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Abstract: The methods for improving the accuracy of water level prediction were proposed in this
study by selecting the Gated Recurrent Unit (GRU) model, which is effective for multivariate learning
at the Paldang Bridge station in Han River, South Korea, where the water level fluctuates seasonally.
The hydrological data (i.e., water level and flow rate) for Paldang Bridge station were entered into
the GRU model; the data were provided by the Water Resources Management Information System
(WAMIS), and the meteorological data for Seoul Meteorological Observatory and Yangpyeong Meteo-
rological Observatory were provided through the Korea Meteorological Administration. Correlation
analysis was used to select the training data for hydrological and meteorological data. Important
input data affecting the daily water level (DWL) were daily flow rate (DFR), daily vapor pressure
(DVP), daily dew point temperature (DDPT), and 1 h max precipitation (1HP), and were used as
the multivariate learning data for water level prediction. However, the DWL prediction accuracy
did not improve even if the meteorological data from a single meteorological observatory far from
the DWL prediction point were used as the multivariate learning data. Therefore, in this study,
methods for improving the predictive accuracy of DWL through multivariate learning that effectively
utilize meteorological data from each meteorological observatory were presented. First, it was a
method of arithmetically averaging meteorological data for two meteorological observatories and
using it as the multivariate learning data for the GRU model. Second, a method was proposed to
use the meteorological data of the two meteorological observatories as multivariate learning data by
weighted averaging the distances from each meteorological observatory to the water level prediction
point. Therefore, in this study, improved water level prediction results were obtained even if data
with some correlation between meteorological data provided by two meteorological observatories
located far from the water level prediction point were used.

Keywords: water level; GRU; meteorological data; multivariate learning; correlation; meteorological
observatory

1. Introduction

In the field of water resource engineering, data models using artificial intelligence
have developed remarkably over the past 20 years. Traditionally, as a data-driven model
for water level prediction in the field of water resource engineering, the Auto-Regressive
Integrated Moving Average (ARIMA) model has been used to predict the monthly average
water level, which is a linear time series data [1]. However, in the case of the ARIMA model
prediction results, the prediction accuracy of hydrological time series data with nonlinear
characteristics was significantly reduced compared to that of linear time series data [2]. In
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addition, in the case of the ARIMA model, it was used to predict the groundwater level,
but there was a limitation in that the hydrological correlation between the rainfall and the
groundwater level could not be properly considered [3].

In addition, in the case of the fuzzy-Neural Network (NN) system, one of the rep-
resentative data-driven models, it was predictable with high accuracy in predicting the
reservoir water levels [4,5]. However, even in the case of the fuzzy-NN system, the predic-
tive accuracy of its model was greatly reduced in the prediction of the nonlinear time series
groundwater level [3].

Studies have been steadily conducted to improve accuracy in terms of water level
prediction, where rapid changes in water quantity such as flooding occur in the field of
water resource engineering. Since 2015, with the start of the Fourth Industrial Revolution,
the predictive accuracy of the Deep Neural Network (DNN) model has improved dramati-
cally in the field of image analysis and natural language processing. With the recent active
development of the Deep Learning (DL) model, it has been steadily studied as a model
that can replace the previous data-driven models (i.e., ARIMA, fuzzy-NN) for predicting
the existing hydrological time series. Therefore, the studies in the hydrological and water
resources fields have also begun to be actively used in predicting hydrological data using
DNN [6,7]. In the studies of the DNN model of the last decade, high accuracy prediction
was possible in the groundwater level prediction [8], river water level prediction [9–11],
and reservoir water level prediction [12–14] using time series data. The prediction of the
hydrological data using DL models could obtain high prediction accuracy only when there
was little change in water level or flow rate or when its change was very small. However, in
a situation where a rapid flood occurred and a rapid rise in the water level was predicted,
accurate prediction results for the high water level could not be obtained [15]. Therefore,
the case of rapidly changing water level prediction occurring during the flood season has
been recognized as a limitation of the DNN models.

Nevertheless, in order to properly predict rapid hydrological changes, it has been
continuously developed into a groundwater level prediction accuracy analysis [16] and peak
water level prediction due to tidal changes [17,18] using various DNN models. Among the
various DNN models, CNN, simple RNN, LSTM, and GRU models were used to evaluate
the prediction accuracy of the model through flow prediction varying from low to high
flow rates [15]. The various studies have been conducted on the improvement of model
accuracy through research on the selection of RNN models, the composition of models,
the sequence length of time series data, and the ratio and length of input and prediction
data [19,20]. As a result of comparing the hydrological prediction performance, the GRU
model and the LSTM model were evaluated as appropriate for the hydrological time series
prediction model, which can ensure the appropriate accuracy of the highly variable flow
rate and water level [15,21]. In addition, in order to predict the flow rate of rivers with
large flow fluctuations using the LSTM and GRU, a study was also conducted to indirectly
increase the prediction accuracy of the flow rate by using the water level flow rate rating
curve [22].

The prediction results of the LSTM and GRU were improved when multivariate
learning with greater correlation was performed compared to when only the univariate
hydrologic data were trained for the prediction of rapidly changing hydrologic data [21].
Even in hydrological time series prediction using multivariate learning data, the prediction
results of the GRU were more accurate than those of the LSTM [21]. When performing
water level prediction through the GRU model using a highly fluctuating water level,
the accuracy of the predicted time series water level is very low if only the water level
is trained as a single input variable of the model. Therefore, the accuracy of water level
prediction could be improved by using meteorological data observed in the meteorological
observatory near the water level prediction point [21]. However, it is not easy to use such
data from meteorological stations that can directly affect the river where the water level
prediction point is located. In other words, if only the meteorological data of a single
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meteorological observatory located at a long distance from the water level prediction point
are used, the accuracy of the predicted water level cannot be improved.

The aim of this study was to propose a method of improving the performance of
a GRU model to predict water level using multivariate meteorological data from two
distant observatories. First, two meteorological observatories far from the water level
prediction point were selected, and meteorological data with the correlation between the
meteorological data as well as the water level were selected through correlation analysis of
the data from the two observatories. Second, it was used as multivariate input data for the
GRU model using meteorological data from two meteorological observatories with small,
selected correlation. Because the distance between the two meteorological observatories
is far from each other, the characteristics of the meteorological data are different, but if
the arithmetic average or distance-weighted average of the location of the water level
station was used, meteorological data with improved correlation could be obtained. The
first method used in this study is a method of arithmetically averaging meteorological
data of two meteorological observatories and inputting them as multivariate learning data.
The second method involves inputting multivariate meteorological data obtained by the
weighted average of the distance from the water level prediction point to the meteorological
observatory as learning data of the GRU model. Therefore, even if the distance between the
observation point and the meteorological observatories is significantly apart, the data from
the meteorological stations can be effectively utilized to produce the results of improved
water level prediction accuracy at the water level prediction point.

2. Methods
2.1. Gated Recurrent Unit (GRU)

As shown in Figure 1, GRU plays a similar role as long short-term memory (LSTM)
but it is computationally efficient because it consists of a simpler structure. The input
gate and forget gate are combined and simplified into an update gate [15,21,22]. GRU has
two activation functions and one tanh function. Therefore, GRU is capable of long-term
memory like LSTM, but it has the advantage of having fewer parameters and faster training
speed than LSTM.

rt = σ(Wr·[ht−1, xt] + br) (1)

zt = σ(Wz·[ht−1, xt] + bz) (2)

ht = tan h(W·[ht−1, xt] + b) (3)

where r and z are the reset and update gates, respectively. Reset gate aims to reset past
data and outputs a value between 0 and 1, which is the value of how much past data will
be reset through the activation function. The update gate determines the rate of past and
present information updates and the output value zt determines the amount of data to be
exported at this point in time. 1− zt is the amount of data to be forgotten.
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2.2. Model Performance Indicators

Equations (5)–(8) were used as evaluation criteria for the GRU model to evaluate
the accuracy and performance of the model. The closer the Mean Square Error (MSE),
and Mean Square Error (RMSE) are to 0, the better the performance of the model. As the
Nash–Sutcliffe model efficiency coefficient (NSE). The determination coefficient (R2) are
close to 1, the performance of the model is improved.

(1) Mean Squared Error (MSE)

MSE measures the mean of the squared differences between the predictions and the
actual observations [15,21–23].

MSE =
1
N ∑N

i=1(xi − yi)
2 (4)

where xi are the observed values of the variables, yi are the predicted values and N is the
number of data.

(2) Root Mean Squared Error (RMSE)

RMSE is the square root of the average of squared differences between predictions
and actual observations [15,21–25].

RMSE =

√
∑N

i=1(xi − yi)
2

N
(5)

(3) Coefficient of determination (R2)

The coefficient of determination R2 is a measure of the goodness of fit of the statistical
model [15,21–23,26,27].

R2 = 1− ∑N
i=1(xi − ŷi)

2

∑N
i=1(xi − x)2 (6)

where ŷi are the predicted values from a statistical model and x is the mean of observed
values of the variables.

(4) Nash–Sutcliffe model efficiency coefficient (NSE)

NSE quantifies how well model simulations can predict outcome variables [15,21–24,26,27].

NSE = 1− ∑N
i=1(xi − yi)

2

∑N
i=1(xi − x)2 (7)

As shown in Table 1, it is inappropriate to adopt model results if R2 and NSE are less
than 0.5, model adoption is possible if R2 and NSE are greater than 0.5 and less than 0.65,
model adoption is good if R2 and NSE are greater than 0.65 and less than 0.75, and if R2

and NSE are over 0.75, it is very good to adopt a model [15,21–24,26,28].

Table 1. Performance ratings for adopted statistics.

Performance Rating R2 NSE

Very good 0.75 < R2 ≤ 1.00 0.75 < NSE ≤ 1.00
Good 0.65 < R2 ≤ 0.75 0.65 < NSE ≤ 0.75

Satisfactory 0.50 < R2 ≤ 0.65 0.50 < NSE ≤ 0.65
Unsatisfactory R2 ≤ 0.50 NSE ≤ 0.50

2.3. Application of Models

As shown in Figure 2, this study attempts to compare the accuracy of rapidly varying
water level prediction and the performance of models using the GRU model. The data



Water 2023, 15, 587 5 of 14

input and output to time series models basically uses water levels. However, since water
level data alone are limited in accurately predicting rapidly changing water levels, this
study attempts to analyze the accuracy of the predicted water level by using hydrological
data (i.e., flow rate, dew-point temperature, vapor pressure, and precipitation) collected
at nearby observatories, which are correlated with the water level data. When using only
a single hydrological time series input data, the correlation between hydrological input
data and water levels collected from nearby meteorological observatories was analyzed
to overcome the limitation of not accurately providing rapidly changing water levels.
Therefore, the purpose of this study was to accurately predict water level by considering
the multivariate hydrological time series data according to the spatial distribution of the
two meteorological observatories.

Water 2023, 15, x FOR PEER REVIEW 5 of 14 
 

 

2.3. Application of Models 

As shown in Figure 2, this study attempts to compare the accuracy of rapidly varying 

water level prediction and the performance of models using the GRU model. The data 

input and output to time series models basically uses water levels. However, since water 

level data alone are limited in accurately predicting rapidly changing water levels, this 

study attempts to analyze the accuracy of the predicted water level by using hydrological 

data (i.e., flow rate, dew-point temperature, vapor pressure, and precipitation) collected 

at nearby observatories, which are correlated with the water level data. When using only 

a single hydrological time series input data, the correlation between hydrological input 

data and water levels collected from nearby meteorological observatories was analyzed 

to overcome the limitation of not accurately providing rapidly changing water levels. 

Therefore, the purpose of this study was to accurately predict water level by considering 

the multivariate hydrological time series data according to the spatial distribution of the 

two meteorological observatories. 

 

Figure 2. Flowchart of water level prediction using GRU model. 

3. Study Area and Data 

3.1. Study Area 

The Han River in the urbanized Han River basin was selected (Figure 3). The Han 

River basin is located in the central part of the Korean Peninsula and spans 36°30′ to 

38°55′N latitude, 126°24′ to 129°02′E longitude. The Han River is the largest river in South 

Korea with the basin area of 25,953.60 km2, the total length of 494.44 km, the average 

width of 72.35 km, and the shape coefficient of 0.146. The Han River basin is a multi-form 

basin mixed with dendritic and facsimile forms [15,21,29]. 

As shown in Figure 3, after the South Han River and North Han River join the Pal-

dang Reservoir, the main stream of the Han River is formed from the Paldang Dam. The 

Paldang Bridge Observatory is located directly downstream of Paldang Dam, where the 

main stream of the Han River begins. The river topographic characteristics of the section 

between Jamsil Weir and Paldang Dam of the Han River are as follows. The width of the 

river is 303–1693 m, the width of the channel is 277–1332 m, and the average slope of the 

river is 1/10100. The study site is a section in the middle of the Han River that flows 

through major cities of Seoul and Gyeonggi-do. The study area has experienced rapid ur-

banization. A waterfront space and an ecological wetland are found in the area. 

Figure 2. Flowchart of water level prediction using GRU model.

3. Study Area and Data
3.1. Study Area

The Han River in the urbanized Han River basin was selected (Figure 3). The Han
River basin is located in the central part of the Korean Peninsula and spans 36◦30′ to
38◦55′ N latitude, 126◦24′ to 129◦02′ E longitude. The Han River is the largest river in South
Korea with the basin area of 25,953.60 km2, the total length of 494.44 km, the average width
of 72.35 km, and the shape coefficient of 0.146. The Han River basin is a multi-form basin
mixed with dendritic and facsimile forms [15,21,29].

As shown in Figure 3, after the South Han River and North Han River join the Paldang
Reservoir, the main stream of the Han River is formed from the Paldang Dam. The Paldang
Bridge Observatory is located directly downstream of Paldang Dam, where the main stream
of the Han River begins. The river topographic characteristics of the section between Jamsil
Weir and Paldang Dam of the Han River are as follows. The width of the river is 303–1693 m,
the width of the channel is 277–1332 m, and the average slope of the river is 1/10100. The
study site is a section in the middle of the Han River that flows through major cities of
Seoul and Gyeonggi-do. The study area has experienced rapid urbanization. A waterfront
space and an ecological wetland are found in the area.
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3.2. Hydrologic and Meteorological Data

In this study, hydrological data (i.e., water level, flow rate) for Paldang Bridge Station
located upstream of the Han River observed by the Ministry of Environment of Korea were
used (Figure 3). The weather data of Seoul Observatory and Yangpyeong Observatory were
used at the two nearest Korea Meteorological Administration (KMA) observatories from
Paldang Bridge Station (Figure 3) [31]. As shown in Figure 3, the distance between the two
meteorological observatories is as follows: (1) It is located at the downstream of the Han
River 24.1 km from the Seoul Observatory to the Paldang Bridge station. (2) In the case of
Yangpyeong Observatory, it is located at the upstream of the South Han River 23.5 km to
the Paldang Bridge station. (3) The water level data at the flow measuring station were
obtained using data from the Water Resources Management Information System (WAMIS)
website of the Ministry of Environment [32].

(1) Daily water level

In this study, the longer the training data, the better the overall prediction results of
the GRU model. So, the total length of the data used for learning and prediction was 2 years
and 7 months and relatively short data were used to verify GRU model.

As shown in Table 2 and Figure 4, the average water level observed at Paldang Bridge
Station was based on real-time observation data from 1 January 2018 to 31 July 2020. In
order to analyze the characteristics of water levels, the average, minimum, maximum water
levels were statistically analyzed as shown in Table 2.

Table 2. Statistical characteristics of water levels at the Paldang Bridge station (period: 2018–2020).

Minimum Water Level
(EL.m)

Maximum Water Level
(EL.m)

Average Water Level
(EL.m)

Standard Deviation of Water Level
(EL.m)

0.960 4.230 1.190 0.328

As shown in Figure 4, the selected daily average time series water level data was
divided into learning data and model prediction data. Using the results of previous
studies [15], which obtained the best accuracy, the optimal length of training data and
prediction data was divided into 74.9% and 25.1%, respectively, from the length of the
all-time series data. As shown in Figure 4, the data with black dotted lines were used
as training data for GRU model, and solid red line data were used as predictive data for
its model.
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Figure 4. Time series daily water level at the Paldang Bridge station (period: 2018–2020).

(2) Hydrological and meteorological data

As shown in Table 3, the correlation between meteorological and hydrological data
measured at two nearby observation stations (i.e., Seoul Observatory and Yangpyeong Ob-
servatory) was analyzed to select input data suitable for DWL prediction at Paldang Bridge.

Table 3. Correlation between hydrological and meteorological data.

Variable DWL
(EL.m)

DFR
(m3/s)

S_1HP
(mm)

S_DDPT
(◦C)

S_DVP
(hPa)

Y_1HP
(mm)

Y_DDPT
(◦C)

Y_DVP
(hPa)

DWL
(EL.m) 1.0000 0.9735 0.2350 0.3254 0.3328 0.3415 0.3607 0.3809

DFR
(m3/s) 0.9735 1.0000 0.2512 0.2687 0.2790 0.3281 0.3034 0.3291

S_1HP
(mm) 0.2350 0.2512 1.0000 0.3047 0.3770 0.1555 0.2402 0.2652

S_DDPT (◦C) 0.3254 0.2687 0.3047 1.0000 0.9420 0.2310 0.8407 0.8387
S_DVP (hPa) 0.3328 0.2790 0.3770 0.9420 1.0000 0.2550 0.8228 0.8795

Y_1HP
(mm) 0.3415 0.3281 0.1555 0.2310 0.2550 1.0000 0.2796 0.3419

Y_DDPT (◦C) 0.3607 0.3034 0.2402 0.8407 0.8228 0.2796 1.0000 0.9472
Y_DVP (hPa) 0.3809 0.3291 0.2652 0.8387 0.8795 0.3419 0.9472 1.0000

DWL, daily water level; DFR, daily flow rate; S_DVP, daily vapor pressure at Seoul Observatory; S_DDPT, daily
dew-point temperature at Seoul Observatory; S_1HP: 1 h max precipitation at Seoul Observatory; Y_DVP, daily
vapor pressure at Yangpyeong Observatory; Y_DDPT, daily dew-point temperature at Yangpyeong Observatory;
Y_1HP: 1 h max precipitation at Yangpyeong Observatory.

First, the correlations between the daily water level (DWL) and the collected hydrolog-
ical variables, such as daily flow rate (DFR), S_1HP (1-h max precipitation), S_DDPT (daily
dew-point temperature), and S_DVP (daily vapor pressure) at Seoul Observatory, and
Y_1HP, Y_DDPT, and Y_DVP at Yangpyeong Observatory, were analyzed. The hydrologi-
cal variable with the largest correlation with the DWL to be predicted was daily flow rate
(DFR), which was 0.9735, and the correlation between DWL and DFR was very high. The
correlation coefficients for the hydrological data (i.e., S_DDPT, S_DVP, Y_1HP, Y_DDPT, and
Y_DVP) of Seoul and Yangpyeong Observatories are 0.3254–0.3809, which are correlated
with the water level. However, the S_1HP was 0.2350, which had a very low correlation
with the DWL. The reason is that Yangpyeong Observatory is located right next to the
South Han River, but Seoul Observatory is located in downtown Seoul under the Namsan
Mountain, causing heterogeneity of weather phenomena due to topographical factors.

Second, the correlation between the meteorological data of the two meteorological
observatories was 0.1555, which was very low because the precipitation pattern was
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significantly different due to the difference in topographical characteristics. The correlation
coefficients among S_DDPT, S_DVP, Y_DDPT, and Y_DVP were 0.8228–0.8795, which were
very high. However, each of S_1HP and Y_1HP had a low correlation of 0.2310–0.2652 with
other meteorological data.

3.3. Model Composition

(1) Composition of GRU model

In this study, Python version 3.9.12 [33], an open source programming language and
TensorFlow version 2.10.0 [34], a deep learning library, were used. The detailed model
compositions such as the shape of neurons and the composition of layers used as GRU
models are presented in Table 4. The GRU model consisted of one input layer, two hidden
layers, one dropout layer, and two dense layers [15,21,22].

Table 4. Configuration and hyperparameters of GRU model.

Activation
Function

Input
Layer

Hidden
Layer 1 Dropout Hidden

Layer 2
Dense
Layer 1

Dense
Layer 2

ReLU GRU GRU
50 units 0.25 GRU

50 units 25 units 1 unit

In the GRU model, sequence length (SL) was trained for 14 days to improve the
prediction accuracy, 74.9% of all hydrological and meteorological data were used as the
training data, and 25.1% of the remaining data not used for training were used as the
prediction data [15,21,22]. A total of 600 epochs were trained for sufficient learning of the
data, the optimizer used was the Adam optimizer, and the cost function was Mean Square
Error (MSE).

(2) Composition of training data in GRU model

Table 5 shows the input and output data of the GRU model. Using the GRU model,
the hydrological and meteorological data for one or two meteorological observatories were
combined to predict the high accuracy DWL at the Paldang Bridge point. In order to
compare the accuracy of DWL prediction on Paldang Bridge according to the location
characteristics of two meteorological observatories, multivariate input data (i.e., DFR,
S_DVP, S_DDPT, S_1HP, Y_DVP, Y_DDPT, and Y_1HP) were constructed as shown in
Table 5 by combining meteorological data with different precipitation patterns due to
topography. The input variables used in the learning data were composed of 1 to 8 variables,
and DWL was predicted and accuracy was evaluated through the GRU model.

Table 5. Composition of input and output data of GRU model.

Number of
Input Variables Training Data Prediction Data

1 DWL

DWL

5 DWL, DFR,
S_DVP, S_DDPT, S_1HP

5 DWL, DFR,
Y_DVP, Y_DDPT, Y_1HP

8
DWL, DFR,

* equal(S_DVP, S_DDPT, S_1HP,
Y_DVP, Y_DDPT, Y_1HP)

8
DWL, DFR,

** distance(S_DVP, S_DDPT, S_1HP,
Y_DVP, Y_DDPT, Y_1HP)

* considering the data of Seoul Observatory and Yangpyeong Observatory equally; ** considering the weighted
average of the data of the Seoul and Yangpyeong Observatories on the distance
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4. Results
4.1. Results on Training and Prediction Using Water Levels as Univariate Input Data

The learning and prediction results for the GRU model using univariate time series
DWL training data are shown in Figure 5 and Table 6. The red circles in Figure 5a,c represent
the training results, and the green circles in Figure 5a,c represent the prediction results.
Figure 5b,d show the prediction accuracy of the model as R2.
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Table 6. Comparison of univariate model performance.

Variable Computational
State

MSE
(EL.m)

RMSE
(EL.m)

R2 NSE

DWL
Training 7.153 × 10−6 0.0027 0.9889 0.9870

Prediction 1.629 × 10−5 0.0040 0.5179 0.5129

As shown in Table 6, when univariate DWL was trained as input data for the GRU
model, the learning results of the model for DWL were 0.9889 for R2 and 0.9870 for NSE,
respectively, which was evaluated as “very good”. However, the prediction results of the
DWL data were 0.5179 for R2 and 0.5129 for NSE, respectively, and the accuracy of the
water level prediction was slightly “satisfactory”. As shown in Figure 5b,d, the predicted
accuracy of DWL was less than the observed value of DWL during peak water flow.

4.2. Results on Training and Prediction Using Water Levels and Multivariate Input Data

Figure 6 and Table 7 presented the results of predicting DWL by combining the
flow rate and multivariate data from one or two meteorological observatories for DWL
prediction. As shown in Table 7, the five and eight multivariate learning results of the
GRU model were NSE = 0.9807− 0.9923, indicating optimal (“very good”) training results.
However, even if multivariate input data were used considering only one meteorological
observatory located at a considerable distance of 23.5 km or 24.1 km from the Paldang
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Bridge station, the prediction results of DWL did not improve as NSE = 0.5941− 0.5976,
corresponds to “satisfactory”.
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Table 7. Comparison of multivariate model performance.

Variables Computational
State

MSE
(EL.m)

RMSE
(EL.m)

R2 NSE

DWL, DFR, S_DVP, S_DDPT, S_1HP
Training 0.0019 0.0437 0.9888 0.9923

Prediction 0.0329 0.1814 0.4660 0.5976

DWL, DFR, Y_DVP, Y_DDPT, Y_1HP
Training 0.0022 0.0470 0.9843 0.9807

Prediction 0.0326 0.1806 0.4896 0.5941

DWL, DFR,
* equal(S_DVP, S_DDPT, S_1HP, Y_DVP, Y_DDPT, Y_1HP)

Training 0.0025 0.0497 0.9808 0.9860

Prediction 0.0339 0.1840 0.4676 0.6107

DWL, DFR,
** distance(S_DVP, S_DDPT, S_1HP, Y_DVP, Y_DDPT, Y_1HP)

Training 0.0018 0.0420 0.9868 0.9868

Prediction 0.0301 0.1734 0.5049 0.6228

* considering the data of Seoul Observatory and Yangpyeong Observatory equally; ** considering the weighted
average of the data of the Seoul and Yangpyeong Observatories on the distance.

As shown in Table 3, the correlation coefficient between the meteorological data of
each meteorological observatory and the DWL data was in the range of 0.2350 to 0.3254,
which is not significant because the distance between the Paldang Bridge and each meteoro-
logical observatory is quite far away and geographically different from each meteorological
observatory. As shown in Figure 6b, when DWL was predicted at Paldang Bridge using
meteorological data from the Seoul Meteorological Observatory, some predicted DWL
tended to be under-predicted compared to the measured DWL, and also under-estimated
in the high water level section. In the case of Figure 6d, when predicting DWL using
meteorological data from Yangpyeong Meteorological Observatory, the predicted DWL
was slightly over-estimated in the low water level section, but relatively good prediction
results were shown in the high water level section. It was evaluated that the Yangpyeong
Meteorological Observatory (predicted R2 = 0.4896) is located adjacent to the South Han
River, thereby reflecting meteorological factors due to the influence of the river and in the
case of Seoul Meteorological Observatory (predicted R2 = 0.4660), it was installed at a long
distance from the Han River and reflected meteorological factors in Seoul downtown.

However, for the eight multivariate data scenario which considered the meteorological
data of Seoul Meteorological Observatory and Yangpyeong Meteorological Observatory at
the same time, the predicted accuracy of DWL at Paldang Bridge station was improved
to NSE = 0.6107− 0.6228. According to Figure 6f, the prediction accuracy of the DWL
predicted at the Paldang Bridge station was improved even if the meteorological data
collected from the two meteorological observatories were considered with the same weight.
In addition, as shown in Figure 6h, the prediction results obtained by weighted average of
the meteorological data for the two meteorological observatories based on distance between
the Paldang Bridge station and each meteorological observatory increased the prediction
accuracy of the model to NSE = 0.6228. For Paldang Bridge station, the prediction
point of DWL is located in the middle of the two meteorological observatories, the best
DWL prediction result could be obtained if the observed meteorological data were trained
by weighted average according to the distance between the prediction point and each
meteorological observatory.

5. Discussion

In the case of other previous data-driven models [1–5,8–14], the prediction accuracy
for rapidly changing peak water level fluctuations degraded. Various DNN models (CNN,
simple RNN, LSTM, GRU) were also used to evaluate the accuracy of the models on the
training and prediction results of low and high flow rates [15]. The LSTM and GRU model
outputs yielded better prediction accuracy than other DNN models such as CNN and
simple RNN at peak water levels. In the case of the GRU model, although its structure is
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simpler than that of LSTM and computational cost was less, it had a slightly higher accuracy
than that of LSTM. Therefore, this study used GRU to derive the results of this study.

Based on the results of the previous study [15], a GRU model for water level prediction
was constructed using time series water level data. SL, a training unit of data necessary for
learning hydrological data presented in the previous study, was used every 14 days. The
ratio of the learning data and the prediction data of the hydrological data were divided into
74.9% and 25.1%, respectively, and constructed as input and output data of the GRU model.

Based on previous findings [21], multivariate DL models using five variables (DWL,
DFR, DVP, DDPT, 1HP) were evaluated higher than univariate water level predictions.
In this study, multivariate water level prediction was also performed using the distance-
weighted average method on meteorological data from two observatories (i.e., Seoul and
Yangpyeong Observatories) provided by the KMA. The univariate water level prediction
result was NSE = 0.5129, but the accuracy was improved to NSE = 0.6228 in the multi-
variate model where a total of eight variables (i.e., DWL, DFR, S_DVP, S_DDPT, S_1HP,
S_DDPT, Y_DDPT, Y_1HP) were learned as input data. In other words, if the distance from
each meteorological observatory to the water level prediction point is far, but the distance-
weighted average of the meteorological data of the two meteorological observatories is
used, the accuracy of the water level prediction results will improve compared to that of
the univariate water level results.

6. Conclusions

In the case of rivers flowing through the city coupled with the effect of climate change,
accurate prediction of future flood water levels is very important. In this study, the GRU
model which is excellent in multivariate prediction results was selected as a data-driven
model suitable for predicting the water level of rivers with very large fluctuations in
flood event. Using the GRU model, the time series water levels with large fluctuations
were predicted.

In this study, DFR, hydrological data correlated with the DWL to be predicted, and
DVP, DDPT, and 1HP, which are meteorological data of the meteorological observatory,
were selected as learning data for the GRU model. When only univariate water level data
were learned with the GRU model, the DWL predicted with the GRU model tended to be
over-predicted compared to the actual observation data. Therefore, meteorological data (i.e.,
DVP, DDPT, and 1HP) of the meteorological observatory correlated with DWL and DFR
were used as learning data to predict DWL with improved accuracy. However, when only
meteorological data from a single meteorological observatory located at a distance from the
water level prediction point are used, the predicted DWL was partially under-predicted or
partially over-predicted, so the prediction accuracy of DWL did not improve.

This study proposed a prediction method of DWL with improved prediction accuracy
even if the distance between the prediction point of DWL and the meteorological observa-
tories is far and the meteorological data of each of the two meteorological observatories are
not correlated. First, if the method of arithmetic average weather data of two or more mete-
orological observatories that can affect the prediction point, the prediction accuracy of the
water level could be improved compared to the case of using the univariate water level or
using the meteorological data of a single meteorological observatory. Second, the accuracy
of the predicted DWL by multivariate learning would improve if the meteorological data of
each meteorological observatory were used as training data of the GRU model by weighted
average of the distance from the prediction point to the meteorological observatory.

The GRU model selected in this study is a data-driven model that analyzes the numer-
ical variability of data, and it is possible to predict water levels with improved accuracy
by using meteorological data considering the distance between the two meteorological
observatories as multivariate learning data. Therefore, if meteorological data (i.e., DVP,
DDPT, and 1HP) of two or more meteorological observatories located near the prediction
point are used when predicting the rapidly changing water level, it is possible to predict
the water level more accurately than the univariate water level prediction method.
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