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Abstract: The purpose of the present study is the estimation of the environmental degradation
process of oxo-biodegradable polyethylene bags. The degradation process of polyethylene samples,
with the addition of a d2w prodegradant, was studied under natural weathering, freshwater (pond),
and water in laboratory condition for a period of 48 months. The impact of characteristic parameters
of environments on the extent of degradation, monitored by weight changes, mechanical properties,
and surface morphology, has been discussed. The degraded polymer samples were also analyzed
by FTIR spectroscopy. It was established that the oxo-biodegradable polyethylene samples were
hardly prone to degradation in natural freshwater, but more vulnerable to environmental weathering.
Abiotic parameters (oxygen, temperature, solar radiation) played a more important role in the
degradation process of oxo-biodegradable polyethylene than biotic parameters (microorganisms).
Natural weathering led to first fragmentation of the polymeric samples after 18 months, weight
loss to 81.6% after 39 months, and complete assimilation after 45 months. In the pond, 48 months
incubation resulted in an increase in the weight of the samples (+19%) and a decrease in mechanical
properties: tensile strength from 26.31 to 17.35 MPa and elongation at break from 304 to 31%. The
biofilm formed on the polymer surface made it difficult for oxygen to reach the degraded material, so
oxydegradation in the pond was slower. ATR-FTIR analysis and microscopic observations confirm
the degradation taking place in natural environments. No visible degradation changes were observed
in the oxo-biodegradable polyethylene after incubation under laboratory water, because of the lack of
microorganisms and solar radiation. The degradation of oxo-biodegradable polyethylene in natural
environments required a longer incubation time compared to the degradation time declared by
the manufacturer.

Keywords: degradation process; pro-oxidant additive; polyethylene; freshwater; pond; natural
environment

1. Introduction

Polyethylene (PE) has the largest share of the polymer market, accounting for around
a third of the polymer products produced [1]. Globally, 22% of the annual production of
plastics enters terrestrial and aquatic environments, where they can stay for decades. One
strategy for reducing plastic pollution is to design materials so that they degrade more
quickly in air when exposed to heat and UV light. The degradation process can be speeded
up by the addition of pro-oxidants (d2w), like transition metals (e.g., Cu, Co, Ce, Mn, Ni,
or Fe) in the form of organic complexes or salts to the polyolefin compound, up to 5% by
weight. Transition metals may work as catalysts in the thermal- and photodegradation
processes of polyolefin. These processes are triggered by oxygen, heat, and UV light,
and proceed through radical chain reactions, resulting in low molecular weight oxidation
products (oxygen is entered into carbon chain in hydroxyl, peroxide, and carbonyl form).
(Scheme 1) [2–6].
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facturers, harm the environment, and make plastic recycling more convenient and effi-
cient. Due to these uncertain reports, the parliament of the European Union planned a 
total ban on ‘oxo-degradable’ materials for the whole EU in 2014. This move was halted 
in mid-2015, and a resolution was passed to analyze the environmental impact of using 
oxo-degradable plastics [7,8]. In 2017, the European Commission published a report enti-
tled ‘Study to provide information supplementing the study on the impact of “oxo-de-
gradable plastic” on the environment.’ The results of the report were inconclusive [9]. Af-
ter this analysis, and because of ‘a lack of consistent evidence about the rate of abiotic and 
biotic decomposition in the environment,’ the EU has prohibited the use of oxo-biode-
gradable materials from the 3 July 2021 [2]. The decision to forbid the use of plastics only 
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In the case of oxo-biodegradable materials, there are two stages of degradation, namely
biotic and abiotic. The abiotic process consists of oxidative degradation, which occurs as
a result of pro-oxidants (the polymer breaks down into smaller fragments). The second
stage is the biotic process, in which microorganisms transform the oxidation products
resulting from the abiotic process into biomass and CO2. Oxo-biodegradable polymers do
not degrade as quickly as biodegradable ones [2–6].

It has been long disputed whether chemical additives work as described by manufac-
turers, harm the environment, and make plastic recycling more convenient and efficient.
Due to these uncertain reports, the parliament of the European Union planned a total ban
on ‘oxo-degradable’ materials for the whole EU in 2014. This move was halted in mid-2015,
and a resolution was passed to analyze the environmental impact of using oxo-degradable
plastics [7,8]. In 2017, the European Commission published a report entitled ‘Study to
provide information supplementing the study on the impact of “oxo-degradable plastic” on
the environment’. The results of the report were inconclusive [9]. After this analysis, and
because of ‘a lack of consistent evidence about the rate of abiotic and biotic decomposition
in the environment’, the EU has prohibited the use of oxo-biodegradable materials from the
3 July 2021 [2]. The decision to forbid the use of plastics only applies to European countries
and does not apply to the rest of the world.

The degradation testing of oxo-degradable plastics can be carried out through ac-
celerated laboratory tests (UV aging tests with a UV fluorescence or xenon chamber) or
under natural environmental conditions (soil, sea, pond, river, natural weather conditions).
Accelerated laboratory tests should only be complementary to tests conducted in natural
ecosystems, as they do not give a complete picture of the degradative changes in the
polymer. In the environment, the speed of degradative change depends on many factors,
such as geographical location, climate, or season, which have an impact on the temperature,
humidity, or the amount of UV light emitted. Also in the natural environment, different
concentrations and types of microorganisms (bacteria, yeast, and fungi) are found, which,
although they make the standardization and reproducibility of the studies carried out more
difficult, are best practice. However, in the environment, plastic is not the only source of
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carbon for micro- and macroorganisms and the biodegradation rate can be overestimated
in laboratory tests.

In 2020, a new PAS 9017 specification was developed to provide pass criteria, time-
frames, and methods to demonstrate that oxo-biodegradable polyolefin will degrade in
the terrestrial environment in the open air (i.e., unmanaged disposal or littering) without
forming plastic microbeads. [2]. Each oxo-biodegradable material, which has a different
application and varies in composition, also requires a different biodegradation research
approach [4].

In recent decades, oxo-degradable and biodegradable materials have been investigated
in complex media, like outdoor weathering [10–12], soil and compost [13–17], sea water
and freshwater [18–22], and under monitored experimental conditions [23–26], e.g., with
identified microbial strains.

Vazquez et al. [10] wrote that prodegradant additive in polyolefin accelerates degrada-
tion after natural (4 years) and UV (5 days) accelerated aging processes. The samples with
d2w were significantly more degraded than the base polyolefin under same conditions,
and the results demonstrate that the chain scission of the polyolefin with d2w is not being
improved to an extent that would allow biodegradation.

Chiellini et al. [27] reported 12–48% biodegradation of thermally oxidized (accelerated
aging at either 55 ◦C or 70 ◦C) oxo-degradable polyethylene films (with d2w) in river water
in a 100-day time frame. The biodegradation was assessed by monitoring the amount of
CO2 in a respirometer apparatus.

An Ojeda et al. [12] study aimed to evaluate the abiotic and biotic degradation of
polyethylene without and with the pro-oxidant additive (d2w). These materials were
exposed to natural weathering and, after a year of exposure, samples of the bags were
incubated in substrates (compost, perlite, and soil) at 58 ◦C and 50% humidity. The
biodegradation of the materials was estimated with their mineralization to CO2. These
samples showed a mineralization level of 12.4% after three months of incubation with
compost. PE without pro-oxidant additive and exposed to natural weathering showed
little biodegradation.

Two studies [23,24] were published in 2021 to examine the correlation between artificial
laboratory UV-accelerated weathering and the outdoor exposure of pro-oxidant additive
plastics (with d2w) according to PAS 9017: 2020. The temperate accelerated UV-weathering
cycle over 14 days demonstrated an approximate correlation to 90 days of outdoor exposure
in Florida for the PE film studied.

The biodegradation of plastics generally leads to the creation many microplastics,
which remain in the environment (water, soil) for some time. To date, the studies conducted
do not allow a credible evaluation of the ecotoxicity of oxo-biodegradable materials on
natural environments [28–30]. Further research is required to evaluate the potential effects
of the accumulation of transition metals (acting as either catalyst or pro-oxidant) from
oxo-biodegradable plastics, especially in the water environment and the organisms living
in it.

Today, plastic pollution of the seas and oceans is a huge problem. Plastic litter can
enter saltwater through rivers or freshwater. Packaging plastics, before they reach larger
saline bodies of water, have their sources in freshwater (rivers, lakes, ponds), where
different biotic and abiotic conditions prevail. Before they reach the seas and oceans,
the first degradation processes start in freshwater. In this study, an attempt was made
to carry out the degradation process in the freshwater of a pond due to the rich biotic
life of freshwater organisms. The purpose of this study was to assess the environmental
degradation process of oxo-biodegradable polyethylene samples under natural weathering
conditions, in freshwater (pond), and under laboratory water conditions. Only abiotic
weathering led to fragmentation of the polymeric samples, while the effect of incubation in
the pond was biofilm coverage of the sample surfaces. The degradation was carried out in
the natural environment to observe how nature would cope and what would happen to the
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material if uncontrolled rubbish was deposited in the natural environment (ponds, forests,
fields).

2. Materials and Methods
2.1. Environments

The environmental degradation of polymeric materials has taken place in three envi-
ronments: in the natural weathering, freshwater (pond), and laboratory water.

The degradation of oxo-biodegradable polyethylene under natural weathering condi-
tions was carried out on a polystyrene pad placed in the Rumia’s garden (latitude: 54◦35′ N;
longitude: 18◦23′ E) [31]. The polymer samples placed on the pad were covered with a
mosquito net, which allowed free airflow, precipitation, and solar radiation access.

The incubation of polymeric samples in freshwater was performed in Rumia’s natural
pond [32–34]. The polymer samples were placed in a particular perforated basket, which
was suspended on a rope 2 m below the water surface. The perforated structure of the
basket allowed the free flow of water and access of microorganisms and enzymes dissolved
in the freshwater to degrade the material samples [35].

The natural pond was an extremely micro- and macrobiologically rich environment. In
addition to the identified freshwater vegetation, such as reeds, cudweed, grasses, eyelashes,
waterweed, duckweed, and water lilies, the presence of carp, trout, pike, and roach was
observed, as were plankton, algae, and invertebrates (annelids, leeches). Among other
things, the activity of microorganisms contributes to the formation of dead organic matter,
which was also observed in the pond.

For comparison, the incubation of the polymer samples was also carried out in distilled
water in the laboratory (without solar radiation) to exclude microbial activity and assess
the polymers’ resistance to hydrolysis. During the entire four-year experiment, the distilled
water was not changed, only replenished when it evaporated (the replenished water had a
TDS of 0 ppm).

A comparison of the three research environments is provided in Table 1.

Table 1. Comparison of research environments.

Environment Location GPS Type of
Environment Description

Natural weathering 54◦ 35′ 0′′ N
18◦ 23′ 34′′ E atmospheric air

The polymer samples placed on the pad in the garden
were covered with a mosquito net, which allowed free

airflow, precipitation, and solar radiation access.

Natural pond 54◦ 33′ 38′′ N
18◦ 22′ 11′′ E freshwater

The polymer samples were placed in a particular
perforated basket, which was suspended on a rope 2 m

below the water surface in the pond.

Laboratory water 54◦ 31′ 35′′ N
18◦ 30′ 41′′ E

distilled
water

The polymer samples were placed in an aquarium with
distilled water without solar radiation in the laboratory.

Note(s): Source: own research.

The temperature, pH, and TDS of aquatic environments was monitored throughout
the degradation process of oxo-biodegradable polyethylene.

The degradation of the investigated samples lasted for a period of up to 48 months.

2.2. Material

Polyethylene (HDPE) bag samples containing a pro-oxidant additive (d2w—Symphony
Environmental—UK), with 0,02 mm thickness, were obtained in “Castorama” market from
Rumia, Poland.

The manufacturer had stated on the bag that the 100% oxo-biodegradation process
takes place under the right conditions when exposed to external factors such as light,
water, or oxygen over a period of up to two years. These tests are usually conducted in
an environmental chamber in a laboratory simulating real-life scenarios. The degradation
process under such conditions is accelerated and standardized [22]. In this paper, testing
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the oxo-biodegradability of polymer plastics in natural environments only complements
the research that the plastics manufacturer has conducted.

Polymer film was cut into 150 × 20 mm rectangles. After degradation, the samples
were washed, dried at room temperature, and then taken for testing.

2.3. Methodology

The macro- and microscopic observations, weight changes, chemical structure, and
mechanical properties of oxo-biodegradable polyethylene were investigated before and
after exposure in the natural and laboratory environments.

• The macro and microscopic observations—the polymer samples were observed in
a macro (naked eyes) and micro scale (microscopic observation). Macroscopic ob-
servations of the polymer surface were analyzed organoleptically using a FujiFilm
S2500 HD camera, whereas microscopic observations of the polymer structure were
analyzed with the metallographic microscope ALPHAPHOT-2YS2-H Nikon linked to
the photo camera Delta Optical DLT-Cam PRO 6.3MP USB 3.0. The micrographs were
collected under transmitted light. The images of the polymer samples before and after
degradation were compared.

• The changes of weight—the dried polymer samples were weighed on an analytical
electronic balance (RADWAG AS 160.X2, repeatability 0.1 mg). The weight of clean and
dried polymer samples after incubation in the natural and laboratory was compared
with the one before incubation. The final results of the determinations were the average
of the five sample measurements.

• The changes of chemical structure—Attenuated Total Reflectance Fourier Transform
Infrared Spectroscopy (ATR-FTIR) was used to determine the characteristic groups of
oxo-biodegradable polyethylene. FTIR spectra were recorded with an attenuated total
reflection (ATR Smart Orbit Accessory, Thermo Fisher Scientific, Madison, WI, USA)
mode on a Nicolet 380 FTIR spectrometer (Thermo Scientific, Madison, WI, USA) with
a diamond cell. A resolution of 4 cm−1 and a scanning range from 600 to 4000 cm−1

were applied, and 48 scans were taken for each measurement.
• The changes of mechanical properties—the tensile strength (MPa) and elongation (%)

was measured at room temperature using The Tensile Testing Machine MultiTest 1-xt
made by Mecmesin, according to PN-EN ISO 527-1, 3: 2018-19 Standard [36,37]. The fi-
nal results of the determinations were also the average of the five sample measurements.

3. Results and Discussion
3.1. The Characteristic Parameters of Environments

The experiment was conducted over a period of four years and the parameters of
the environments (natural weathering, freshwater (pond), and laboratory water) were
measured during the months of sample removal. The average values of the measurements
are shown in Table 2.

Table 2. The average parameters of environments from 2018–2022.

Months

Weathering
Parameter’s

Pond
Parameter’s

Laboratory Water
Parameter’s

T [◦C] Humidity
[%] T [◦C] pH TDS

[ppm]

Oxygen
Content

[mgO2/dm3]
T [◦C] pH TDS

[ppm]

Oxygen
Content

[mgO2/dm3]

July 25 40 20 8.7 183 6 26 7.8 42 8
October 12 53 11 8.2 201 8 18 7.7 42 7
January 5 30 4 8.5 192 10 17 8.0 38 7

April 7 30 8 8.6 175 9 17 7.7 48 7

Note(s): The measurement error environmental parameters: T ± 0.2; pH ± 0.01; TDS ± 0.02; Humidity ± 0.1;
Oxygen content ± 0.1. Source: own research.
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Air is mainly nitrogen (78%) and oxygen (21%), with a small volume of noble gases (1%).
Currently, the concentration of air constituents remains relatively constant [38]. The natural
weathering of polymers (oxidative degradation) is via their breakdown under the influence
of mainly atmospheric oxygen, but also temperature, sunlight, water, and living organisms.
Depending on these factors, physical, chemical or biological weathering occurs. All these
processes interact with each other, which can contribute to amplifying some of them, e.g.,
chemical weathering occurs faster when supported by physical weathering. This is due to
better penetration of aqueous compounds into the polymer surface. Physical weathering is
determined by thermal relations; it occurs most intensively at very high amplitudes of air
temperature: daily and annual (seasons). The lower the air temperature, the more intense
is the physical weathering (Table 2—January 5 ◦C). Chemical weathering depends on water
conditions and temperature: the higher the temperature and humidity, the more intensive
is the chemical weathering (Table 2—July 25 ◦C). Biological weathering occurs where there
is biological activity by living organisms [39].

The temperature of both natural environments varied markedly over the duration
of the experiment (from 4 ◦C to 26 ◦C) and was dependent on the weather conditions
(summer and winter). From the parameters shown in Table 2, it can be seen that the average
temperature during the natural weathering was around 12 ◦C, and 11 ◦C in the pond.
Enzymatic degradation occurs best at higher temperatures (20–60 ◦C); lower temperatures
slow down microbial activity [40]. The average temperature of the laboratory water was
the highest compared to the other environments (19.5 ◦C), as the incubation was carried
out in the laboratory.

Atmospheric humidity ranged from 30% to 53% during the natural weathering. The
samples were exposed to sunlight on the south side of the garden, where insolation was
greatest. Sunshine, precipitation, and direct access to oxygen influenced the decomposition
of the test material. Abiotic parameters had the greatest impact on the decomposition of
oxo-biodegradable polyethylene [2].

In the biodegradation process the recommended pH value is 5–8; in the test envi-
ronments the pH values were mildly alkaline and exceeded the upper limit slightly. [40].
The average pH value was 8.5 in the natural pond. Only the growth of photosynthetic
organisms in high solar radiation during the summer months was able to raise the pH of
natural water (8.7 in July) [41]. The average pH of the laboratory water was 7.8, but there
was no solar radiation or microorganisms.

TDS (total dissolved solids) is an indicator of the total content of all mobile charged
ions in a water solution. This includes: minerals, metals, and salts dissolved in a given
volume of water. The total dissolved solids in water included inorganic salts and organic
substances. The average TDS values in the laboratory water were at 42 ppm, indicating
a low content of inorganic salts in the water, most likely due to the gradual release of ink
from the surface of the labeled samples. In the pond under natural conditions, the TDS
values were much higher, in the range of 175–201 ppm, indicating the presence of inorganic
salts and organic substances. The pond was a natural water reservoir that is micro- and
macrobiologically active. The alkalinity and low temperature of pond could have affected
the psychrotrophic bacteria action, which could adjust to such variable conditions.

Oxygen is essential for the life of organisms. The oxygen content in air is 20.98%, while
the dissolved oxygen content in natural waters is in the range of 0 to 14 mgO2/dm3. Waters
take up oxygen primarily from the atmosphere. A second source of oxygen in water is that
given off by plant photosynthesis. The amount of oxygen from photosynthesis is much
less than from the air [42–44]. Table 2 shows the dissolved oxygen concentration in the
pond, which ranged from 6 to 10 mgO2/dm3 and 7 to 8 mgO2/dm3 in the laboratory water.
The amount of dissolved oxygen in the water depends on the temperature of the water
depending on the season: the lower the water temperature, the higher the oxygen content.
The oxygen content of the water can also fluctuate widely throughout the day. During the
day, photosynthesis with the release of free oxygen can occur with strong sunlight and the
growth of aquatic plants. Oxygen saturation of the water then occurs, which manifests
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itself as foam on the water surface. During the night, photosynthesis does not take place
and there is a sharp drop in oxygen content when aquatic organisms breathe heavily. Fish
then swim close to the water surface and have an increased respiration rate. Therefore,
the dissolved oxygen content in the water should not be less than 3–4 mgO2/dm3. The
oxygen content of the water is at least a limiting factor for the self-purification processes
of water bodies (biodegradation). In surface waters polluted with organic substances,
dissolved oxygen is consumed in the biochemical decomposition processes of these sub-
stances. The greater the water pollution, the lower the oxygen content. When the oxygen
content is significantly reduced, disturbances in the biocenosis occur. Mineral substances,
e.g., micro- and macroelements, are required for biodegradation, in addition to oxygen,
microorganisms, and enzymes [42–44].

3.2. The Changes of Oxo-Biodegradable Polyethylene during Environmental Degradation

The environmental degradation of the tested polyethylene with d2w additive samples
was first assessed visually. Table 3 illustrates macrographs of the polymer surfaces before
and after degradation in different environments.

Table 3. Macrographs of oxo-biodegradable polyethylene samples before and after degradation in
different environments.

Natural Weathering Pond Laboratory Water
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Before degradation, the oxo-biodegradable polyethylene samples were white, matt,
thin, and flexible.

The polymer samples decayed most rapidly under natural atmospheric conditions
(Table 3). The first cracking of the samples was observed after 18 months of degradation,
and after 24 months the cracking covered all the samples in larger fragments. The following
months saw increasing fragmentation of the material until month 39, when the defragmen-
tation was greatest. After 45 months, the samples were completely assimilated into the
environment. As the tested material contained an added pro-oxidant, the decomposition
into fragments was mainly due to abiotic parameters (oxygen, solar radiation, temperature,
air humidity), which are most active in atmospheric weathering. These results confirm the
importance of abiotic degradation for polymers with d2w additive, as was also emphasized
by Ojeda et al. [12].

Macroscopic changes on the surface of polyethylene with d2w additive after incubation
in a natural aquatic environment indicated their very sluggish environmental degradation.
After six months of incubation in the pond, slightly dark brown spots could be observed
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on the surface of the polymer, which became more visible and darker over the next months
of degradation. This was a consequence of microbial activity and the gradual biofilm
formation on the surface of the samples. The biofilm, on the one hand, hinders the access of
oxygen and sunlight to the degradable material, which is very important for the degradation
of the oxo-biodegradable polymer. On the other hand, the accumulated microorganisms
that form a biofilm on the surface are very close to the degradable material, although this
does not necessarily mean that they will degrade it quickly. Biofilm can result in different
mechanisms of polymer deterioration, such as fouling, degradation of leaching components,
corrosion, hydration, penetration, and changes in coloration [45]. From the 39th month of
incubation, there was some loss of material, but there was no fragmentation of the samples
in the following months of incubation under natural aquatic conditions.

The decomposition of oxo-biodegradable plastics produces plastic micro particles
that accumulate in the natural environment. This has also been confirmed by other au-
thors [46,47]. Microplastics pose a potential risk to flora and fauna [48] and affect microbial
communities in the pond.

No visible changes were observed on the surface of the polyethylene with d2w additive
samples after incubation under laboratory conditions. Because of the lack of solar radiation
and microorganisms in the laboratory test, only chemical hydrolysis could be expected [34].

The macroscopic observations were consistent with the changes in the mass of the
polymer samples. The results of the weight changes of the tested oxo-biodegradable
polyethylene samples are shown in Table 4.

Table 4. Weight changes [%] of oxo-biodegradable polyethylene samples before and after degradation
in different environments.

Degradation Time [Months]

3 6 9 12 18 24 27 32 36 39 45 48

Natural
weathering +0.3 −0.8 −0.7 −1.4 −2.0 −8.4 −20.7 −26.2 −62.0 −81.6 destroyed

Pond +0.9 +1.7 +1.5 +3.5 +5.5 +4.3 +5.4 +6.6 +13.0 +19.5 +24.3 +19.1
Laboratory water −0.2 −0.2 −0.7 −0.8 −0.7 −0.6 +0.8 +1.3 −0.8 −0.8 −0.8 −0.3

Note(s): Source: own research.

The results of the mass change of the degraded oxo-biodegradable polyethylene
differred depending on the environment.

Under atmospheric weathering conditions, a gradual mass loss was observed of 81.6%
after 39 months. After 45 months, the samples were completely decomposed in the natural
environment. Solar radiation, precipitation, and the presence of oxygen played a central
role in the decomposition of the plastic, which caused the activation of the d2w additive
and consequent cutting of the polyethylene chain [2,20]. According to the manufacturer,
the material should decompose 100% within two years. In the natural environment, the
decomposition time of oxy-degradable polyethylene was twice as long.

The results of the changes in the mass of oxo-biodegradable polyethylene in a natural
pond were interesting. The mass loss of the polymer was expected because of the presence
of microorganisms and dissolved enzymes in the water. A gradual accumulation of biofilm
observed on the plane of the incubated samples, which consequently led to an increase in
mass (19.1–24.3% over a period of 39–48 months). The biofilm formation was sufficiently
high that the sample losses observed on the macroscopic images did not affect the weight
loss of the samples. The degradation of oxo-biodegradable polyethylene in the freshwater
occurred very slowly because the pond had a lower temperature, oxygenation, and less
access of sunlight to the degraded material (Table 2). It required a much longer incubation
time. The key role that abiotic degradation plays in the biological decomposition of plastic
is highlighted by experiments by Rose et al. [20] on artificially aged samples of polyethylene
with d2w additive.
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During incubation of the test samples in laboratory water in the laboratory, despite a
constant temperature (about 18 ◦C) and oxygenation (about 7 mgO2/dm3), no significant
changes in mass were observed to indicate chemical hydrolysis taking place (from −0.8%
to +1.3% over four years of incubation).

The progression of polyethylene with d2w additive degradation was also examined by
evaluating the change in its chemical structure after degradation in different environments
(Figure 1).
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The peaks localized at 2914 and 2845 cm−1 belonged to symmetric and asymmetric
C–H stretching vibrations. Initially, there is C–H stretching, and then there is a pronounced
drop in the peak, corresponding to bond cleavage. This was true for all the samples, espe-
cially after degradation in the pond and natural weathering. Further changes occurred at the
band (1461 cm−1) related to CH2 scissoring groups, and at the bands (717 cm−1) indicating
CH2 rocking vibration. The other small absorption, at 1040 and 1082 cm−1, belongs to some
C–O bonds that appeared due to the atmospheric oxidation of the investigated polyethylene
surface after degradation in natural environments: pond and weathering [49–54]. In the
natural weathering environment, abiotic parameters played the dominant degradative role,
while in the pond the changes in the incubated polymer were the result of both abiotic
parameters and the presence of microorganisms (biofilm penetration) [45]. The absorption
found in the range 3000–3600 cm−1 indicated the existence of O–H groups (because of
the formation of hydroperoxides and alcohols during oxidation reactions), which was
more pronounced in the oxo-biodegradable polyethylene after biodegradation in the pond
and suggested partial water affinity. The observed changes in the spectra suggested the
appearance of oxidation and degradation of the used material [49–54].

Using the results of the FTIR analysis, the carbonyl index (CI) values were calculated
according to Equation (1):

CI = Absorbance at 1713 cm−1/Absorbance at 1464 cm−1 (1)

CI—absorbance ratio of carbonyl and methylene groups. This makes it possible
to determine the amount of carbonyl compounds formed during the photo-oxidation
process [50,52,55].

The carbonyl index helps to determine the amount of carbonyl compounds created dur-
ing the photo-oxidation process. Figure 2 shows the carbonyl index results for polyethylene
with d2w additive before and after degradation in different environments. A reduction in
the carbonyl index was observed in all the samples after degradation in natural weathering,
pond, and laboratory water.
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Referring to the literature [56–58], the carbonyl index after the degradation of the
oxy-degradable samples should increase. The authors of the publication [34,50,56,59]
showed that an essential part of the oxidation product is neglected as it evaporates into
the atmosphere. Because of this, the indicator cannot be regarded as a reliable probe
for measuring the degree of oxidation and does not represent the total degradation of
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weight changes, mechanical properties and micro- and macroscopic observations of the
investigated polymer.

The effect of the degradation process under natural weathering, pond, and laboratory
water conditions on the mechanical properties of the polymer tested was also assessed.
Changes in the mechanical properties of polyethylene with the d2w additive samples after
environmental degradation were investigated by measuring tensile strength at break and
elongation. The results are reported in Table 5 and Figures 3 and 4.

Table 5. Mechanical properties of oxo-biodegradable polyethylene samples before and after degrada-
tion in different environments.

Degradation Time [Months]

0 3 6 9 12 18 24 27 32 36 39 45 48

Natural
weathering

Fm [N] 15.41 9.91 11.66 10.62 9.43 4.30 fragmentation
Rm [MPa] 26.31 24.78 29.14 26.56 23.58 10.76 fragmentation

E [%] 304 24 53 18 6 1 fragmentation

Pond
Fm [N] 15.41 15.75 17.13 17.65 15.08 15.00 15.09 13.80 13.47 11.98 10.53 9.64 6.94

Rm [MPa] 26.31 32.07 42.83 44.12 37.70 37.50 37.74 34.49 32.59 29.95 26.32 24.09 17.35
E [%] 304 305 261 326 282 255 242 243 264 167 40 35 31

Laboratory
water

Fm [N] 15.41 13.20 13.46 16.18 16.61 18.29 17.44 17.29 17.19 15.59 14.76 14.96 15.60
Rm [MPa] 26.31 33.01 33.66 40.46 41.51 45.72 43.59 43.22 42.98 38.97 36.90 37.40 39.00

E [%] 304 266 240 321 331 337 346 334 305 305 298 334 339

Note(s): Source: own research.
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Changes in mechanical properties like tensile strength and elongation at break may
give information about the type of changes induced by the chain modifications during
degradation. Longer chains can resist the stress better than shorter ones (shorter chains can
move easily when they are under stress), then mechanical resistance will be lower if there
is chain scission [10].

Analyzing the changes in tensile strength, we can see that the tensile strength was
constantly decreasing for oxo-biodegradable polyethylene samples during degradation in
natural weathering (to 10.76 MPa), which can be attributed to the activity of solar radiation,
precipitation, and the presence of atmospheric oxygen. Changes in the tensile strength
could be determined up to the 18th month of natural weathering degradation, as the
polyethylene with d2w additive samples fragmented in the following months.
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In opposition to the degradation of the polymer samples in natural weathering, an
increase in tensile strength was noted at the early stages of incubation in natural pond.
This may be due to unexpected additional crosslinking through unstable peroxide bridges
as a result of the synergistic action of biotic and abiotic factors in freshwater, or by a
sort of plasticization effect influenced by low molecular weight fraction generated in the
first phase of the oxidative degradation of the polymer matrix. Over the same time, the
polymer weight increased [34,57,60]. From the 12th month of exposition of biodegradable
samples in the pond, the slowly decrease of tensile strength (to 17.35 MPa after 48 months)
was observed (Figure 3). A possible cause was the activity of microorganisms in this
environment, which could have influenced enzymatic degradation on the polymer surface.
This behavior can also be the result of the superimposed effects of various aging processes,
such as chain cracking (leading to a decrease in Rm), or branching and crosslinking (an
increase in Rm). During degradation, an initial improvement in mechanical properties is
often observed, and only after a sufficiently long period of time is there a deterioration in
the film’s properties indicating degradation [57,60,61].

In the samples incubated in laboratory water, an increase in tensile strength was
observed throughout the incubation period, which could be explained only by water-
induced sequencing of the polyethylene chains.

The graph curves in Figure 4 demonstrate that the elongation of polyethylene with the
d2w additive samples decreased slowly only during incubation in the natural environment.
Also, in the case of the elongation at break, both a decrease and an increase were observed.
As with the changes in strength, a trend can be observed: this parameter decreases in a nat-
ural weathering environment and increases and decreases in aqueous environments. This
means that the initial stages of oxidative photodegradation proceed with a deterioration in
the strength of the sample and a decrease in its elasticity, while in aqueous environments
the strength and elasticity increase. Increasing the time of environmental exposure results
in both a decrease in strength and elongation at break in most samples, so the impact of the
degradation taking place is clearly visible [60]. A more significant decrease in the elongation
of the samples was noted after degradation under natural atmospheric conditions (from
304% to 1% after 18 months) then after degradation in natural pond (from 304% to 31% after
48 months). An increase in the elongation of the test samples could be observed throughout
the incubation time in laboratory water. The results of the reduction in elongation of the
samples confirm the findings of the reduction in tensile strength.
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Finally, the degradation of the investigated polyethylene with the d2w additive sam-
ples was assessed by changes in polymer morphology (Table 6). After degradation in the
environments, the analyzed samples were not homogeneously destroyed. Images of the
polymer structure varied depending on the analysis site. The most frequently repeated
images were those observed under a metallographic microscope.

Table 6. Micrographs of oxo-biodegradable polyethylene samples before and after degradation in
different environments.

Natural Weathering Pond Laboratory Water
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The morphology of the oxo-biodegradable polyethylene sample before degradation
was homogenous without any oriented phase.

If we take a look at the micrographs, we can see the first slightly different surface
degradation of the polymer samples after 6 months of incubation in natural weathering.
After 12 months of degradation, the first cracks can be observed on the surface of the sam-
ples, which are caused by the presence of oxygen in the atmosphere. During the following
months of exposure of the oxo-biodegradable polyethylene in natural weathering, the poly-
mer surface is more degraded, characterized by more frequent and larger cracks, caused
by further interference from abiotic parameters (oxygen, solar radiation, temperature, air
humidity). In addition, after 36 months of degradation, dark stains appear on the surface
of the samples, indicating the presence of microorganisms.

The incubation of the oxo-biodegradable polyethylene samples in the natural pond
leads to a gradual appearance of many dark places of different sizes and shapes on the
surface (especially after 45 and 48 months), which probably corresponds to created agglom-
eration of biofilm microorganisms on the surface of incubated samples [62].

It is widely known that microorganisms can form a biofilm on the surface of polymers
in any environment. The biofilm is involved in polymer destruction, but its quantity on
the surface depends on the bacterial species, temperature, pH, and incubation time [19,63].
Rose et.al [20] demonstrated that different bacterial strains can be employed to evaluate
polymer degradation.

The degradation process of the polyethylene with d2w additive samples in laboratory
water was unspectacular. Due to the lack of access to light and microorganisms, there have
been no marked changes of morphology after 48 months incubation in laboratory water,
which cannot unequivocally confirm the occurrence of hydrolytic degradation.

4. Conclusions

Oxo-biodegradable polyethylene in the natural environments is not as “biodegradable”
as in simulated laboratory tests. The degradability depends on the particular surroundings.
Sunshine, precipitation, temperature, oxygen content, pH and diversity of microorganisms
vary across natural environments, which results in different biodegradation rates.

Summarizing the results of the research, the following conclusions can be drawn with
regard to the behavior of the polyethylene with d2w additive in investigated environments:
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• Natural weathering is an oxidative degradation that produces hydroperoxy, hydroxy,
carbonyl groups, and crosslinking. The effects of natural weathering are surface
changes, brittleness, weight change, and loss of mechanical properties.

• The results of macroscopic and microscopic observations, changes in weight and
mechanical properties indicate a slowly degrading process under natural weather-
ing conditions (39 months), although the manufacturer declared faster degradation
(up to 24 months). Natural weathering resulted in a reduction in weight to 81.6%
after 39 months and complete assimilation of the samples after 45 months, while the
48-month incubation in the pond led to an increase in the weight of the samples (+19%).

• The enzymatic degradation of the samples in the natural pond was very slow—after
48 months the samples did not fragment, only swelled. The degradative effect of
microorganisms was evident in the reduction of the strength parameters of the tested
samples. In the pond after 48 months of incubation, the tensile strength decreased
from 26.31 to 17.35 MPa and the elongation at break reduced from 304 to 31%.

• Due to the significant fragmentation of the samples, mechanical properties could
be determined up to the 18th month of degradation in natural weathering: tensile
strength decreased to 10.76 MPa and elongation at break to 1%.

• During the degradation, the initial improvement in mechanical properties and, only
after a sufficiently long period of time, the deterioration in film properties indicated
that degradation is due to the superimposed effects of various aging processes, such
as branching and crosslinking (max. increasing Rm to 45.72 MPa) and chain cracking
(leading to a decrease in Rm to 10.76 MPa).

• The microbial biofilm formed, on the one hand, accumulates microorganisms on the
polymer surface and, on the other, restricts the access of radiation and oxygen to the
oxo-biodegradable plastic, thus slowing down the degradation process.

• FTIR spectroscopy interpretation showed that the degradation process exists in natural
environments (atmospheric weathering and freshwater), and the polyethylene with
d2w additive appeared to be resistant to hydrolysis during the monitored time in the
laboratory. The changes concern C–H groups (peaks 2914 and 2845 cm−1), CH2 groups
(peaks 1461 cm−1 and 717 cm−1), and C–O groups (peaks 1040 and 1082 cm−1). The
absorbance found at 3000–3600 cm−1 indicates the existence of O–H groups due to the
formation of hydroperoxides and alcohols during oxidation reactions.

• After incubation under laboratory conditions, no visible degradation changes were
observed in the polyethylene with the d2w additive samples. Because of the lack of
microorganisms and solar radiation in the simulated laboratory test, only chemical
hydrolysis can be anticipated.

• The degradation of the polyethylene with d2w additive in natural environments
requires a longer incubation time compared to the degradation time declared by the
manufacturer.

Given the high complexity of the natural degradation system, there is no standardiza-
tion of test procedure for evaluating the biodegradability of oxo-biodegradable polyolefin
in the natural environment. Studies carried out show abiotic degradation is a key step
to biodegradation—natural weathering led to fragmentation of the polymeric samples.
The results of the biodegradation studies in the pond show that samples can persist in the
natural environment for years—a biofilm created on the surface of the samples, but the rate
of biodegradation was slow.
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25. Adamcová, D.; Vaverková, M.D.; Mašíček, T.; Břoušková, E. Analysis of biodegrability of degradable/biodegradable plastic
material in controlled composting environment. J. Ecol. Eng. 2016, 17, 1–10. [CrossRef] [PubMed]

26. Aldas, M.; Valle, V.; Aguilar, J.; Pavon, C.; Santos, R.; Luna, M. Ionizing radiation as adjuvant for the abiotic degradation of plastic
bags containing pro-oxidant additives. J. Appl. Polym. Sci. 2021, 138, e49664. [CrossRef]

27. Chiellini, E.; Corti, A.; D’Antone, S. Oxo-biodegradable full carbon backbone polymers—Biodegradation behaviour of thermally
oxidized polyethylene in an aqueous medium. Polym. Degrad. Stabil. 2007, 92, 1378–1383. [CrossRef]

28. Mahey, S.; Kumar, R.; Sharma, M.; Kumar, V.; Bhardwaj, R. A critical review on toxicity of cobalt and its bioremediation strategies.
SN Appl. Sci. 2020, 2, 1279. [CrossRef]

29. Vázquez-Morillas, A.; Beltrán-Villavicencio, M.; Alvarez-Zeferino, J.C.; Osada-Vela´zquez, M.H.; Moreno, A.; Martinez, L.; Yañez,
J.M. Biodegradation and ecotoxicity of polyethylene films containing pro-oxidant additive. J. Polym. Environ. 2016, 24, 221–229.
[CrossRef]
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