
Citation: Piazza, S.; Sambito, M.;

Freni, G. Analysis of Optimal Sensor

Placement in Looped Water

Distribution Networks Using

Different Water Quality Models.

Water 2023, 15, 559. https://

doi.org/10.3390/w15030559

Academic Editor: Bommanna

Krishnappan

Received: 28 December 2022

Revised: 16 January 2023

Accepted: 27 January 2023

Published: 31 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

Analysis of Optimal Sensor Placement in Looped Water
Distribution Networks Using Different Water Quality Models
Stefania Piazza * , Mariacrocetta Sambito and Gabriele Freni

School of Engineering and Architecture, University of Enna “Kore”, Cittadella Universitaria, 94100 Enna, Italy
* Correspondence: stefania.piazza@unikore.it

Abstract: Urban looped water distribution systems are highly vulnerable to water quality issues.
They could be subject to contamination events (accidental or deliberate), compromising the water
quality inside them and causing damage to the users’ health. An efficient monitoring system must
be developed to prevent this, supported by a suitable model for assessing water quality. Currently,
several studies use advective–reactive models to analyse water quality, neglecting diffusive transport,
which is claimed to be irrelevant in turbulent flows. Although this may be true in simple systems,
such as linear transport pipes, the presence of laminar flows in looped systems may be significant,
especially at night and in the peripheral parts of the network. In this paper, a numerical optimisation
approach has been compared with the results of an experimental campaign using three different
numerical models as inputs (EPANET advective model, the AZRED model in which diffusion–
dispersion equations have been implemented, and a new diffusive–dispersive model in dynamic
conditions using the random walk method, EPANET-DD). The optimisation problem was formulated
using the Monte Carlo method. The results demonstrated a significant difference in sensor placement
based on the numerical model.

Keywords: advection; dispersion; optimal position of sensors; random walk model; water quality;
water distribution network

1. Introduction

An emerging problem in recent years concerns the scarcity of water resources, which
is linked to the quantity of available water and includes the quality aspect. This results in
the need for users to use water of marginal quality. This problem does concern not only
the arid (Central America, Africa, and the Arabian Peninsula) and semi-arid areas of the
world but also those regions where rainfall is relatively abundant and where urbanisation
endangers water quality [1].

This has led to an increased focus on water quality monitoring in urban water systems
in recent years [2,3]. Such studies typically integrate monitoring and modelling to obtain a
reliable picture of the systems, reducing the costs of real-time monitoring [4].

In a water distribution network (WDN), water quality may be compromised due to the
accidental introduction or deliberate release of contaminants, resulting in a public health
issue [5,6]. To better identify contamination events, it is essential to determine the optimal
position of the probes to minimise equipment costs [7] and maximise detection efficiency [8]
while at the same time reducing contamination risks [9].

The choice of a fixed or mobile monitoring system differently affects measurements,
as it has been reported that the use of sensors installed within the water supply helps to
monitor water more continuously than sampling modes [10–12]. Therefore, it is critical to
use real-time monitoring systems, although the installation and operating costs are greater
than those of a system that uses static control [13].

Furthermore, enormous importance in the optimal positioning of the water quality
sensors is assumed by some optimisation criteria that produce an effective monitoring
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system, such as expected time to detection, the expected population affected, expected
contaminated water demand and detection likelihood, which is associated with the different
contamination scenarios that can occur within the water distribution network [14].

Current state-of-the-art water distribution system analysis usually adopts a simplified
approach to water quality modelling, neglecting dispersion and diffusion and focusing on
simplified or detailed reaction kinetics. Ohar et al. (2015) [15] solved the sensor optimi-
sation problem by using the EPANET-MSX (Multi-Species eXtension) model to simulate
the contamination of three literature networks (Net3, BWSN 1, and Dover) with three
organophosphates that were simulated using detailed contamination kinetics. Furthermore,
the authors considered quantitative measures of the population affected by these contami-
nants because of such intrusions. Yang and Boccelli (2016) [16] used the same modelling
approach but incorporated dynamic water quality models to simulate the response of
water quality parameters more realistically to a network-scale contamination event. The
authors also evaluated current risk assessment assumptions for sensor placement and the
performance of event detection algorithms (EDAs). The results demonstrated that current
EDA assessment approaches and contamination warning system (CWS) design assump-
tions might need to be revised to adequately represent the actual evolution of events in a
distribution system under common low-flow conditions.

Abokifa et al. (2020) [17] used the EPANET model and the WUDESIM model (advective-
dispersive model for a single species) in their development to model the behaviour of
chlorine within water networks. However, the authors found a better result in modelling
water quality using the complete model, which considers the dispersion process in order
not to overestimate the residual chlorine concentrations in dead-end branches and partially
mask the deterioration in water quality due to reduced demand.

Numerous studies have highlighted the importance of considering diffusive–dispersive
processes in water distribution systems. First, from 1953–1954, Taylor numerically analysed
the dispersive phenomenon in laminar and turbulent flow regimes to determine the value
of the dispersion coefficient and show how it is related to flow regime quantities [18,19].

Axworthy and Karney (1996) [20] found that dispersive–diffusive transport processes
became relevant when the flow velocity was low and when the Reynolds number was less
than 50,000, which is common in urban water distribution networks at night. This was
demonstrated by combining the limiting velocity and the coefficient dispersion to adjust
the dispersion’s sensitivity to the flow velocity at a particular position. After analytical
applications, they discovered that dispersive effects tended to disappear as speed increased
and became negligible; thus, an advective transport model should be suitable for any
analytical need.

Romero-Gomez and Choi (2011) [21] realised that the presence of a solute persists
long after a tracer pulse has passed a fixed downstream position and revealed that the
dispersion velocity near the end of the pulse is greater than the velocity near the front of the
pulse. This result occurs because low-speed regions close to the wall strongly impede solute
transport due to the non-slip boundary condition. Such conditions differ for dispersion
upstream and downstream of the contaminant injection. For this reason, they specified
the dispersion coefficient while considering the effect of flow direction on dispersion. This
approach was used in their study because it highlights the difference between mass flows
backwards and forwards from a specific position, which results in different dispersion
velocities that lead to solute transport in both directions.

Furthermore, the importance of these transport processes has been studied and ex-
perimentally validated by Piazza et al. (2020) [22], who observed that their importance
decreased in the presence of turbulence in the pipes, which produces a very different result
in terms of sensor positioning.

For this reason, this work aims to demonstrate how the positioning of quality sen-
sors changes depending on the numerical model used. Three different numerical models
were used to reproduce the experimental data maintaining constant the hydraulic features:
an EPANET advective model [23], in which the solute transport mechanisms are rela-
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tively simple, of the plug-flow type; the AZRED model in which the diffusion-dispersion
equations proposed by Romero-Gomez and Choi (2011) [21] are inserted, and a new
diffusive–dispersive model that solves the advection–diffusion equation (ADE) in the
two-dimensional case under dynamic conditions EPANET-DD (dynamic dispersion) [24].

The following sections are structured as follows: Section 2 presents a detailed de-
scription of the materials and methods used in the present study. Then, in Section 3, the
main results are presented and discussed. Finally, the main conclusions are summarised in
Section 4.

2. Materials and Methods
2.1. Experimental Setup and Conditions

The experimental network of Enna University (UKE) is a closed water distribution
network composed of high-density polyethene pipes (HDPE 100) with a nominal pressure
of 16 bar (PN16), a DN (nominal diameter) of 63 mm, and a thickness of 5.8 mm. The net is
divided into three meshes, each of which contains pipe windings with a radius of 2.0 m
and a length of approximately 45 m. Eight “users” are connected to the leading network
through eight internal nodes consisting of multilayer polyethene pipes with diameters
of 20 mm (internal diameter of 12.7 mm), which simulate the domestic users of a virtual
network (Figures 1 and 2).

Water 2023, 15, x FOR PEER REVIEW 3 of 11 
 

 

For this reason, this work aims to demonstrate how the positioning of quality sensors 

changes depending on the numerical model used. Three different numerical models were 

used to reproduce the experimental data maintaining constant the hydraulic features: an 

EPANET advective model [23], in which the solute transport mechanisms are relatively 

simple, of the plug-flow type; the AZRED model in which the diffusion-dispersion equa-

tions proposed by Romero-Gomez and Choi (2011) [21] are inserted, and a new diffusive–

dispersive model that solves the advection–diffusion equation (ADE) in the two-dimen-

sional case under dynamic conditions EPANET-DD (dynamic dispersion) [24]. 

The following sections are structured as follows: Section 2 presents a detailed de-

scription of the materials and methods used in the present study. Then, in Section 3, the 

main results are presented and discussed. Finally, the main conclusions are summarised 

in Section 4. 

2. Materials and Methods 

2.1. Experimental Setup and Conditions 

The experimental network of Enna University (UKE) is a closed water distribution 

network composed of high-density polyethene pipes (HDPE 100) with a nominal pressure 

of 16 bar (PN16), a DN (nominal diameter) of 63 mm, and a thickness of 5.8 mm. The net 

is divided into three meshes, each of which contains pipe windings with a radius of 2.0 m 

and a length of approximately 45 m. Eight “users” are connected to the leading network 

through eight internal nodes consisting of multilayer polyethene pipes with diameters of 

20 mm (internal diameter of 12.7 mm), which simulate the domestic users of a virtual net-

work (Figures 1 and 2). 

 

Figure 1. The layout of the experimental water distribution network. 

   

(a) (b) (c) 

Figure 1. The layout of the experimental water distribution network.

Water 2023, 15, x FOR PEER REVIEW 3 of 11 
 

 

For this reason, this work aims to demonstrate how the positioning of quality sensors 

changes depending on the numerical model used. Three different numerical models were 

used to reproduce the experimental data maintaining constant the hydraulic features: an 

EPANET advective model [23], in which the solute transport mechanisms are relatively 

simple, of the plug-flow type; the AZRED model in which the diffusion-dispersion equa-

tions proposed by Romero-Gomez and Choi (2011) [21] are inserted, and a new diffusive–

dispersive model that solves the advection–diffusion equation (ADE) in the two-dimen-

sional case under dynamic conditions EPANET-DD (dynamic dispersion) [24]. 

The following sections are structured as follows: Section 2 presents a detailed de-

scription of the materials and methods used in the present study. Then, in Section 3, the 

main results are presented and discussed. Finally, the main conclusions are summarised 

in Section 4. 

2. Materials and Methods 

2.1. Experimental Setup and Conditions 

The experimental network of Enna University (UKE) is a closed water distribution 

network composed of high-density polyethene pipes (HDPE 100) with a nominal pressure 

of 16 bar (PN16), a DN (nominal diameter) of 63 mm, and a thickness of 5.8 mm. The net 

is divided into three meshes, each of which contains pipe windings with a radius of 2.0 m 

and a length of approximately 45 m. Eight “users” are connected to the leading network 

through eight internal nodes consisting of multilayer polyethene pipes with diameters of 

20 mm (internal diameter of 12.7 mm), which simulate the domestic users of a virtual net-

work (Figures 1 and 2). 

 

Figure 1. The layout of the experimental water distribution network. 

   

(a) (b) (c) 

Figure 2. Overview of the experimental water distribution network (a), pumping system (b), and
recirculation system (c).

Four polyethene tanks supply the network, three hydraulically connected upstream of
the pumping system, and one centrally positioned to the network. The collected flows are
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conveyed to the user nodes, which feed the other three via a recirculation pump. Overall,
the tanks can store up to 8 m3 of water (Figure 2). The pumping system, which consists of
four vertical multistage centrifugal electric pumps and an air vessel that allows pressure
stabilisation, behaves like a constant load tank, keeping the pressure constant and equal to
a pre-set value between 1 and 6 bar with a tolerance of 0.05 bar; the pumping system varies
the speed of the pumps.

The system flows in the pipes are monitored by five electromagnetic flow meters
installed in various sections of the network (trunks 4–5, 6–7, 7–8, 9–10, and 11–12). In
addition, pressure cells and multi-jet water meters are present in each node. Furthermore,
Wi-Fi real-time remote-controlled conductivity probes were positioned at each node and
connected with the monitoring appliances via a central computer, which was also capable
of regulating flows supplied to users via remote-controlled valves. The conductivity probes
had an accuracy ranging from 1300 µs to 40,000 µs and outputted the conductivity values in
µs, the total dissolved solids (TDS), and the salinity. The salinity values were derived from
the practical salinity scale (PSS-78). The real-time Wi-Fi remote control system consisted of
a Wi-Fi router with 8 Arduino cards outfitted with conductivity probes. The Arduino cards
were programmed with a sample code to detect the desired sizes. All data were collected
with the Wi-Fi data acquisition cards and sent to the server. Experiments were carried out
by varying the outflows in nodes 6, 7, 8, and 10 (kept constant in each experiment) with
flows ranging from 80 L/h to 400 L/h to obtain different flow regimes in the pipes. No
leakages were applied in the present study.

The network was equipped with a 100-litre polyethene tank and an injection pump
connected to one of the network nodes chosen at random via a flexible PVC pipe ap-
proximately 50 m in length and 40 mm in diameter (Figure 3) to carry out contamination
experiments. Sodium chloride was selected as the contaminant because it is easy to find,
inexpensive, nontoxic, and easy for probes to detect. The experiments were carried out
considering all branches of the network open.
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2.2. Optimisation of Sensor Placement

The optimisation problem, i.e., finding the best solution of all feasible solutions, was
solved using the Monte Carlo method, which is based on probabilistic procedures and
can solve problems presenting analytical difficulties that would otherwise be difficult to
overcome [25].

Conceptually, the method is based on the possibility of sampling an assigned proba-
bility distribution, F(X), using numbers drawn at random (random numbers); that is, the
possibility of generating a sequence of events, X1, X2 . . . , Xn . . . , is distributed according
to F(X). However, instead of using numbers drawn at random, the authors use a sequence
of numbers obtained through a well-defined iterative process; these numbers are referred
to as pseudorandom because they are not random but possess the statistical properties of
random numbers.
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The Monte Carlo method yields reliable answers in studying real complex systems.
However, the solution obtained is never exact in a statistical sense, as it is subject to
uncertainty, which decreases as the number of statistical samples increases.

In the present case, the Monte Carlo method was used to solve the optimisation
problem for positioning three water quality sensors within the laboratory network of UKE,
which is fully described in the previous section. Given the uncertainty in the position,
magnitude, and duration of the contamination, 1000 simulations were performed, with
the contamination parameters (mass of contaminant, duration of contamination, and
contamination node) set at random. User demands in all nodes were fixed at 2.5 L/min.
In addition, the inlet head was fixed to 1.5 bar. At the same time, an experiment was
carried out in node 5, with a duration of 3 min and a mass of 460 g (leading to a constant
concentration of 4600 mg/L), developing the three flow regimes (Turbulent, Transition,
Laminar), See Piazza et al. (2022) [26] for more details.

Three objective functions were used:

• F_1, the detection likelihood, i.e., the probability that a sensor configuration will detect
the contamination;

• F_2, the detection time, i.e., the average time between contamination and detection in
200 simulations;

• F_3, the detection redundancy, i.e., the probability that two sensors detect the contam-
ination within 20 min.

The objective functions were slightly modified from those presented in Preis and
Ostfeld (2008) [6] to comply with the smaller dimensions of the analysed network. However,
they were equally weighted in selecting the optimal sensor location.

The modelling analysis was carried out using the state-of-the-art advective EPANET
model, the AZRED model (advective–diffusive–dispersive model), which includes the
diffusion and dispersion equations proposed by Romero-Gomez and Choi (2011) [21], and
a new diffusive–dispersive model developed by the authors called EPANET-DD (dynamic-
dispersion), after an appropriate hydraulic and qualitative calibration [24].

The classic advective EPANET model solves the advective transport equation by
solving a mass balance of the fundamental plug-flow substance that accounts for the
advective transport and might include kinetic reaction processes (Equation (1)). The
substance mass is assigned to discrete volume elements once all the connections in the
network have been partitioned using this approach. Next, the concentration within each
volume segment is subjected to reactions and transferred to the adjacent downstream
segment. If the latter is a junction node, the incoming mass and flow volumes are combined
with those already present at the network nodes. Finally, once these processes have been
exhausted for all network elements, the concentration is calculated and released in the first
pipe segments, with flow leaving the node. In this case, the effect of longitudinal dispersion
needs to be addressed, as it is not considered necessary in most operating conditions [26].

∂Ci(x, t)
∂t

= −um
∂Ci(x, t)

∂x
− KCi(x, t). (1)

In the present application, in which a conservative tracer is used, the reaction term is
neglected.

In contrast, the AZRED model, which includes the diffusion and dispersion equa-
tions proposed by Romero-Gomez and Choi (2011) [21], solves the transport equation by
highlighting the differences between mass flows backwards and forwards from a specific
position, which results in different dispersion speeds that lead to solute transport in both
directions (Equation (2)).

∂C
∂t

=
1

∆x

(
φb − φ f

)
− um

∂C
∂x

, (2)

in which

φb = −Eb
∂C
∂x

∣∣∣∣
b

and φ f = −E f
∂C
∂x

∣∣∣∣
f
, (3)
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Eb = Eb(0) exp(−xpT) + βb(T)E∗, (4)

and
E f = E f (0) exp(−xpT) + β f (T)E∗, (5)

where Eb and E f (Equations (4) and (5)) are the dispersion parameters backwards and for-
wards with respect to the flow direction, um is the average flow velocity, and
βb(T) = β f (T) = 3.705·T.

The dimensionless travel time (T) was calculated as in Equation (6). This parame-
ter indicates how far the dispersion coefficient has progressed towards achieving stable
conditions.

T =
4DABt

d2 = 4
x∗

SC·R
, (6)

in which x∗ = L
d is a dimensionless pipe length that defines the location of solute migration,

L, with respect to the pipe diameter, d.
R = um ·d

υ is the Reynolds number, which accounts for the mean flow velocity (um),
geometric dimensions (d), and fluid-conveying properties (kinematic viscosity, ν).

SC = υ
DAB

is the Schmidt number, which accounts for the solute properties (solute
diffusion coefficient, DAB).

t = L
um

is the time, which is defined as the ratio between the location of solute
migration, L, and the flow velocity (um).

The previously reported expression of the coefficient βb(T) = β f (T) was determined,
and the authors found that for short travel times (T < 0.01), the dispersion rates were
amplified by 25% more than the numerical results using the formulation proposed by
Lee (2004) [27], where β(T) = 1 − exp(−16T).

The EPANET-DD model solves the equations under quasi-steady flow conditions,
solving the hydraulic problem under steady flow conditions with the EPANET-MATLAB-
Toolkit [28] and the advection–diffusion–dispersion equation under dynamic flow con-
ditions in the two-dimensional case with the classical random walk method [29], and
implementing the diffusion and dispersion equations proposed by Romero-Gomez and
Choi (2011) [21].

As demonstrated in the literature [29,30], the use of this combined method is possible
due to the similarities between the Fokker–Planck–Kolmogorov equation and the advection–
dispersion equation. In fact, the two equations are essentially identical unless there is a
conceptual difference between the parameters of the two equations, as the parameters
present in the Fokker–Planck–Kolmogorov equation are independent of time, resulting
from the stationary hypothesis. To overcome this problem and address the issues related
to discontinuities that could cause local mass conservation errors [31], Delay et al. (2005)
provided a new equivalence, making this analogy valid again. This methodology can
be easily applied to any flow model because the mass of the solute is discretized and
transported by the particles in the random walk. Consequently, the mass conservation
principle is automatically satisfied because the particles cannot suddenly disappear.

This model allows us to determine the position of the solute particles that move inside
the network in the x and y directions as a function of the different flow regimes that occur
inside the network, as shown in Equations (7) and (8):

x = x +
3
2

ux

1 −
(

y
d
2

)2
dt +

√
2·E f or b·dt (7)

and

y = y + uydt +
√(

E f + Eb

)
·dt, (8)

where ux corresponds to the component along the x-axis of the flow velocity, uy corresponds
to the component along the y-axis of the flow velocity, dt is the duration of the contamination
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event, d is the pipe diameter, and Ef and Eb are the forwards and backwards diffusion
coefficients, respectively, as defined by Romero-Gomez and Choi (2011) [21]. The diffusion
coefficient used in Equation (7) assumes the forward or backward values depending on
whether the flow direction is positive or negative. The above equation was developed
considering laminar flow conditions, in which the velocities in the network are relatively
low. This allows the particles to move freely along the y-axis. This characteristic is also

highlighted by the presence of the term in round brackets,

(
1 −

(
y
d
2

)2
)

, which multiplies

the x component of the velocity ux. In fact, as the velocity along the x direction increases
and the flow rate changes, the particles tend to move along the preferred flow direction,
and the term in brackets disappears from the equation.

The previous equations are solved considering the following boundary conditions
(Equations (9) and (10)) to confine the particles inside the pipe section.

y = −2·ymax − y f or y < −ymax (9)

and
y = 2·ymax − y f or y > ymax, (10)

where the particle position along y is limited above and below by the physical presence
of the pipe wall, and the parameters −ymax and ymax coincide with the value of the
pipe radius and take on a positive and negative value since the x-axis has been placed at
the centre of gravity concerning the cross-section of the pipe. The particles are not only
prevented from escaping from the pipe but are also reflected, which prevents the particles
from settling along the wall using these two boundary conditions. These conditions are
called the boundary reflection condition.

At this point, the contaminant concentration has been determined through Equation (11),
in which the concentration value at the previous time has been increased by an amount that
corresponds to the concentration per unit of particles (C·n) passing through the control
volume

(
L

∆x ·π
d2

4

)
, where L is the pipe length, ∆x is the section number of the pipe, and

π d2

4 is the cross-sectional area of the pipe:

C = C +
C·n

L
∆x ·π

d2

4

. (11)

3. Results and Discussions

The three numerical approaches discussed above (advective, AZRED based on the
Romero-Gomez and Choi formulation, and the EPANET-DD) were applied to the UKE
laboratory network and combined with the Monte Carlo optimisation method.

When the optimisation problem is solved using the three models previously anal-
ysed, very different optimum sensor configurations are obtained. Two possible configura-
tions were obtained using the advective model for positioning the sensors, as presented
in Figure 4.

Table 1 shows the characteristics and performance of the optimal configurations for the
three models. Solving the optimisation problem using the advective model made it possible
to simultaneously optimise two objective functions (F_1 and F_2) using a single-sensor
configuration (5–6–10). Node 11 must also be considered to maximise the objective function
F_3. With three sensors in optimal positions, 66% of the contamination episodes were
detected on average (maximum value of function F_1), and at least two sensors detected
52% within 20 min (maximum value of function F_3). The optimal average detection
time was approximately 8 min. Figure 5a shows the obtained Pareto fronts for the three
objective functions.
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Table 1. Numerical analysis: Results of the Optimisation Problem.

Advective Model Romero-Gomez and Choi (2011)
Model EPANET-DD Model

Objective Functions Optim.
Values Sensor Node Index Optim.

Values Sensor Node Index Optim.
Values Sensor Node Index

Detection Likelihood (F_1) 0.66 5 6 10 0.65 6 8 9 0.95 6 7 10

Detection Time [s] (F_2) 517.13 5 6 10 858.54 6 8 9 538.96 6 7 10

Redundancy (F_3) 0.52 5 6 11 0.54 5 6 7 0.70 6 7 10

Using the AZRED formulations, the optimal solutions considering dispersion differ
from the advective case by considering both the optimal sensor location and the objective
function values (Table 1). As in the previous case, the objective functions F_1 and F_2 were
maximised by the exact configuration of sensors (6–8–9), with values slightly lower than
the previous values. As a result, the contamination event had a detection likelihood of
65%, and the optimal value of the detection time was somewhat more than 14 min. For
the objective function F_3, the optimal redundancy value of 54% was obtained from a
different configuration than the first method and included nodes 5–6–7. This is related to
the importance of backward diffusive propagation, which is most evident in the laminar
velocity profiles. Using the dispersive model, in which the dispersion was turbulent or
transitional rather than laminar, the backwards diffusive propagation was less noticeable,
as the dispersive behaviour was homogeneous across all network pipelines. Therefore, in
this case, the discriminant that determines the redundancy phenomenon is a function of
higher circulating water volumes (Figure 4). The Pareto fronts are presented in Figure 5b.

By solving the optimisation problem using the dynamic dispersive model (EPANET-
DD), the three objective functions were optimised using a single configuration of three
sensors positioned at nodes 6–7–10, which yielded better values than the other models
(Table 1). In fact, with this configuration, 95% of the contamination episodes were detected
on average, and at least two sensors detected 70% within 20 min. The optimal average
detection time was approximately 9 min, slightly lower than what was obtained using the
advective model. The Pareto fronts are presented in Figure 5c.

These three different optimal configurations for water quality sensor placement sug-
gest the importance of correctly choosing the initial numerical model to be used for subse-
quent analyses. The use of a complete and accurate initial numerical model, which takes
into account all the transport mechanisms that can occur within the water distribution net-
works, allows not only to reduce the number of sensors to be used for positioning (a single
configuration to optimise all objective functions) but also to obtain the best parameter val-
ues for optimisation in terms of detection likelihood, detection time, and redundancy. This
could be linked to the fact that diffusive—dispersive processes are intrinsically connected
to the transport of pollutants within the water distribution systems. Furthermore, the
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different optimal configurations of the water quality sensors, obtained using the AZRED
model and the EPANET-DD model, could derive from the different resolution hypothe-
ses of the advection–diffusion–dispersion equations. Indeed, in the first case, the latter
was solved using the Computational Fluid Dynamics Approach, performed using a finite
volume-based solver, while, in the second case, the particle type model was solved using
the random walk, which takes into account the randomness of the event.

Water 2023, 15, x FOR PEER REVIEW 8 of 11 
 

 

 

Figure 4. Optimal sensor positioning for the UKE Laboratory Network. 

Table 1 shows the characteristics and performance of the optimal configurations for 

the three models. Solving the optimisation problem using the advective model made it 

possible to simultaneously optimise two objective functions (F_1 and F_2) using a single-

sensor configuration (5 - 6 - 10). Node 11 must also be considered to maximise the objective 

function F_3. With three sensors in optimal positions, 66% of the contamination episodes 

were detected on average (maximum value of function F_1), and at least two sensors de-

tected 52% within 20 min (maximum value of function F_3). The optimal average detec-

tion time was approximately 8 min. Figure 5a shows the obtained Pareto fronts for the 

three objective functions. 

   

(a) 

   

(b) 

Water 2023, 15, x FOR PEER REVIEW 9 of 11 
 

 

   

(c) 

Figure 5. The Pareto front, including only advection (row a), dispersion (AZRED by Romero-Gomez 

and Choi 2011, row b), and dispersion (EPANET-DD) (row c): F_1–F_3 (left), F_1–F_2 (centre), and 

F_2–F_3 (right). 

Table 1. Numerical analysis: Results of the Optimisation Problem. 

Advective Model 
Romero-Gomez and Choi (2011) 

Model 
EPANET-DD Model 

Objective 

Functions 

Optim. 

Values 

Sensor Node In-

dex 

Optim. Val-

ues 

Sensor Node In-

dex 

Optim. 

Values 

Sensor Node In-

dex 

Detection 

Likelihood 

(F_1) 

0.66 5 6 10 0.65 6 8 9 0.95 6 7 10 

Detection 

Time [s] 

(F_2) 

517.13 5 6 10 858.54 6 8 9 538.96 6 7 10 

Redundancy 

(F_3) 
0.52 5 6 11 0.54 5 6 7 0.70 6 7 10 

Using the AZRED formulations, the optimal solutions considering dispersion differ 

from the advective case by considering both the optimal sensor location and the objective 

function values (Table 1). As in the previous case, the objective functions F_1 and F_2 were 

maximised by the exact configuration of sensors (6 - 8 - 9), with values slightly lower than 

the previous values. As a result, the contamination event had a detection likelihood of 

65%, and the optimal value of the detection time was somewhat more than 14 min. For 

the objective function F_3, the optimal redundancy value of 54% was obtained from a 

different configuration than the first method and included nodes 5 - 6 - 7. This is related 

to the importance of backward diffusive propagation, which is most evident in the lami-

nar velocity profiles. Using the dispersive model, in which the dispersion was turbulent 

or transitional rather than laminar, the backwards diffusive propagation was less notice-

able, as the dispersive behaviour was homogeneous across all network pipelines. There-

fore, in this case, the discriminant that determines the redundancy phenomenon is a func-

tion of higher circulating water volumes (Figure 4). The Pareto fronts are presented in 

Figure 5b. 

By solving the optimisation problem using the dynamic dispersive model (EPANET-

DD), the three objective functions were optimised using a single configuration of three 

sensors positioned at nodes 6 - 7 - 10, which yielded better values than the other models 

(Table 1). In fact, with this configuration, 95% of the contamination episodes were detected 

on average, and at least two sensors detected 70% within 20 min. The optimal average 

detection time was approximately 9 min, slightly lower than what was obtained using the 

advective model. The Pareto fronts are presented in Figure 5c. 

These three different optimal configurations for water quality sensor placement sug-

gest the importance of correctly choosing the initial numerical model to be used for sub-

sequent analyses. The use of a complete and accurate initial numerical model, which takes 

Figure 5. The Pareto front, including only advection (row (a)), dispersion (AZRED by Romero-Gomez
and Choi 2011, row (b)), and dispersion (EPANET-DD) (row (c)): F_1–F_3 (left), F_1–F_2 (centre), and
F_2–F_3 (right).

4. Conclusions

This study solved the optimisation problem using the Monte Carlo method. It was
applied to the laboratory network of UKE. Furthermore, three numerical models (EPANET,
the AZRED model based on the formulations of Romero-Gomez and Choi, and a new model
called EPANET-DD) have been considered to evaluate how they can influence the optimal
positioning of water quality sensors in terms of the detection likelihood, detection time,
and redundancy. In summary, the main conclusions of this study are summarized below:

• When the advective approach was used to solve the optimisation problem, the sensors
were positioned in areas with high Reynolds numbers, where the flow regimes are
predominantly turbulent and transition;

• The sensors were positioned in a linear pattern and covered most of the network using
the dispersive AZRED approach;

• The EPANET-DD model provided the best performance, with a contamination event
detection likelihood of 95%, a redundancy of 70%, and a detection time of approxi-
mately 9 min;
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• Different configurations for sensor positions are obtained depending on the model
used to solve the optimisation problem, as are different detection efficiencies for the
objective functions. For example, the parameter values determined by the advective
model are much lower than those determined by the dynamic dispersive model
(EPANET-DD).
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