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S.1 Datasets 

S.1.1 Streamflow and water quality 

This study primarily focused on risk-based assessment of watershed health (Mallya et al., 2018) 

with respect to the following water quality constituents - suspended sediment concentration (SSC), 

nitrogen, and phosphorus. To perform a risk-based analysis, we require a continuous time series 

of water quality. But these are not often available, and have to be reconstructed by using continuous 

time series of streamflow observations as surrogate information (Hoque et al., 2012; Runkel et al., 

2004). Water quality data available from United States Geological Survey – National Water 

Quality Assessment (USGS-NAWQA) program were used in this study. A total of 214 stations 

with a minimum of 30 observations for any of the three water quality constituents were available 

over the study area. The limit on the minimum number of observations ensures that the 

reconstruction process is robust. Among the 214 stations, suspended sediment concentration (SSC) 

data were available at 151 stations; nitrite + nitrate data at 70 stations, and orthophosphate data at 

49 stations. In addition to water quality data, these stations also had records of continuous daily 

streamflow. The geographic location of these stations is denoted as green circular markers in 

Figure 1. The period of analysis extends from 1965 to 2014, and was chosen based on availability 

of streamflow data at these stations. 

S.1.2 Geographic data 

The Hydrologic Unit Code 10 (HUC-10) boundaries were obtained from USGS National 

Hydrography Dataset (NHD). The HUC-10 boundaries have an average area of about 580 square 

kilometers, and are representative of hydrologic processes at watershed-scale. A total of 2354 

HUC-10 basins are available over the study area and are shown as grey polygons in Figure 1. The 

NHD dataset also contains vector shapefiles that represents the stream network over the study area, 
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and these were used to burn-in streams during watershed delineation for USGS-NAWQA stations. 

The delineated watersheds and HUC-10 boundaries were used for quantifying watershed attributes 

and other predictor variables used as inputs for ML models.  

S.1.3 Land use and Land cover data 

The 2011 National Land Cover Database (NLCD) which is based on a decision-tree classification 

of Landsat satellite data was used in this study. The spatial resolution of the data is 30 meters. The 

original data consists of 20 classes of land use. These were then combined to represent four broad 

classes - agriculture, forests, urban, and water. Figure S1 shows the land use map comprising of 

these four broad classes. 
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Figure S1: NLCD 2011 land use map over the study area. The original land use classes have been 

reclassified into four broad classes – agriculture, forest, urban, and water. See Figure S2 for 

percentage distribution of these broad classes in each river basin. 

 

Using GIS, the land use percentages corresponding to each of the four broad cases were computed 

for each HUC-10 basin in UMRB, ORB, and MRB. As seen in Figure S2a, approximately 83% of 

land in UMRB belongs to forest and agriculture land use type, 9% is urban/residential, and about 

8% comprise of water bodies. As in case of UMRB, forest and agriculture land use classes are 

predominant in ORB, constituting about 88% of the total drainage area (see Figure S2b). 

Urban/residential land use is 10%, and water bodies cover around 2% of drainage area in ORB. In 

MRB (Figure S2c) 70% of the area is under agriculture and forest land use, 24% area has urban 

land use and the remaining 6% are water bodies. 

 

Figure S2: Percentage of four broad land use classes – agriculture, forest, urban, and water in a) 

UMRB, b) ORB, and c) MRB, respectively. 
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S.1.4 Soil data 

Soil Survey Geographic Database (SSURGO) was used to extract soil properties for the study area. 

Among the several soil properties that were available in the SSURGO database, we have used 

hydrologic soil group and available water storage (AWS) in top 25 cm of soil in this study. 

Hydrologic group A soils are mainly composed of sand, loamy sand or sandy loam types of soils. 

They have high infiltration rates and low runoff potential. Hydrologic group B soil are mostly silt 

loam or loam and have moderate infiltration rates. Hydrologic group C soils are sandy clay loam 

with low infiltration rates, and group D soils are clay loam, silty clay loam, silty clay, sandy clay 

and clay soil with very low infiltration rates and high runoff potential. Figure S3 shows the 

percentage distribution of each soil group in each HUC-10 basin within the study area. While large 

parts of UMRB, southern portions of ORB, and western parts of MRB are dominated by soils 

belonging to hydrologic soil group B, northern and eastern portions of ORB and southern parts of 

UMRB and MRB have high percentage of soils that belong to hydrologic soil group C.  The eastern 

parts of MRB belong to hydrologic soil group D.  
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Figure S3: Percentage of each hydrologic soil group belonging to - a) Group A, b) Group B, c) 

Group C, and d) Group D. 

 

Figure S4 shows the average available water storage (cm/cm) in top 25 cm of the soil. This measure 

denotes the water holding capacity in the top soil that is available for evapotranspiration and other 

hydrologic processes. The areas with high values of available water storage are predominantly of 

agricultural land use and those with low values are predominantly forested (see Figure S1). 
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Figure S4: Average available water storage in top 25 cm of the soil (cm/cm). 

 

S.1.5 Long-term climate data 

Daily precipitation (PRCP), minimum and maximum temperature (TMIN and TMAX) data were 

collected over the study area using the Historical Climate Network (HCN) stations available at 

National Centers for Environmental Information (NCEI) website. Stations with a minimum record 

of 30 years were considered in this study. Daily data were converted to monthly, seasonal, and 

annual time scales. Thiessen polygons were constructed for all the HCN stations, and then the area 

weighted precipitation and minimum- and maximum-temperatures were computed for each HUC-

10 basin, as well as for areas draining to USGS-NAWQA stations. As part of exploratory data 

analysis (EDA) a Mann-Kendall (MK) trend test with 𝛼 = 0.05 was performed to identify HCN 
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stations that have statistically significant trend in these climate variables at monthly, seasonal, and 

annual scales, during the study period. 

Figure S5 shows the average annual precipitation total at each HCN station over the study area. 

Locations exhibiting statistically significant positive trends in annual total precipitation (increasing 

over time) are denoted using red colored square markers, while those exhibiting significant 

negative trends are denoted as blue colored square markers. The majority of the stations in the 

study area do not have statistically significant trends (982 out of 1167 stations in UMRB, 1600 out 

of 1757 stations in ORB, and 204 out of 231 stations in MRB). However, the number of stations 

with significant positive trends (177 out of 1167 stations in UMRB, 129 out of 1757 stations in 

ORB, and 24 out of 231 stations in MRB) outnumber those with negative trends (8 out of 1167 

stations in UMRB, 28 out of 1757 stations in ORB, and 3 out of 231 stations in MRB). This 

suggests an overall increase in total annual precipitation during the study period over this region.  
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Figure S5: Average annual total precipitation (in mm) at each HCN station (shown as points) over 

the study area. Stations with statistically significant increasing (positive) and decreasing (negative) 

trends in annual total precipitation according to MK trend test are also highlighted using red and 

blue square markers, respectively. 

 

Figure S6a-b shows the mean magnitudes of annual arithmetic average of daily maximum 

temperature and minimum temperature averages recorded at HCN stations, respectively. As in the 

case of annual total precipitation, stations with statistically significant positive and negative trends 

in average maximum or minimum temperatures are denoted as red and blue square markers, 

respectively. The percentage of HCN stations with significant trends in annual average temperature 
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(both maximum and minimum) are more in number over ORB, compared to UMRB and MRB. 

For mean annual average of maximum daily temperature (Figure S 6a), the number of stations 

exhibiting significant negative trends (71 out of 756 stations in UMRB, 144 out of 1078 stations 

in ORB, and 13 out of 169 stations in MRB) outnumber those with positive trends (37 out of 756 

stations in UMRB, 57 out of 1078 stations in ORB, and 10 out of 169 stations in MRB). This 

suggests an overall decrease in maximum temperatures during the study period over this region. 

However, the opposite is true for annual average minimum temperature (Figure S 6b). The number 

of stations with significant positive trends (145 out of 753 stations in UMRB, 137 out of 1065 

stations in ORB, and 27 out of 166 stations in MRB) outnumber those with negative trends (26 out 

of 753 stations in UMRB, 69 out of 1065 stations in ORB, and 4 out of 166 stations in MRB), 

indicating overall increase in minimum temperatures in the region during the study period. 

 

Figure S6: Mean annual average a) maximum and b) minimum daily temperatures in degree 

Celsius at HCN stations (shown as points) over the study area. Stations with statistically significant 

increasing (positive) and decreasing (negative) trends in annual average maximum and minimum 
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temperatures according to MK trend test are also highlighted using red and blue square markers, 

respectively. 

 

S.1.6 Fertilizer sales data 

As the study region has dominant agricultural land use, fertilizer sales data available from United 

States Department of Agriculture's National Agricultural Statistics Service (USDA-NASS) were 

used to account for the influence of application of fertilizers on water quality loads and therefore 

on watershed health with respect to nutrients. The sales data (in million-dollar amounts) were 

available for each county for the years 1997, 2002, 2007, and 2012. The values of other years of 

the study period were filled using these available values. For simplicity, years 1966 to 1996 were 

assigned fertilizer sales data available for 1997. Similarly, years 1998 to 2001 were assigned 

fertilizer sales data available for 2002, and so on. 
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Figure S7: County level fertilizer sales (in million dollars) over the study area for a) 2012, b) 1997, 

c) 2002, and d) 2007. 

 

Figure S7 shows the county level fertilizer sales data for four time points - 1997, 2002, 2007, and 

2012, over the study region. The counties are color coded based on legend shown in Figure S 7a. 

Fertilizer sales (in million dollars) have been steadily increasing over the period of analysis, and 
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regions with high sales correspond well with areas having dominant agricultural land use (see 

Figure S1).  

S.1.7 Watershed attributes 

Using digital elevation model data (DEM - 30m resolution) drainage areas were delineated for 

each USGS-NAWQA station. These, along with HUC-10 basins and NHD stream shapefiles, were 

used to calculate the following watershed attributes - drainage areas, slope, and stream order. 

Latitude and longitude information were also recorded. 

S.2 Additional Results 

S.2.1 Suspended Sediments 

Random Forest Regression Model – Testing phase 

Watershed attributes (𝑋) from 20% of the stations (belonging to the test set following 80:20 split) 

were used as inputs to the trained RF model, and the outputs (𝑦௣௥௘ௗ) were compared with reference  

risk values (computed independently following Mallya et al.(2018)). Figure S 8 shows a scatter 

plot of reference WH versus predicted annual watershed health values for the entire study period 

(1966-2014) at all test stations combined. The  coefficient of determination 𝑅ଶ value of 0.95 was 

obtained on the test set. Though the 𝑅ଶ statistic is high, there is significant scatter about the best-

fit (1:1) line. 
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Figure S8: Scatter plot of reference WH versus predicted watershed health (with respect to SSC) 

using a random forest model at USGS-NAWQA stations that were used as test set. The values for 

each year during the study period (1966-2014) are shown. 

 

Similar results were obtained when the random forest model was trained on other risk measures. 

Figure S9a-c shows the scatter plot of reference versus predicted values of reliability, resilience, 

and vulnerability of SSC, respectively. As in the case of watershed health (see Figure S8), the 

results shown here are for the test set. The 𝑅ଶ values for all three risk measures were high but there 

was scatter around the best fit line, indicating under- or over-prediction for some cases. 
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Figure S9: Scatter plot of reference (computed independently following Mallya et al. (2018)) 

versus predicted (a) reliability, (b) resilience (c) vulnerability (with respect to SSC) using a random 

forest model at USGS-NAWQA stations that were used as test set. The values for each year during 

the study period (1966-2014) are shown. 

 

Other regression models – Testing phase: 

In addition to using a random forest regression model, we also considered gradient boosting, 

adaptive boosting (AdaBoost), and Bayesian ridge regression models for predicting risk measures 

at ungauged HUC-10 basins. The scatter plots of reference WH versus predicted watershed health 

values (with respect to SSC) on the test dataset according to these regression models are shown in 

Figure S 10. The gradient boosting regression model yields a 𝑅ଶ value of 0.94 (Figure S10a), 

which is comparable to that obtained from the random forest model (see Figure S8). While most 

points lie along the best fit line, there is considerable scatter indicating lack of strong prediction 

power. Figure S10b compares the predictions from AdaBoost regression with reference watershed 

health values. The points do not lie on the best fit line, indicating a relatively poor model fit. The 
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𝑅ଶ value for this model was 0.84. The Bayesian ridge regression (Figure S 10c) had the worst 

performance among the four models used in the study, with 𝑅ଶ value of 0.68.  

 

Figure S10: Scatter plot of reference WH versus predicted watershed health (with respect to SSC) 

using (a) gradient boosting regression, (b) AdaBoost regression, and (c) Bayesian ridge regression 

at USGS-NAWQA stations that were used as test set. The values for each year during the study 

period (1966-2014) are shown. 

 

Ensemble model – Testing phase 

The WH outputs (from the training phase, i.e., 80% of USGS-NAWQA stations) from the four 

ML models discussed in this study were used as explanatory variables (𝑋) in a separate random 

forest model with 50 decision trees. The target variable (𝑦) for this model was still the annual 

series of reference WH measures as used before. The training and testing were performed as 

described before using 80-20% split of stations. The trained ensemble (random forest) model was 

then evaluated on the test set. Figure S 11 shows the comparison of reference WH versus predicted 

WH values over the entire test dataset (20% stations and output for the period 1966-2014). The 
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points in the scatter plot are tightly bound along the best fit line, with only few instances of 

significant scatter. The 𝑅ଶ value was 0.98 on the test dataset. 

 

Figure S11: Scatter plot of reference WH values versus ensemble model predictions of watershed 

health (with respect to SSC) at USGS-NAWQA stations that were used as test set. The values for 

each year during the study period (1966-2014) are shown. 

 

Ensemble model – Prediction at ungauged HUC-10 basins 

Using WH predictions from individual ML models as inputs to the trained ensemble model, we 

can obtain predictions of WH over ungauged HUC-10 basins. The spatial map of ensemble-

predicted watershed health is shown in Figure S 12. The results are for the year 2014. The circular 

markers denote the geographic location of USGS-NAWQA stations that formed part of training 

and testing dataset. The HUC-10 basins and stations are color coded similar to Figure 4. The HUC-
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10 basins with high watershed health (light shades) belong mostly to the regions with dominant 

forest land use (refer Figure S1) and those with low watershed health (darker color shades) are in 

regions with dominant agricultural land use. These results are generally similar to those predicted 

using the Random Forest model (see Figure 4). 

 

Figure S12: Prediction of watershed health (with respect to SSC) at ungauged HUC-10 basins for 

the year 2014 using the ensemble model. Circular markers denote the location of USGS-NAWQA 

stations where SSC measurements were available and are color coded based on watershed health 

for year 2014. 

 

S.2.2 Watershed health for Nitrite + Nitrate 

As the study region has dominant agricultural land use, we evaluated risk measures at ungauged 

HUC-10 basins with respect to Nitrogen and Phosphorus. In this section, we will take a look at 

risk evaluations with respect to Nitrogen. We used Nitrite + Nitrate observations (parameter code: 
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00631) available at 70 USGS-NAWQA stations for this purpose. As with other water quality 

constituents, only sporadic data samples were available at these stations. Therefore, daily 

reconstructed series of Nitrite + Nitrate were first obtained following Hoque et al. (2012). Then 

using a standard of 10 mg/L (US EPA, 1986), annual series of risk measures, such as reliability, 

resilience, vulnerability and watershed health, were obtained using Equations (1)-(5). The 

computed risk measures’ values are conveniently referred to as reference values. Then for each 

individual risk measure (𝑦) and similar to SSC, a machine learning model was trained and tested 

(using 80%-20% split) using attributes (𝑋) collected for USGS-NAWQA drainage areas, and 

predictions were obtained for ungauged HUC-10 basins. For nitrogen and phosphorus analysis we 

also included average and total fertilizer sales data as inputs. Therefore, we had a total of 83 

explanatory variables in the analysis. 

Performances of ML models – Testing phase 

Figure S13a-d shows the performance of the four regression models used in this study in predicting 

watershed health measure (with respect to Nitrite + Nitrate) on the test dataset. Figure S 13a shows 

the results of random forest model, which had a 𝑅ଶ value of 0.81. When compared to Figure S 8, 

the scatter plots for nitrogen (Figure S 13) contains smaller number of data points as there are only 

14 stations in the test set (out of total 70 stations). The 𝑅ଶ values and scatter in reference watershed 

health values versus predicted watershed health values for gradient boosting, AdaBoost, and 

Bayesian ridge regression models are shown in Figure S 13b-d. The AdaBoost regression had the 

highest 𝑅ଶ value of 0.88, while the Bayesian ridge regression model showed poor performance 

(𝑅ଶ = −1.31). 
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Figure S13: Scatter plot of reference WH versus predicted watershed health (with respect to 

Nitrite+Nitrate) using (a) random forest regression, (b) gradient boosting regression, (c) AdaBoost 

regression, and (d) Bayesian ridge regression at USGS-NAWQA stations that were used as test 

set. The values for each year during the study period (1966-2014) are shown. 

 

Important explanatory variables – Random forest model 
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Figure S14 shows the top 15 out of 83 variables that were important in explaining watershed health 

with respect to Nitrite + Nitrate during the training phase of random forest model. Results indicate 

that percentage of area under agricultural and forest land use, stream order, longitude, available 

water storage were the most important. Average fertilizer sales data was also among the top 15 

important variables. 

 

Figure S14: Variable importance for top 15 out of 83 explanatory variables according to random 

forest model trained on watershed health (with respect to Nitrite + Nitrate) at USGS-NAWQA 

stations. 
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Ensemble model – Testing phase 

The outputs from the individual models (from the training phase) were then used as explanatory 

variables (𝑋) in a separate random forest model with 50 decision trees. The target variable (𝑦) was 

still reference (i.e., computed from observed WQ data) risk measures at USGS-NAWQA stations. 

The ensemble model was trained using 5-fold CV over 80% of the stations, and then tested over 

remaining 20% of the stations. Figure S 15 shows the scatter plot of reference WH versus ensemble 

model predictions of watershed health (for Nitrite + Nitrate) over test stations. The 𝑅ଶ value was 

found to be 0.98 over the test set. Most predictions lie on the best fit line, with considerably fewer 

number of instances with poor predictions. 
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Figure S15: Scatter plot of reference values of WH versus ensemble model predictions of 

watershed health (with respect to Nitrite+Nitrate) at USGS-NAWQA stations that were used as 

test set. The values for each year during the study period (1966-2014) are shown. 

 

Variation of spatial extent of WH measure with time 

The trained ensemble model was then used to obtain predictions of WH measures over ungauged 

HUC-10 basins using individual ML model predictions as the input. As in the case of SSC, we 

also investigated the variation of spatial extent with time of WH measure for Nitrite + Nitrate. 

Figure S16 in particular shows their annual variations. First, the risk measures were discretized 

into five groups in increments of 0.2 (also denoted by different color shading). Then, the 

percentage of total area in each of these five discrete groups were calculated for each year. Figure 

S16 shows the percentage variation of each group over the entire study period. About 65% of the 

study area had high watershed health (0.8-1.0), about 20% had watershed health in the range of 

0.8 to 0.6, and the remaining portion were in the range 0.4 to 0.6. The percentage areas in each 

group remained relatively unchanged over the study period. The results in Figure S16 correspond 

to the chosen standard of 10 mg/L for Nitrite + Nitrate. We expect the distribution of areas in the 

five discrete groups to be sensitive to the choice of the standard, but we expect the no-trend 

behavior to hold. 
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Figure S16: Percentage of total study area under different categories of watershed health (five 

categories defined in increments of 0.2, with respect to Nitrite+Nitrate) using the ensemble model 

during the period 1966-2014. 

 

S.2.3 Watershed health for Orthophosphate 

Orthophosphate (parameter code: 00671) values were available at a total of 49 stations over the 

study region. Following Hoque et al. (2012), observed samples were used to reconstruct a 

continuous daily time series of Orthophosphate loads. Using a standard of 0.1 mg/L (US EPA, 

1986) the annual series of risk measures were obtained at each station. These annual series were 

used as target variables (𝑦) during the training phase of machine learning models. The inputs (𝑋) 

were attributes collected over areas draining to USGS-NAWQA stations. The machine learning 
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models were trained using 5-fold CV using data at 80% of the stations. Data at remaining 20% of 

the stations were used as test set. 

Performances of ML models – Testing phase 

Figure S17 shows the performance of three machine learning models, i.e., random forest regression 

(𝑅ଶ=0.26, Figure S17a), gradient boosting regression (𝑅ଶ=0.57, Figure S17b), and AdaBoost 

regression (𝑅ଶ=0.32, Figure S17c), on the test dataset. Unlike in other cases, Bayesian regression 

resulted in poor model performance (𝑅ଶ< -22, Figure S17d) and therefore was not included in the 

ensemble model. Results indicated that gradient boosting model provided relatively good fit, but 

for all three models there was significant scatter about the best fit line. 
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Figure S17: Scatter plot of reference WH versus predicted watershed health (with respect to 

Orthophosphate) using (a) random forest regression, (b) gradient boosting regression, (c) 

AdaBoost regression, and (d) Bayesian ridge regression at USGS-NAWQA stations that were used 

as test set. The values for each year during the study period (1966-2014) are shown. 

 

(a) (b) 

(c) (d) 
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Important explanatory variables – Random forest model 

Figure S18 shows the top 15 out of 83 variables that were important in explaining watershed health 

(with respect to Orthophosphate) according to the trained random forest model. Results indicate 

that along with percentage of area under agricultural and forest land use, variables such as 

longitude, percentage area under hydrologic soil group B, and fertilizer sales were the most 

important. 

 

Figure S18: Variable importance for top 15 out of 83 explanatory variables according to random 

forest model trained on watershed health (for Orthophosphate) at USGS-NAWQA stations. 

 

Ensemble model – Testing phase 

To improve the overall predictive power, an ensemble approach was used. As in cases discussed 

above, a random forest model with 50 decision trees was trained using outputs of the three 

individual regression models at training stations as explanatory variables (𝑋) and reference values 

(i.e., risk measures computed from observed data) at those stations as the target (𝑦). The model 

was trained using 5-fold CV, and evaluated on the test-dataset. Figure S 19 shows the comparison 



S27 
 

of reference values of watershed health (for orthophosphate) versus ensemble model predictions. 

The 𝑅ଶ value was 0.99 for the ensemble model, and the scatter about the best fit line was 

considerably small when compared to individual models (see Figure S17).  

 

Figure S19: Scatter plot of reference versus ensemble model predictions of watershed health (with 

respect to Orthophosphate) at USGS-NAWQA stations that were used as test set. The values for 

each year during the study period (1966-2014) are shown. 

 

Variation of spatial extent of WH measure with time 

The variation of percentage of total area during the study period (1966-2014) under five discrete 

watershed health categories are shown in Figure S 20. Areas with moderate watershed health (0.4-

0.6) were dominant with about 60% coverage. About 3% of the total study area had watershed 
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health in the range of 0.2 to 0.4, 60% of the area was in the range of 0.4 to 0.6, 29% of the area 

was in the range 0.6 to 0.8, and 8% in the range 0.8 to 1.0. The percentage area in the above three 

groups (0.2-0.4, 0.6-0.8, and 0.8 to 1.0) remained relatively unchanged over the study period. No 

portion of the study area had poor watershed health (0.0-0.2). There were small variations for the 

area under moderate watershed health (0.4-0.6), but did not have a long-term trend. The results in 

Figure S 20 correspond to the chosen standard of 0.1 mg/L for Orthophosphate. 

 

Figure S20: Percentage of total study area under different categories of watershed health (five 

categories defined in increments of 0.2, with respect to Orthophosphate) using the ensemble model 

during the period 1966-2014. 


