node
3 had the lowest value in position and a probability of 0.78; thus, AW was selected as the
size of node 3. The probabilities for nodes 2, 4, and 7 were 0.04, 0.21, and 0.54, respectively,
such that SC, SC, and LC were the selected types of each node, respectively. First, node
3 needed to satisfy its own water supply (928.1 cubic meters), following which nodes 8, 9,
1, and 10 were assigned to node 3, with a total water demand of 4132.7 cubic meters. The
construction cost of the AW reservoir was THB 255,000, and the water network construction
cost was THB 52/meter. In this scenario, node 3 distributed its water over a total distance
of 1840.38 m to nodes 8, 9, 1, and 10, resulting in a total construction cost of THB 95,700.
The government compensates farmers who are afflicted by drought disasters in their area
through a drought risk mitigation incentive. Drought subsidy rates have recently averaged
THB 0.87/m2. The total drought risk mitigation incentive is determined by a node’s drought
risk, which is estimated based on the likelihood of drought in the area. As node 3 had an
area of 12,528.7 m2 and a drought risk of 0.85, the drought risk mitigation incentive for node
3 was equal to THB 10,900. Reservoirs 4, 2, and 7 were analyzed using the same approach.

The tracks then iteratively toured the black box throughout the track touring process.
A black box—also known as an improvement box—contains strategies for improving
solutions that are not limited to local searches. Metaheuristics, heuristics, basic local
searching, and other techniques may be included in a black box. Five black boxes were
created for this study. To choose the preferable black box, a roulette wheel was applied to
select them for the track. Equation (15) controlled the chance of picking the black box for
the original VaNSAS, while Equation (16) was used for the adjusted VaNSAS (A-VaNSAS).

Pbt =
FNbt−1 + (1− F)Abt−1 + KIbt−1

∑B
b=1 FNbt−1 + (1− F)Abt−1 + KIbt−1

, (15)

Pbt =
FNbt−1 + (1− F)Abt−1 + KIbt−1 + ρ

∣∣∣Abt−1 − Abest
t−1

∣∣∣
∑B

b=1 FNbt−1 + (1− F)Abt−1 + KIbt−1 + ρ
∣∣Abt−1 − Abest

t−1

∣∣ , (16)

where Pbt is the probability of selecting the black box in iteration t; Nbt−1 is the number
of tracks that selected a black box in the previous iteration; Abt−1 is the average objective
value of all the tracks that selected a black box in the previous iteration; Abest

t−1 is the average
objective value of the best black box in the iteration t; Ibt−1 is the reward value, which
increases by 1 if a black box finds the optimal solution in the last iteration, but is set to
0 otherwise; IB is the total number of black boxes; F is the scaling factor (F = 0.5); and K is
the parameter factor (K = 0.3). The black boxes used in this study were as follows: (1) THE
swap method; (2) 2-opt method; (3) K transition method; (4) K cyclic move method; and
(5) G-best transition method.

The swap method is the classic method for improving the quality of the solution. First,
two tracks are randomly selected. Then, one node from each track is chosen and swapped.
The 2-opt method is similar to the swap method, but the swap operations occur only in the
same track.
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The K transition method (KTM) allows the track to move away from local optima by
transforming some values in some nodes to random new values. KTM consists of four
steps: (1) the random selection of candidate tracks; (2) the selection of random value K,
representing the number of transformed values; (3) the selection of K nodes in the target
track randomly; and (4) the transmission of values to the new candidate value or new
selected track.

The K cyclic move method (KCM) was also designed to improve the quality of so-
lutions. This method includes four processes: (1) Randomly select the move factor K;
(2) randomly select the K tasks; (3) cyclically move according to the sequences selected in
step (2); and (4) carry out steps 1–3 until a pre-defined number of iterations is reached.

The G best transition method (GBT) conducts a search by using the best tracks from a
previous search. The steps of GBT are as follows: (1) randomly select value G; (2) select
the K points randomly for the transmission of the node values; (3) swap the value(s) from
the selected best track to the target track; and (4) carry out steps (1)–(3) until a stopping
condition is met. Examples of KTM, KCM, and GBT are shown in Appendices D–F.

The result from the decoded solution for the new selected track was applied in the
next iteration of A-VaNSAS. The heuristic information must be updated when all the tracks
finish their process in the black box. The probability of the black box was updated and the
track touring process was repeated using Equations (17) and (18):

Abt =
Nbt
Tbt

, (17)

Ibt = Ibt−1 + G, (18)

where Nbt is the total number of tracks which select black box b from iteration 1 to t; Tbt is
the total cost generated from all the tracks that select black box b from iteration 1 to t; and
G is 1 if black box b contains the global best solution in iteration t and is 0 otherwise. The
pseudocode of A-VaNSAS is shown in Appendix G.

In addition, the effectiveness of A-VaNSAS was compared to that of the genetic
algorithm (GA) and differential evolution (DE) algorithm. A genetic algorithm is a four-
step metaheuristic inspired by nature [66], while differential evolution is a metaheuristic
method for solving problems that involves five steps: (1) generate a new track randomly;
(2) execute a mutation process; (3) perform a re-combination process; (4) perform a selection
process; and (5) repeat steps (2)–(4) until the termination condition is met [67].

The results from testing GA, DE, VaNSAS, and A-VaNSAS via simulation are given
in Table 4.

Table 4. Computational results of the case study.

KPI
Algorithm

GA DE VaNSAS A-VaNSAS

NC (nodes) 218 218 218 218
TDWS (cubic meters) 419,248 419,248 419,248 419,248

TNCR (nodes)

136
(s = 43
m = 70
l = 23)

131
(s = 35
m = 81
l = 22)

142
(s = 51
m = 62
l = 29)

128
(s = 28
m = 90
l = 10)

TVW (cubic meters) 422,740 449,720 429,700 420,680
TVW/TDWS 1.01 1.07 1.02 1.00
TCC (Baht) 19,941,410 20,584,090 20,576,450 18,764,760
TDRC (Baht) 5,266,007 5,501,719 5,626,589 5,769,953

KPI: key performance indicators; NC: number of candidate nodes; TDWS: total demand of water supply; TNCR:
total number of CRs constructed; TVW: total volume of water able to be collected by all CRs; TCC: total construction
cost; TDRC: total drought risk mitigation incentive.
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Table 4 shows that A-VaNSAS surpassed the original VaNSAS in terms of its compu-
tational results. It cut construction costs by 12.62% compared with those of the original
VaNSAS and by 7.78% and 14.19% compared with those of GA and DE, respectively. A-
VaNSAS provided a 5.56%, 10.73%, and 2.10% higher drought risk mitigation incentive
(DRMI) than GA, DE, and VaNSAS did, respectively. Thus, A-VaNSAS can reduce the risk
of drought more effectively than other techniques. Based on the computational results,
A-VaNSAS required THB 18,764,760 to install all of the community reservoirs and their
network to protect the community from the drought situation and meet the demand for
water from all the demand nodes. Every year, the government funds a portion of the cost
that are required to build reservoirs. However, as indicated, they are only able to create
reservoirs in a few areas. Figure 5 provides a graphic representation of the drought risk
areas, indicating their drought risk reduction once the reservoirs are built. In the target
region, 100% of the areas in the highest risk category were protected.

Figure 5. Comparison of drought risk in Khong Chiam (A) before and (B) after CR placement.

The limited budget was included in the model for this experiment, which had an
obvious impact on the solution. The MIP provided in Section 4 required the following
calculated adjustments: P was the budget available for the current year, and Z3

ik and Z4
ij

denoted the construction costs (Equations (2) and (3)). Constraint (19) was used to control
the total construction cost such that it did not exceed P. Thus, Constraint (19) was added
into the model detailed in Section 4.(

K

∑
k=1

I

∑
i=1

Z3
ik +

J

∑
j=1

I

∑
i=1

Z4
ij

)
≤ P. (19)

Since Constraint (19) was added into the model, Constraints (12) and (13) needed to
be adjusted. Constraint (12) ensured that the water supply requirements of all the nodes
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were met. Since the budget was limited, it was possible that some nodes would be left
out of the water supply network. With the limited budget, Constraint (13) could also be
violated. Although Constraints (12) and (13) were removed, the objective function Equation
(5) was changed to ensure that the model searched for the lowest cost while simultaneously
attempting to reduce the number of places that were not served by the water network,
as follows:

Min Z =
J

∑
j=1

I

∑
i=1

Z6
ij, (20)

where Z6
ij is defined as:

Z6
ij = sniri(1−Yij) (21)

Z6
ij was the value of risk in the area that was not integrated into the water supply network.

The experiment was carried out on the case study area by cutting a limited figure from the
initial budget, that is, cutting the initial budget by 10%, 20%, 30%, 40%, or 50%. The percentage
of overall risk in the area not covered by water supply was divided by the total risk value
(sniri) of all the locations (RS; Equation (22)). The Total number of sites in the water supply
network (LW), as well as the total volume of water that could be collected in each scenario,
was divided by the total demand for water from all the nodes (WS; Equation (23)).

RS =
∑J

j=1 ∑I
i=1 Z6

ij

∑I
i=1 sniri

× 100%, (22)

WS =
∑i

i=1 ∑K
k=1 mkXik

∑J
j=1 wj

× 100%. (23)

When the RS is high, the overall risk of drought is high. As a result, the algorithms
needed to optimize for a lower RS. The percentage of the total area serviced by the water
delivery network was denoted by the WS; as such, an effective method would produce
high WS.

%|di f f | =
∣∣V25% −V0%

∣∣
V0% × 100%. (24)

The %|diff| of LW was calculated using Equation (24), where V25% was the value
of the LW at a 25% increase in construction costs and V0% was the base value before the
increase. The %|diff| of RS and WS was calculated using Equation (25):

%|di f f | = V25% −V0%. (25)

Table 5 demonstrates that when A-VaNSAS was given the same constrained budget, it
delivered the best solution in terms of all the KPIs when compared with the other methods.
In the water supply network, A-VaNSAS integrated an average of 166.8 locations, while GA,
DE, and VaNSAS could only integrate 155.5, 151.5, and 151.7 locations, respectively. In other
words, A-VaNSAS achieved a higher number of places served by the water supply network
(6.79−9.09% higher) than the other approaches. In terms of additional KPIs, A-VaNSAS
also outperformed the other techniques; namely, it could increase the volume of saved
water for use in the system by at least 4.60% and minimize the danger of drought by at
least 21.31%.
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Table 5. Total risk and LW of the proposed method with different budget limitations.

% Budget
Reduced

Available Budget
(baht) GA DE VaNSAS A-VaNSAS

RS WS LW RS WS LW RS WS LW RS WS LW
0% 18,764,760 6.8 92.3 191 7.4 92.3 190 5.6 94.8 204 0.0 100.0 218
10% 16,888,284 10.7 89.0 186 11.2 88.1 184 9.5 90.1 193 7.1 92.3 199
20% 15,011,808 23.5 76.4 163 23.8 76.9 168 18.6 81.5 166 16.6 83.8 177
30% 13,135,332 31.8 68.8 147 32.6 67.6 144 30.9 69.3 142 25.3 73.5 154
40% 11,258,856 33.6 63.6 120 33.1 64.8 123 33.4 65.9 126 29.9 70.1 137
50% 9,382,380 41.8 59.4 103 42.9 58.8 100 42.0 58.3 102 36.5 62.4 116

average 14,073,570 24.7 74.9 151.7 25.2 74.8 151.5 23.3 76.7 155.5 19.2 80.4 166.8
%|diff| 35.0 32.9 46.1 35.5 33.5 47.4 36.4 36.5 50.0 36.5 37.6 46.8

Units of RS, WS, and LW are percent (%), percent (%), and number of locations, respectively.

Figure 6 shows the percent differences in the KPIs for all the proposed methods with
budget reductions ranging from 0% to 50%.

Figure 6. Percent differences in KPIs with budget reductions from 0% to 50%.

As the percentage change of LW was the largest of all the proposed solutions, Figure 6
demonstrates that the number of locations that are integrated into the water supply network
(LW) was the most sensitive KPI to budget changes. For the results shown in Figure 6, there
was not much of a difference between RS and WS. The number of locations established had
a larger gap, thus increasing the risk. This can be understood to mean that the proposed
algorithms would choose the locations with the largest sizes to lower the overall risk.
As the major objective (Equation (20)) is focused on reducing the total risk of the water
supply system, the proposed method would not only choose a greater land size but also
the locations with the highest risk.

Figure 7 depicts the impact of a 50% reduction to the budget. It shows the original
version (with the full budget) and the high drought risk area increasing due to budget
constraints. As the price of oil has grown considerably in recent years, so too has the cost
of building; therefore, in this experiment, all the KPIs were evaluated under increased
construction cost conditions. The percentage increases in building costs considered in this
experiment were 5%, 10%, 15%, 20%, and 25%. The same KPIs from the previous trial were
recorded during the simulation. Table 6 shows the outcome of the experiment.



Water 2023, 15, 591 21 of 30

Figure 7. Comparison of drought risk in Khong Chiam (A) when budget reduction of 0% and (B) 50%.

Table 6. Total risk and LW of the proposed methods using different construction costs.

% Construction
Cost Increased

GA DE VaNSAS A-VaNSAS

RS WS LW RS WS LW RS WS LW RS WS LW

0% 41.8 59.4 103 42.9 58.8 100 42.0 58.3 102 36.5 62.4 116
5% 44.3 56.6 94 45.4 56.1 93 44.2 57.8 96 38.1 60.8 109
10% 47.5 53.8 87 46.9 54.8 90 46.8 55.1 92 39.8 59.3 105
15% 48.9 52.6 82 47.8 54.2 88 47.3 53.7 87 41.4 57.1 94
20% 51.8 50.4 79 50.1 51.3 81 49.9 51.5 82 43.7 56.3 89
25% 52.5 48.2 74 52.3 48.5 74 51.5 49.2 76 45.6 54.9 82

Average 47.8 53.5 86.5 47.6 54.0 87.7 47.0 54.3 89.2 40.9 58.5 99.2
%|diff| 10.7 11.2 28.2 9.4 10.3 26.0 9.5 9.1 25.5 9.1 7.5 29.3

The average values of RS, WS, and LW for A-VaNSAS surpassed other approaches in
terms of finding a better solution, as shown by the computational results in Table 6; GA had
lower RS, WS, and LW values than A-VaNSAS by 17.6%, 49.2%, and 3.9%, respectively; DE
had lower RS, WS, and LW values than A-VaNSAS by 3.3%, 37.3%, and 11.29%, respectively;
and VaNSAS has lower RS, WS, and LW values than A-VaNSAS by 4.4%, 21.3%, and 13.0%,
respectively. Figure 8 shows the average values of all the A-VaNSAS KPIs when the
construction cost increase was adjusted from 0% to 25%.
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Figure 8. Average %|diff| of A-VaNSAS KPIs.

Figure 9 shows the results for the KPI most sensitive to changing construction costs:
the number of areas not linked to the water supply network. The percentage of water
demand satisfied by the demand node and the drought risk were both affected by changes
in construction costs. Table 7 lists the results obtained under a 50% reduction in budget
and a 20% rise in construction costs compared with the existing scenario.

Figure 9 compares the risk area of the usual construction cost scenario to a scenario
where the construction cost is increased by 50%. Investment into reservoirs was reduced
due to the increasing construction costs; thus, the number of high-risk areas covered by
reservoirs also decreased.

Figure 9. Comparison of risk area in Khong Chiam with construction costs increased by (A) 0%
and (B) 50%.
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Table 7. Comparison of proposed methods under limited resources with respect to all of the KPIs.

KPIs and Details GA DE VaNSAS A-VaNSAS

Number of candidate nodes: NC (nodes) 218 218 218 218
Total area available: TA (m2) 1,217,600 1,217,600 1,217,600 1,217,600
Budget availability: BA (Baht) 9,382,380 9,382,380 9,382,380 9,382,380
Total demand of water supply: TDWS (cubic meter) 419,248 419,248 419,248 419,248
Number of locations which are in the water supply
network (WSN): NLW (nodes) 79 81 82 89

Number of locations that construct the community’s
reservoir: NLC

60
(s = 12
m = 32
l = 16)

58
(s = 11
m = 31
l = 16)

60
(s = 13
m = 31
l = 16)

64
(s = 13
m = 40
l = 11)

Full capacity of the constructed reservoirs (thousand
cubic meter) (FCC) 208,400 203,360 205,880 217,300

(FCC/TDWS) × 100 (%) 49.7 48.5 49.1 51.8
Total area covered by WSN (m2): TRC 604,156 591,274 598,755 632,181
Total construction cost (baht): CC 9,304,720 9,311,810 9,355,750 9,302,710
CC/BA 99.2 99.2 99.7 99.2
Total drought risk mitigation incentive (baht): SC 2,367,792.00 2,288,865.60 2,367,792.00 2,525,644.80

In the final experiment, GA, DE, VaNSAS, and A-VaNSAS were used to build the
required network with just half of the resources available. The results for the above-
mentioned KPIs are provided in Table 7.

Table 7 shows that if GA, DE, VaNSAS, and A-VaNSAS were given the same number of
resources to manage, A-VaNSAS would be able to provide the best solution with respect to
all the KPIs. A-VaNSAS had 89 locations in the WSN compared with 79, 81, and 82 for GA,
DE, and VaNSAS, respectively. The A-VaNSAS community reservoirs had a total capacity
of 217,300 cubic meters, while the other approaches reserved 4.1–6.4% less water than
A-VaNSAS. Figure 10 depicts the investment per square meter required to lower the risk of
drought in the case study for all the options. A-VaNSAS used 4.66%, 7.02%, and 8.18% less
costs per unit than GA, DE, and VaNSAS, respectively. This suggests that A-VaNSAS was
more successful than the other algorithms in reducing the area at risk of drought.

Figure 10. Construction cost per square meter to reduce drought risk using various methods (Baht).

Figure 11 depicts the proportion of area where drought risk was mitigated using
various methods. A-VaNSAS can reduce the drought risk by 51.92%, whereas VaNSAS,
GA, and DE can reduce the drought risk by 49.18%, 48.56%, and 49.62%, respectively. This
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suggests that A-VaNSAS was superior to all the other strategies with respect to decreasing
the drought-prone area.

Figure 11. Percentage of drought risk area using various solution approaches.

4.2. Discussion

Figure 7 and Table 7 illustrate that the water supply model created for this study can
lower the probability of drought and its detrimental impact on agricultural production.
This result implies that reservoirs or small reservoirs connected to a community pipe
water supply network can effectively mitigate drought risk in high-risk areas, which is in
agreement with the outcomes reported in [37–40]. As a consequence of these studies, it was
concluded that Ethiopia, Australia, and Brazil, among other nations, could benefit from the
use of small reservoirs to combat drought, which would include not only the construction
of community reservoirs, but also the development of pipe water supply networks that
connect the reservoirs to other locations. Our results indicate that the proposed model
can effectively mitigate drought in these regions if the community reservoirs and their
networks are positioned in the optimal locations. The findings of Collischonn, B. et al. [42]
confirmed that such an approach also increases the dependability of the water supply,
hence minimizing the likelihood of drought. This result provides an answer to our first
research question: “Can the suggested approach successfully alleviate drought in areas at
high risk of drought?”

The adjusted variable neighborhood strategy adaptive search (A-VaNSAS) was devel-
oped to find an optimal solution to the model, and it provided solutions superior to those of
the original search model. According to Table 7, the total number of water demand points
supplied by the VaNSAS-solved model was 6.67% lower than that of the A-VaNSAS model.
Other KPIs indicated that A-VaNSAS provides a superior solution to that of VaNSAS by
4.22–12.66%. It can therefore be concluded that the modified version of the improvement
method selection formula is more effective than the original for the considered problem.
Consequently, guidance from the current best solution can enhance the search capability
of such an approach; this conclusion corresponds to the findings of Akararungruangkul,
R. et al. [14], Sirirak, W. et al. [68], and Ketsripongsa, U. et al. [69]. The current solution is
directed by the global best solution, and the solution quality of the modified version of
the proposed methods (e.g., differential evolution algorithm) presented improved search
performance. This provides a response to our second study question: “Can A-VaNSAS
improve the quality of the original VaNSAS solution?”

The results demonstrated not only that A-VaNSAS outperforms the original VaNSAS, but
also that it outperforms existing state-of-the-art heuristics (i.e., GA and DE). A-VaNSAS em-
ploys a range of improvement strategies that allow it to escape from local optima, potentially
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making it more search-intensive in certain search spaces compared with the aforementioned
methods. This concept has been reinforced by Thongkham, M. and Kaewman, S. [70], and
Kaewman, S. and Akararungruangkul, R. [71]; by adding additional local search strategies
to the proposed methods, it is possible to increase the quality of the search and find a better
solution than methods that utilize fewer local search techniques while maintaining the same
computational times. This informed us that in order to establish effective improvement proce-
dures, the developed model must integrate a good and effective local search or improvement
approach. The guidance of a good solution also plays an essential role in enhancing the
solution quality of a method that can lead to a good search space.

Long-term drought risk management is difficult to achieve since, in the real world, a
variety of unknown factors can prohibit community reservoirs from alleviating drought.
Integrated assessment models that study uncertain future conditions and potential policy
interventions can improve strategic decision-making in long-term drought risk manage-
ment, as has been indicated by Mens, M. et al. [72]. For long-term drought management,
one may integrate a national hydrological model, a national one-dimensional hydrody-
namic model, a regional one-dimensional hydrodynamic model, or a national surface water
temperature model, among others. These models must meet the various and frequently
contradicting requirements of policymakers, model developers, and other stakeholders.
A community reservoir model cannot be a complete success if it lacks other ties to the
community, government connections, and the support of local politicians and policymakers.
Serena, H. et al. [73]; Loucks, D.P. and van Beek, E. [74]; and Haasnoot, M. et al. [75] have all
supported the notion of developing a model that includes several stakeholders in addition
to the single stakeholder given in the model. The proposed model can be interpreted
as the operational model, whereas the model described in the aforementioned articles is
developed at the strategic level of planning, which may therefore produce a different model.
The development of planning models at the strategic and operational levels requires the
use of different data and the consideration of different objectives [76]. The strategic level
of drought risk management may involve devising a method to solve a problem over a
larger area or use long-term data that can incorporate a forecasting model, whereas the
operational level of management is concerned with the proper placement of community
reservoirs and their network to meet the demands of a smaller area, as demonstrated by
the proposed model.

5. Conclusions and Future Research Opportunities

CR–WSND presents a challenge wherein a water supply network to service other
settlements without a community reservoir (CR) must be developed. In this paper, this
problem was represented using mixed-integer programming (MIP) and then solved using
a modified version of the variable neighborhood approach adaptive search method (A-
VaNSAS). A new black box selection formula was developed to replace the previous
formula, as well as new A-VaNSAS black box improvement approaches. DE and GA were
used for comparison, demonstrating the superiority of the proposed technique with respect
to well-known heuristics.

All the tested methods were used to tackle a real-world problem involving 218 sub-
districts in Khong Chiam, Thailand. Three different sizes of CR were considered for use
in drought-prone areas. When a CR is established in a particular site, a water supply
network must be built to fulfill the needs of the local community. The computational
output included two options: (1) no budget constraints and (2) budget constraints. A-
VaNSAS costs 7.78%, 14.19%, and 12.62% less than GA, DE, and VaNSAS when there was
no limitation on budget, respectively, and all the demand nodes were supplied by at least
one CR. Therefore, drought risk was eliminated as all the demand nodes were satisfied in
this case. The investment value was about THB 18,764,760, which makes this approach
impossible to carry out all at once, considering relevant budgets. The second experiment
was executed with a lower budget, and new key performance indicators (KPIs) were used
to track how the system evolved since not all the demand nodes were fulfilled, including
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the number of locations in the water supply network (WSN); the number of locations with
community reservoirs constructed; (3) the full capacity of the constructed reservoirs; (4) the
total area covered by the WSN; (5) the total construction cost; and (6) the total drought risk
mitigation incentive.

The results of the computation revealed that GA, DE, and VaNSAS produced lower
values for all the KPIs than A-VaNSAS did. The WSN, GA, DE, and VaNSAS integrated
7.87–11.24% fewer demand nodes than A-VaNSAS did. The total quantity of water in the
A-VaNSAS system was higher than that with other approaches, with a maximum increase
of 9.38%. In terms of overall drought risk mitigation incentive maximization, A-VaNSAS
outperformed all the other approaches, meaning that it could identify ideal locations for
the community reservoirs, thus minimizing the risk of drought. Thus, it was concluded
that A-VaNSAS may be used to plan the community water supply networks in the target
area. Furthermore, A-VaNSAS can generate great results that are superior to those supplied
by existing well-known heuristics such as GA, DE, and VaNSAS even when constrained by
a low budget.

Extensions to this research may be undertaken in a variety of ways in the future. For
example, (1) the subsidiary cost in this study was combined into a single objective function,
allowing the model to be transformed into a multi-objective model in future research and
(2) the study area can be narrowed to the micro-level (i.e., from sub-districts to villages),
making it more practical for local government organizations to implement.
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Appendix A. Example of the Vector Used in the Proposed Method

Node Track 1 2 3 4 5 6 7 8 9 10

1 0.67 0.43 0.03 0.10 0.69 0.72 0.54 0.56 0.58 0.68
2 0.73 0.17 0.43 0.90 0.76 0.12 0.06 0.46 0.87 0.30
3 0.90 0.55 0.92 0.67 0.43 0.10 0.35 0.94 0.50 0.60
4 0.09 0.22 0.50 0.89 0.48 0.60 0.86 0.92 0.69 0.58
5 0.26 0.63 0.79 0.90 0.89 0.37 0.53 0.50 0.12 0.52

Appendix B. Details of the Candidate Nodes

Node no.
Water Requirements

(for the Demand Node; Cubic Meters)
Drought

Risk
Height above Sea Level

(Meters)

1 757.7 0.85 144
2 826.7 0.85 184
3 928.1 0.85 149
4 582.4 0.85 190
5 849 0.85 183
6 916.5 0.65 164
7 770.2 0.65 164
8 641.7 0.65 148
9 998.9 0.65 164

10 806.3 0.65 135
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Appendix C. Details of the Water Reservoir

Type of Water
Reservoir

Criteria Probability
for Selection

Capacity (Cubic
Meters)

Distance Limitation (Kilometer
Limitation (Kilometers))

Construction Cost
(Baht)

SC 0–0.33 1260 30 43,470
LC 0.34–0.66 3780 80 121,440
AW 0.67–1.00 4520 100 255,000

Appendix D. Example of the K Transition Method

Node Track # 1 2 3 4 5
Target track 0.23 0.44 0.39 0.18 0.92

Candidate track 0.64 0.73 0.07 0.27 0.57
New selected track 0.23 0.73 0.39 0.27 0.92

Appendix E. Example of the K Cyclic Move Method

Node Track 1 2 3 4 5 6 7 8 9 10
Initial 0.67 0.43 0.03 0.10 0.69 0.72 0.54 0.56 0.58 0.68

After KCM #1 0.67 0.10 0.03 0.54 0.69 0.72 0.58 0.56 0.43 0.68
After KCM #2 0.67 0.54 0.03 0.58 0.69 0.72 0.43 0.56 0.10 0.68
After KCM #3 0.67 0.58 0.03 0.43 0.69 0.72 0.10 0.56 0.54 0.68

Appendix F. Results of the GBT

Elements Track # 1 2 3 4 5
Target track 0.45 0.12 0.27 0.45 0.19
Best track 0.59 0.02 0.57 0.88 0.60

New selected track 0.45 0.02 0.57 0.45 0.19

Appendix G. Pseudocode of A-VaNSAS

Algorithm A1. Adjusted variable neighborhood strategy adaptive search (A-VaNSAS)

Input: Number of tracks (NT), number of nodes (D), scaling factor (F), improvement factor (K), and number of improvement/black
box (NBB)
Output: Best_Track_Solution

Begin
Population = Initialize Population (NT, D)
IBPop = Initialize Information BB (NBB)
Encode Population to WP

While the stopping criterion is not met carry out
For i = 1: NT
//selected improvement box by

RouletteWheelSelection
selected_BB = RouletteWheelSelection(IBPop)

If (selected_BB = 1) Then new_u = SWAP(u) Perform SWAP
Else if (selected_BB = 2) new_u = 2-Opt (u) Perform 2-Opt

Else if (selected_BB = 3) new_u = K-Transition (u) Perform K-Transition
Else if (selected_BB = 4) new_u = K-Cyclic (u) Perform K-Cyclic

If (CostFunction(new_u) ≤ CostFunction(Vi)) Then Vi = New_u
//Loop update heuristic information of Black box

For j = 1:NBB
BBPopi = α*(ABBi) + (1 − α)*(GBBi) + β*(NBBi)

End For Loop//end update heuristics information
End For Loop i

End While Loop
Return Best_Track_Solution

End
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