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Abstract: Multiscale forecasting of groundwater levels (GWLs) is essential for ensuring the sus-
tainable management of groundwater resources, particularly considering the potential impacts of
climate change. Such forecasting requires a model that is not only accurate in predicting GWLs
but also computationally efficient, ensuring its suitability for practical applications. In this study, a
temporal convolutional network (TCN) is implemented to forecast GWLs for 17 monitoring wells
possessing diverse hydrogeological characteristics, located across South Korea. Using deep learning,
the influence of meteorological variables (i.e., temperature, precipitation) on the forecasted GWLs
was investigated by dividing the input features into three categories. Additionally, the models
were developed for three forecast intervals (at 1-, 3-, and 6-month lead times) using each category
input. When compared with state-of-the-art models, that is, long short-term memory (LSTM) and
artificial neural network (ANN), the TCN model showed superior performance and required much
less computational complexity. On average, the TCN model outperformed the LSTM model by 24%,
21%, and 25%, and the ANN model by 24%, 37%, and 47%, respectively, for 1-, 3-, and 6-month lead
times. Based on these results, the proposed TCN model can be used for real-time GWL forecasting in
hydrological applications.

Keywords: groundwater level forecasting; artificial neural networks; long short-term memory;
temporal convolutional network; computational time

1. Introduction

Groundwater often serves as a primary source of water in many parts of the world.
According to a study, groundwater accounts for 30.1% of the freshwater resources available
on our planet and it fulfills 50% of domestic demand, about 40% of industrial usage, and
20% of irrigation supply globally [1]. Due to the expansion of cities and rapid population
growth, water demand and consumption have drastically increased over the years and
groundwater is often tapped as a convenient and accessible resource to meet these needs [2].
Furthermore, unprecedented droughts and altered rainfall patterns have exacerbated
the pressure on groundwater resources [3]. Also, the over-exploitation of groundwater
due to increased urbanization has led to a water sustainability challenge in developing
countries [4]. As a result, water demand is likely to increase further in the future, which
requires efficient utilization and management of groundwater in conjunction with surface
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water resources [5–8]. Furthermore, the disparity between groundwater extraction and
recharge rate has caused adverse environmental side effects such as water level depletion,
low well yields, increased pumping rates, and recession in surface water levels [4]. In order
to ensure the sustainability of groundwater resources, accurate long-term groundwater
level (GWL) forecasting is critical. Hydrogeologists and water policymakers rely on these
forecasts in making effective strategies for the domestic, agricultural, and industrial water
supplies and preventing excessive water loss [9,10]. However, groundwater level modeling
is critical due to its highly complex and non-linear nature as the changes in groundwater
level are affected by various factors such as hydrogeological, i.e., groundwater discharge
and recharge, anthropogenic, i.e., climate change, and meteorological, i.e., temperature
and precipitation [11]. In this regard, over the years, a wide range of methods have been
explored to accurately forecast groundwater levels.

In the last two decades, numerical and physically based modeling has often been used
for GWL forecasting, with MODFLOW [12] being the most widely implemented method.
The physically based models are highly accurate in predicting GWLs; however, they are
time-consuming, and their performance is constrained by the significant amount of required
hydrological data and, in addition, the understanding of the underlying water system
mechanism [13–16]. In recent years, data-driven-based models have been increasingly
adopted to forecast GWL; the details can be studied in [14,17,18]. The key advantage of
such models (e.g., artificial neural network, ANN) is that they are computationally efficient
and can learn from sufficient data to model any dynamic non-linear function [1,19,20].
Thereby, ANNs have been implemented in various GWL forecasting studies [18]. For
instance, ref. [21] simulated weekly GWL to test the performance of ANN with three
different training algorithms for 18 wells located in East India. The evaluation showed
that ANN trained with the Levenberg–Marquardt algorithm had the best results, with the
prediction interval extended up to 4 weeks ahead. Ref. [22] found the optimal temporal
input length and the impact of exogenous input variables on GWL simulation with ANNs
and multi-layer perceptron (MLP). Ref. [13] reported that ANN often fails to capture
long-range temporal dependencies and subsequently does not perform well.

To address the limitations of ANNs, recurrent neural networks (RNNs) were specif-
ically designed for sequential and time-series data (e.g., text, audio, video). The key
characteristic of RNNs is their cyclic structure, which enables them to maintain the flow of
data back and forth between recurrent cells and update the internal state of cells based on
both the current input and the previous hidden state. The model incorporates past informa-
tion stored in the hidden state to make predictions for the future state, particularly when
the input data exhibit certain dependencies [8]. The standard RNN has limited memory
capacity, which means that it cannot process long sequences and suffers from vanishing
gradient problem. Thereafter, long short-term memory (LSTM) was developed to solve the
shortcomings of standard RNN, and it has been successively employed in many research
areas, including natural language processing [23,24] and machine translation [25]. Most of
the groundwater studies in the literature have implemented recurrent neural networks and
LSTM [26]. Ref. [27] trained LSTM models for two monitoring wells using the proposed
cost function, namely, least trimmed squares (LTS) with symmetric weighting (AW) and
the Whittaker smoother (WS), which is robust against noise, and outliers in the data [28].
The results obtained by employing the developed cost function outperformed the results of
models trained using other cost functions in effectively identifying and rejecting outliers.
In Normandy, France, LSTM has been utilized to reconstruct GWLs, and generate missing
values, of 31 piezometers over 50 years of recorded data [29].

For a long time, RNNs have been employed as state-of-the-art models for sequential
tasks. Even though LSTM is more efficient and has better complex function fitting ability
than traditional RNNs, it can still suffer from vanishing gradient problem when processing
extremely long sequences. Furthermore, due to its inherent sequential nature and exces-
sive hyperparameter settings, it requires high computational resources and takes longer
to train [30]. To solve these computational complexities, recently, researchers have been
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exploring temporal convolutional networks (TCNs) which are one-dimensional CNNs
(convolutional neural networks). The TCNs are specially designed for sequence processing
tasks, and they have shown performance comparable to RNNs while providing compu-
tational advantages [31]. The TCN has higher arithmetic intensity and fewer trainable
parameters due to the weight sharing property of the convolutional layers, and conse-
quently, uses less memory and time to develop [32]. Ref. [33] presented a general temporal
convolutional network architecture for sequence modeling tasks. Ref. [34] implemented
TCN for multivariate forecasting and achieved superior performance compared to recur-
rent neural networks. Furthermore, TCN integrated with discreate wavelet transform
(DWT) and random forest (RF) feature selection method outperformed RF-DWT-RNN and
RF-DWT-LSTM in predicting daily urban water demand [34].

The fluctuations in groundwater level are characterized by multiple highly non-linear,
non-stationary, and complex variables. This intricacy makes it challenging to achieve a
high degree of prediction accuracy for the forecasted GWLs. Through detailed experiments,
the impact of external factors on the changes in GWLs was thoroughly examined. Given
the complexity in the dataset of each monitoring well, it is important for the forecasting
model to be both accurate and computationally efficient for practical usability. Therefore,
in this study, the TCN model has been introduced for short and long-term GWL forecasting
(at 1-, 3-, and 6-month lead time). The main contributions of the study are as follows:

1. To the authors’ knowledge, this is the first study to implement TCN for short and
long-term groundwater level forecasting. This study provides valuable insights into
its superior performance and less computational complexity compared to the widely
used state-of-the-art models.

2. The studied wells are situated in different regions of South Korea and thereby pos-
sess diverse hydrogeological properties. The influence of meteorological variables
(i.e., temperature and precipitation) on the forecasted GWLs was investigated by
conducting intensive experiments using three input feature categories.

3. The results of the proposed model were compared with those of LSTM and ANN
for 1-, 3-, and 6-month lead time forecasting. Additionally, the computational time
complexity of the TCN is discussed in comparison with the respective models.

The rest of this paper is organized as follows: Section 2 provides information on the
study area and describes the adopted methodology, Section 3 discusses the results, and
Section 4 makes the concluding remarks.

2. Study Area and Method
2.1. Study Area and Dataset

South Korea is located in the southern half of Korean Peninsula bordered by North
Korea to the North and the Yellow Sea and the Sea of Japan to the West and East, respectively.
The country encompasses a territory of 100,266 km2 at 35.90◦ N latitude, and 127.77◦ E
longitude. The landscape of Korea is characterized by diverse range of rock types including
granite, gneiss, schist, limestone, metamorphic, and volcanic rocks [35]. North Pacific and
continental weather patterns greatly influence the climate of South Korea. The eastern
regions of Korea receive less rainfall than western regions, with more than half of it during
summer season which continues for 30 days. The mean annual precipitation of the country
is about 1277 mm and temperature varies greatly with time and in different regions, from
−20 ◦C in winter to 35 ◦C in summer. Nearly every six years, South Korea experiences
severe droughts due to the drastic changes in seasonal and annual rainfall patterns caused
by climate change [36].
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In South Korea, there are mainly two types of aquifers: shallow alluvial and deep
bedrock aquifers. The shallow alluvial aquifer consists of unconsolidated sediments, and is
commonly found near major rivers, with a water yield capacity of 30–800 m3 day−1 in a
single well [35]. This aquifer has been the primary source of water supply for irrigation
in many rural areas since the 1950s and is mostly recharged through the infiltration of
rainwater during the wet season [35,37]. In many regions of Korea, the drinking water
comes from bedrock aquifer wherein a well can yield water up to 10–5000 m3 day−1. The
bedrock aquifer is composed of faulty, porous, and different types of fractured rocks [37].
The link to the dataset is provided in the Data Availability Statement section.

Figure 1 shows the locations of the studied 17 groundwater wells located across
South Korea. The dataset was obtained from the National Groundwater Information
and Management Network’s (NGMN) website maintained by the South Korean national
government. In Korea, the groundwater monitoring wells are operated under NGMN to
keep a national record of data and those wells which are affected by high pumping rates.
To ensure the accurate measurement of groundwater levels, the wells are installed in low
pumping areas. The dataset of each monitoring well consists of groundwater level (GWL),
precipitation (P), and temperature (T) variables. Each variable in the dataset contains
observations recorded on a daily basis over a decade, from 2010 to 2019. This offers an
insight into the variables’ patterns and trends over the period, enabling one to understand
the behavior of variables and potentially predict future patterns based on past observations.
Missing values were filled by taking the average of neighboring observations. Figure 2
shows the time-series plots of GWL, T, and P variables for well #11774.
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2.2. Methodology

This section provides details on the implementation and development of the mod-
els (TCN, LSTM, and ANN) for GWL forecasting under different configurations. Daily
observation of GWLs was used to develop forecasting models for each of the monitoring
wells, aiming to forecast the average monthly GWL (mGWL). Generating a dataset for each
well with a set of input features is the first step in constructing the models. As illustrated
in Figure 3 (Part 1), the input features were grouped into three categories, each with a
different set of meteorological variables to assess their impact on the forecasted GWLs.
The input lengths for the GWL, P, and T variables were set at 30 days for 1-month lead
time, 60 days for 3-month lead time, and 90 days for 6-month lead time forecasting. The
ACF (autocorrelation function) was used to find the autocorrelation and determine the
lagged variables. Figure 4 displays the correlation between the GWL input parameter
with lags up to 30 days for two monitoring wells. A correlation above 0.75 is considered a
strong correlation, and the GWL exhibits this with lags of up to 4 days for both the wells.
However, during the experiments, no significant difference was observed between the
results obtained using 4 lag variables (GWL-1, . . ., GWL-4) and those with 2 lag variables
(GWL-1, GWL-2). Therefore, only GWL-1, GWL-2 were included as explanatory features in
each input features category to help the models in identifying the recurring patterns. And
with each category input, the mGWL at 1-, 3-, and 6-month lead times were set as the target
variable of the models (as depicted in Figure 3 (Part 2)). For each monitoring well, 60%
(train set) of the dataset was used to develop the models, 20% (validation set) was used in
fine-tuning the hyperparameters, and the last 20% served as a test set for making inferences.
In the datasets, the distribution of input feature values varied significantly. This disparity
could lead to model overfitting, so the datasets were normalized using the StandardScaler
method. It adjusts the values of variables with a mean of 0 and a standard deviation of 1,
based on Equation (1).

x′ =
x− µ

σ
(1)

µ =
1
N

N

∑
i=1

(xi) (2)
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σ =
1√

1
N ∑N

i=1(xi − µ)
(3)

where x′ is the standardized value with x as the original feature value and N is the length
of values. µ derives the mean of the feature values and σ gives the standard deviation.
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In all experiments, the models were trained for 50 epochs using the Adam optimizer
with a learning rate of 0.0001. To avoid overfitting on the training dataset, the early stopping
method was implemented with a patience of 7 epochs to monitor the validation loss. During
the training process, if the model did not show improvements in validation loss beyond
the patience, then it stopped training. This saves the computational time and resources
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and prevents overfitting. All models were developed using PyTorch and experiments were
conducted using three NVIDIA RTX A5000 GPUs.

2.2.1. Artificial Neural Network (ANN)

ANNs are regarded as universal approximation functions, inspired by the structure
and function of the biological neural network of the human brain. A typical feedforward
ANN consists of three layers, namely, input, hidden, and output layers, where neurons
(nodes) in one layer are connected to all neurons in the following layer and the strength
between connections is determined through learnable parameters (weight vectors) across
all layers [38]. During the training phase, the network iteratively performs an optimization
algorithm with the goal of minimizing the prediction error and adapting such parameters
that can accurately map input data from outside the training set to the desired output.
Non-linear activation functions (e.g., Sigmoid, Tanh, ReLU) are used to model non-linearity
present in the data, which helps ANN to solve large-scale complex functions with good
generalizability [39]. In this study, the adaptive moment estimation (ADAM) algorithm was
used to minimize the cost function and ReLU as an activation function. Figure 5 presents a
graphical representation of a standard ANN.
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Consider a model with H input neurons and N neurons in a hidden layer. The nth
neuron in the hidden layer would be equal to the weighted sum of the input layer neurons
and a bias value. In a three-layer ANN, the values for the hidden layer neuron and output
neuron are derived by using Equations (4)–(6):

uj =
H

∑
i=1

wji × xi + wj0 (4)

where uj is the input value of the jth neuron in the hidden layer, wji is a weight between
the jth neuron in the hidden layer and the ith neuron in the input layer. xi is the ith input
variable of the input layer and wj0 is the bias term of the jth neuron in the hidden layer.
Different activation functions are used to transform the output of the hidden layer neurons.

sj = f
(
uj
)

(5)

where sj is the output of the jth neuron in the hidden layer, and f is the activation function
such as Sigmoid, Tanh, and ReLU.

yk =
M

∑
j=1

wkj × sj + wk0 (6)
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where yk is the output neuron, derived by taking the weighted sum of hidden-layer
neurons (wkj) and bias term (w k0) of the output neuron. Based on a trial-and-error method,
128 hidden nodes with one hidden layer were used in the development of ANN models.

2.2.2. Long Short-Term Memory (LSTM)

LSTM is a special network that was developed to solve the vanishing gradient and
exploding problems of recurrent neural networks (RNNs). A simple RNN has a stack
of non-linear cells that form a chain-like structure, with at least one connection between
cells, enabling information to flow forward and backward through the network (Figure 6a).
A recurrent cell is a mathematical function that takes input and generates output by
maintaining the hidden state. The hidden state acts as a memory cell to process, store, and
remember previous information over a long time period, which enables the network to
capture and learn complex temporal dependencies within the data. The recursive nature of
the network makes it capable of modeling sequential data, and it has achieved state-of-the-
art performance on tasks such as machine translation, speech recognition, and language
modeling. Forward propagation usually begins with the hidden state ht = 0, and then, the
following equations are used to update the hidden state and generate the output:

ht = tanh(bh + Wht−1 + Pxt) (7)

ot = bo + Vht (8)
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In Equation (7), ht denotes the hidden state at time t, obtained by applying the non-
linear function to the sum of the input vector xt, previous hidden state ht−1, and bias term
bh, wherein P and W are learnable weight matrices associated with hidden-state and input
vectors, respectively. The output vector ot is derived by adding up the dot product of
the hidden-state vector ht and weight matrix V and bias term of the output vector bo as
Equation (8).

In RNNs, the gradients of the weights are computed with a back propagation through
time (BPTT) algorithm, and subsequently, the weights are modified to minimize the total
error of the network. However, with long input sequences, the gradients become smaller
and smaller, and therefore, the standard RNN fails to propagate them all the way back
from output node to the first layer nodes. Therefore, standard RNNs are difficult to train on
large-scale data and, hence, cannot map long-term dependencies. The LSTM network was
designed to address the vanishing gradient problem of RNNs [38,40,41]. Like traditional
RNNs, LSTMs consist of recurrent cells (LSTM cells) wherein each LSTM cell has a relatively
complex structure with specially designed memory block compared to the RNN memory
cell. A memory block was invented inside the LSTM cell to efficiently store and control the
flow of information over a long time period to capture the long-range dependencies.

Inside the LSTM memory block, a cell state runs straight through the network, allowing
the information to flow without being subject to vanishing gradients and also serving as
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a “memory cell”. In addition, the information flux is controlled by three gates, namely,
the input gate, the forget gate, and the output gate with specified functionality. The input
gate determines the extent to which new data and the previous hidden state flow into
the cell state, while the forget gate decides what data are irrelevant and redundant, and
subsequently removes them from the memory cell. The output gate controls how much
information from the cell state should be used to generate output at each time t, as well as
the final output of the network. The gates in the LSTM network use sigmoid as an activation
function, which maps the output of the gates to a value between 0 and 1, making the flow
of information easy, and being differentiable prevents vanishing gradients. A schematic
diagram of memory block and LSTM cell is shown in Figure 6b. Equations (9)–(14) are used
in LSTM to map an input sequence x to an output sequence.

it = σ(Wixt + Piht−1 + bi) (9)

ft = σ
(

W f xt + Pf ht−1 + b f

)
(10)

ot = σ(Woxt + Poht−1 + bo) (11)

∼
Ct = tanh(Wcxt + Pcht−1 + bc) (12)

Ct = ft × Ct−1 + it ×
∼
Ct (13)

ht = ot × tanh(Ct) (14)

where Wi, W f , and Wo are the weight matrices of the input, forget, and output gates
associated with input x at time t. Likewise, Pi, Pf , and Po represent the weight matrix for
the input, forget, and output gates to the hidden state h at time t− 1. bi, b f , and bo are bias
vectors for the input, forget, and the output gates, respectively. σ (logistic sigmoid) is the
element-wise activation function and × denotes the element-wise multiplication of two
vectors. The input, forget, output, and cell-state vectors at time t are denoted by it, ft, ot,
and Ct, respectively, and are the same in size as the cell output vector ht at time t.

2.2.3. Temporal Convolutional Network

Like standard convolutional neural networks (CNNs), the building blocks of a TCN
consist of convolutional, pooling, and fully connected layers, etc. However, the convolu-
tional layers used in TCN are 1-dimensional (1D), and to make them adapt to time-series-
processing tasks, causality and dilation are applied on these 1D convolutional layers. Like
RNNs, the network can take an input sequence of any length and map it to an output
sequence of equal length [32].

Causality in a temporal convolutional network ensures that the output of convolution
operations is computed using a finite set of past inputs and does not look ahead into the
sequence [32]. Dilation is used to exponentially enlarge the receptive field of convolutions
on the time axis, so the wider range of inputs contribute to represent an output [33]. The
dilated causal convolution is shown in Figure 7a. Figure 7b shows the TCN residual block, a
stack of these residual blocks makes a temporal convolutional network. Within the residual
block, four different layers are used, namely, Dilated Causal Convolution, Batch Norm,
ReLU, and Dropout. Batch Norm and Dropout layers enforce the smooth training process
and prevent overfitting. Non-linearity is introduced into the network by ReLU layers to
learn complex patterns present within the data. The TCN takes an input sequence and
passes it through these layers twice (i.e., Dilated Causal Convolution, Batch Norm, ReLU,
and Dropout) as shown in Figure 7b. A 1 × 1 convolution is added elementwise when the
input and output of the last Dropout layer have different dimensions and is then processed
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through a fully connected layer to obtain the final outputs as shown in Figure 7c. The 1D
dilated convolution operation is performed in the TCN using Equation (15) [32].

yh
n =

K−1

∑
i=−

Cin−1

∑
l=0

xl
ns−di·W

l,h
i , ∀m ∈ [0, Cout − 1], ∀x ∈ [0, T − 1] (15)
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In Equation (15), x and y compute the input and output activations, T is the length of
the output sequence. W gives the array of filter weights, Cin and Cout are the number of
input and output channels of the filter, K is the filter size, and s is the stride. The receptive
field of the layer is defined as F = d·(K− 1) + 1. In the experiments, with K = 3, d = 2, and
Cin and Cout = 25, we obtain the best results.

2.2.4. Performance Evaluation Metrics

The predictions of the models were assessed against observed values using three
evaluation metrics: Pearson correlation coefficient (PR), Nash–Sutcliff efficiency (NSE),
and root mean square error (RMSE). PR measures the linear correlation between the
predicted and observed values, its value ranges between 0 and 1, based on Equation (16).
A value close to 1 means a good fitness of the model, whereas a value close to zero
indicates poor performance. NSE quantifies the magnitude of residual variance in relation
to the variance in observed data, Equation (17). RMSE determines the magnitude of
errors by taking the square root of the average of squared differences between observed
and predicted values and facilitates in the performance comparison of various models,
Equation (18). Based on NSE and RMSE, the prediction accuracy of the models can be
interpreted as follows [30]: very good (0.75 < NSE ≤ 1; 0.00 ≤ RMSE < 0.50), good
(0.65 < NSE ≤ 0.75; 0.50 ≤ RMSE < 0.60), satisfactory (0.50 < NSE ≤ 0.65; 0.60 ≤ RMSE <
0.70), and unsatisfactory (0.50 < NSE; RMSE ≥ 0.70).

PR =
∑ n

i=1(oi− o
)
(yi − y)√

∑ n
i=1(oi − o)2

√
∑ n

i=1(yi − y)2
(16)
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NSE = 1−
[

∑n
i=1(o− y)2

∑n
i=1(o− o)2

]
(17)

RMSE =

√
1
n

n

∑
i=1

(oi − yi)
2 (18)

where oi and yi are the observed and predicted values, respectively, and o and y are their
corresponding mean values. The size of data samples is denoted by n.

3. Results and Discussion

This section presents the detailed analysis and findings from the experiments con-
ducted in this research. This study aimed to formulate a methodology for both short-term
and long-term forecasting of groundwater levels and tried to develop a computationally
efficient model, which sets this study apart from other works. Ref. [42] aimed to find the
best predictors and enhance the prediction accuracy by optimizing the hyperparameters
of the models (LSTM, GRNN). The models were developed to forecast 1-day ahead GWL.
In a similar study, ref. [43] carried out correlation analysis between piezometer and mete-
orological variables to find the most informative input features. Moreover, the proposed
method (ANN) forecasts one-month-ahead groundwater levels without necessarily requir-
ing pumping rates as an input parameter. Ref. [30] performed a study to determine the
most influential meteorological explanatory variables and assess their effectiveness on
the observed groundwater levels. Furthermore, hybrid models (WT-LSTM, WT-RF, and
WT-XGB) were developed using the best-performing WT (wavelet transform) method for
1-, 2-, and 3-month lead times. The scope of our study differs from that of the studies
mentioned above in terms of the study area, input parameters, and forecasting intervals.
While most of the studies aim at daily scale and 1-month-ahead predictions, in our study,
experiments were conducted for 1-, 3-, and 6-month lead times. Moreover, our study
investigated the computational efficiency (development and inference time) of the models,
which past studies did not address.

3.1. Assessing the Forecasting Accuracy of the Proposed and Other Models

The prediction performance of the models was evaluated on the test dataset of each
groundwater well using three statistical metrics. The comprehensive results of the models
developed using category-1 input features at 1-month lead time are shown in Table 1, and
the detailed results for 3- and 6-month lead times are provided in Tables A1 and A2. For
brevity, the predicted and observed measurements of three monitoring wells are shown
in Figure 8. The plots clearly indicate that there is no discernible pattern or trend in
the observed groundwater levels of the wells during the period from 2017 to 2019 (test
dataset). The TCN model predicted the observations with high accuracy for a 1-month
lead time while capturing the rapid fluctuations in the GWLs, except for a few extreme
values (Figure 8a–c), whereas the LSTM demonstrated the best fit for wells #82027 and
#95512 with less accuracy than the TCN, as illustrated in the scatter plots (Figure 9a,c),
but failed to do so for well #11751 for reasons unknown (Figure 9b). Similarly, the ANN
model poorly forecasted the groundwater levels for well #95512 (Figure 8c); however,
its performance was good for wells #82027 and #17751, with significant differences in
prediction accuracy compared to the TCN model, as shown in Figure 9a,b. The Pearson
correlation measures the degree of variability between the model’s predicted values and
observed measurements. For the 1-month lead time, the models for 12 monitoring wells
exhibit a correlation coefficient greater than 0.80, indicating a strong correlation between the
models’ predictions and the actual values (Table 1). Similarly, the predictions of 11 models
at the 3-month lead time and 14 wells at the 6-month lead time demonstrate a strong
correlation with the observed values.
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Table 1. Accuracy of the proposed TCN model of 17 groundwater wells for 1-month lead time
developed using category-1 inputs (GWL, GWL-1, GWL-2, P). Tr-In Time is the cumulative training
and inference time of the model measured in seconds (s).

Well Model 1-Month Lead Time Well Model 1-Month Lead Time

NSE RMSE PR Tr-In
Time(s) NSE RMSE PR Tr-In

Time(s)

11751 TCN 0.957 0.095 0.979 59.338 73547 TCN 0.717 0.409 0.879 146.967
LSTM 0.422 0.349 0.933 187.100 LSTM 0.749 0.386 0.882 194.166
ANN 0.943 0.108 0.970 175.203 ANN 0.674 0.426 0.835 170.758

11763 TCN 0.815 0.475 0.920 111.880 82027 TCN 0.910 0.170 0.961 60.054
LSTM 0.768 0.532 0.892 253.125 LSTM 0.888 0.190 0.943 276.868
ANN 0.769 0.531 0.880 143.874 ANN 0.856 0.202 0.925 258.042

11774 TCN 0.847 0.184 0.927 147.684 82029 TCN 0.594 0.548 0.858 92.794
LSTM 0.463 0.345 0.759 105.126 LSTM 0.292 0.724 0.822 327.219
ANN 0.470 0.332 0.780 89.676 ANN 0.525 0.551 0.811 209.062

11800 TCN 0.631 0.560 0.779 150.621 84020 TCN 0.814 0.270 0.944 115.216
LSTM 0.604 0.580 0.775 288.318 LSTM 0.822 0.263 0.939 296.460
ANN 0.531 0.629 0.778 153.215 ANN 0.727 0.320 0.887 159.707

11804 TCN 0.520 0.640 0.820 89.956 95512 TCN 0.779 0.419 0.886 149.382
LSTM 0.372 0.732 0.796 131.759 LSTM 0.779 0.419 0.895 296.448
ANN 0.237 0.798 0.723 226.187 ANN 0.563 0.566 0.747 74.888

3546 TCN 0.562 0.290 0.789 38.425 9858 TCN 0.780 0.264 0.887 45.714
LSTM 0.449 0.325 0.708 103.738 LSTM 0.511 0.393 0.780 65.374
ANN 0.641 0.231 0.865 108.125 ANN 0.462 0.422 0.687 85.778

65051 TCN 0.616 0.418 0.898 94.159 9903 TCN 0.288 0.617 0.601 164.170
LSTM 0.262 0.580 0.835 269.069 LSTM 0.271 0.624 0.568 262.447
ANN 0.476 0.496 0.809 102.218 ANN 0.001 0.731 0.347 123.112

65053 TCN 0.859 0.165 0.936 68.660 9908 TCN 0.544 0.405 0.548 185.003
LSTM 0.858 0.166 0.930 193.528 LSTM 0.496 0.426 0.581 171.245
ANN 0.780 0.207 0.886 151.506 ANN 0.375 0.483 0.576 248.357

65589 TCN 0.478 0.526 0.698 127.097
LSTM 0.418 0.556 0.688 156.549
ANN 0.391 0.579 0.666 292.196
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Figure 10a shows the distribution of the best achieved NSE values under all lead time
forecasts for the developed models. The TCN model, with its high median and mean
values, outperforms LSTM, while ANN yields the least accurate results due to extremely
inaccurate GWL predictions for certain wells. For 3- and 6-months-ahead forecasts, the
average NSE values were 0.681 and 0.672 for TCN, 0.560 and 0.537 for LSTM, and 0.497
and 0.455 for ANN, respectively. In addition, it was found that the prediction efficacy of
LSTM and ANN decreases as the forecast interval lengthens. Notably, the performance
of TCN significantly surpasses that of LSTM by 21% and 25% based on the average NSE
values under 3- and 6-month lead times, respectively. Similarly, TCN achieves 37% and
47% improved results compared to those of ANN at 3- and 6-months-ahead forecasts. The
statistical significance of the proposed model was assessed with t-test, which determines
the magnitude of difference between predicted and observed measurements.
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3.2. Evaluating the Impact of Meteorological Variabels on the Prediction Accuracy of the Models

As discussed in Section 3 (methodology), we also aimed to examine the influence
of external factors (such as temperature and precipitation) on the forecasted GWLs for
all the groundwater wells. Since these variables are highly non-linear and complex in
nature, feature selection methods often fail to measure their influence on GWLs. Thereby,
empirical experiments were conducted to achieve the best results using optimal features.
Accordingly, we developed models for each groundwater well using three different input
feature categories at all the forecasting lead times (1-, 3-, and 6-month). Figure 10a shows
the distribution of NSE values of all the models developed using category-1 input features
(GWL, GWL-1, GWL-2, P). Figure 10b shows the distribution of values when developed
using category-2 inputs (GWL, GWL-1, GWL-2, T). Similarly, Figure 10c shows the distri-
bution of values when developed using category-3 input variables (GWL, GWL-1, GWL-2,
P, T) at all the forecast intervals. For 1-month-ahead forecasting, the average NSE values
of the proposed model for category-2 and category-3 inputs were 0.618, and 0.635, respec-
tively, whereas the model yielded a mean value of 0.689 when developed using category-1
features. At 3- and 6-month lead times, the mean NSE values using category-2 inputs were
0.592 and 0.452, respectively, while with category-3, they were 0.621 and 0.650. However,
when trained using category-1 inputs, the model demonstrated superior performance and
recorded values at 0.681 and 0.672 for the respective lead times. From Figure 10a–c, it
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is evident that models developed using category-1 inputs consistently outperform those
developed with the two other input feature categories.

The models developed using category-2 inputs, which include the T variable, consis-
tently produced the lowest mean NSE values for all lead time forecasts, as shown in Table 2.
Furthermore, the performance of the models for each groundwater well decreased relative
to those developed using category-1 input variables (Table A3). There could be several
reasons why the inclusion of the temperature variable produced poor results and failed to
enhance the performance of the models. In the study area, temperature might not have a di-
rect impact on the fluctuations of GWLs in monitoring wells. And the recorded data might
contain noise and their poor quality could diminish the model’s efficiency. Importantly, it
has been observed that the results obtained using category-3 inputs were superior to those
derived using category-2 features. The improved results suggest that precipitation may
exert a strong influence on GWLs, while temperature could have a diminishing effect. This
assertion is further supported by the superior prediction accuracy of the models developed
using category-1 features, which excludes the temperature feature, and the obtained results
were the best achieved across all lead times.

Table 2. Average results of the models over 17 groundwater wells under all forecast intervals (for 1-,
3-, and 6-month lead times) developed using category-1, category-2, and category-3 input features.
Tr-In Time is the cumulative training and inference. Italicized values are the best achieved results.

Forecast Periods

Input Feature Categories

Model
Category 1 Category 2 Category 3

NSE RMSE PR Tr-In
Time (s) NSE RMSE PR Tr-In

Time (s) NSE RMSE PR Tr-In
Time (s)

1 month TCN 0.689 0.380 0.842 1847.119 0.618 0.420 0.828 2078.103 0.636 0.409 0.836 1883.596
LSTM 0.554 0.447 0.807 3578.540 0.380 0.509 0.805 2263.363 0.515 0.468 0.816 2186.131
ANN 0.554 0.448 0.775 2771.901 0.346 0.519 0.691 1553.834 0.385 0.502 0.729 1702.720

3 month TCN 0.681 0.377 0.858 2174.110 0.592 0.423 0.809 2066.418 0.621 0.406 0.818 1870.937
LSTM 0.560 0.436 0.834 3680.599 0.405 0.508 0.753 1918.383 0.476 0.477 0.780 1896.407
ANN 0.495 0.467 0.749 2015.670 0.450 0.483 0.705 1441.908 0.441 0.485 0.729 1798.172

6 month TCN 0.672 0.387 0.863 2117.902 0.452 0.446 0.819 1979.350 0.650 0.395 0.859 1341.820
LSTM 0.537 0.444 0.815 3363.503 0.354 0.518 0.775 1745.894 0.320 0.527 0.775 2077.749
ANN 0.455 0.489 0.736 2591.320 0.099 0.605 0.637 946.950 0.226 0.580 0.634 1040.722

Using category-2 inputs, LSTM and ANN yielded mean NSE values of 0.508 and
0.450 under a 3-month lead time, respectively. And with category-3 variables, the mean
values were obtained as 0.476 and 0.441. However, the best achieved values were recorded
as 0.560 and 0.497 with category-1 input features for the respective models. Likewise, at
6-months-ahead forecasting, the optimal values obtained by both models were 0.537 and
0.455, respectively, with category-1 inputs. Notably, the LSTM and ANN models present
higher outlier values for certain wells at 3- and 6-month lead times with category-2 and
category-3 input features. This also proves the effectiveness of our proposed model.

3.3. Discussing the Training and Inference Time Complexity of the Models

The architecture of RNNs, specially designed for sequence processing tasks, greatly im-
proved the prediction accuracy compared to traditional machine learning and ANN models.
However, due to the sequential nature, the RNNs lack parallelism in data processing, and
this makes them require high computational resources and increases the time complexity.
With limited computational resources, sometimes, it requires hours or days to develop
such a model. Thus, it is crucial to minimize the amount of time a model takes to train and
make inferences. Unlike ANNs, the architecture of TCN leverages the advantage of a 1D
dilated causal convolutional layer, where each neuron is not connected to all neurons of the
previous layer, which leads to faster parameter convergence. In addition, unlike LSTM, the
use of multiple kernels (filters) in the convolutional layer computes different features from
the input data simultaneously and speeds up convergence, whereas LSTM requires longer
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to converge due to its step-by-step data processing. The bar plots in Figure 11 depict the
accumulated training and inference time of each model on 17 groundwater wells, evaluated
under three forecast intervals, and developed using three input feature categories. The
results show that the proposed TCN model achieved superior performance with minimal
cumulative training and inference time compared to LSTM and ANN.
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For 1-month-ahead forecasting using category-1 input features, the proposed TCN
model takes approximately half an hour (1850 s) in total to develop models and inferencing
on the test dataset of each groundwater well. In contrast, LSTM took over an hour (more
than 3500 s) which is twice the time taken by TCN, and ANN required more than 2500 s
for a similar task. At 3- and 6-month lead times, 3680 and 3363 s were required by LSTM,
and 2000 and 2590 s were required by the ANN to develop models and make inferences,
respectively. However, the TCN achieved higher prediction accuracy than the LSTM
and ANN models, with accumulated training and inference times of 2170 and 2110 s,
respectively (Figure 11a (y and z)). As discussed in Section 3, if the validation loss of the
model stops decreasing, early stopping function is applied to stop further training. This
not only leads to less accuracy but also reduces both training and inference times. For
this reason, the LSTM and ANN models needed less time for training and inference than
the proposed TCN model at 3- and 6-month lead times using category-2 input features
(Figure 11b (y and z)). By using category-1 and category-2 input features, the average RMSE
values increased from 0.436 to 0.508 for LSTM, and from 0.466 to 0.483 for ANN under
3-month forecast interval, respectively. The decline in performance may be attributed to
the influence of meteorological variables (T and P) on the prediction efficacy of the models
as discussed in Section 3.2. Nonetheless, this demonstrates that when a model uses less
training time, consequently, the accuracy of the model also decreases. However, using the
most effective input features, higher prediction accuracy can be achieved while reducing
training and inference times.
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Using category-3 input variables, the proposed TCN model outperformed the LSTM
one in accurately predicting GWLs. It took marginally less training time at 1- and 3-month
lead times and only half the time of LSTM for 6-months-ahead forecasts. However, while
the ANN needed slightly less training time compared to TCN, the average RMSE values
of ANN models were 0.501, 0.484, and 0.579. In contrast, the TCN models yielded 0.635,
0.620, and 0.650, for the respective lead times, respectively. Based on the results, the
proposed TCN model offers the best trade-off between time efficiency and prediction
accuracy compared to the LSTM and ANN models.

4. Conclusions

This work presents a groundwater forecasting model using the data obtained from
17 monitoring wells with deep learning models. The studied wells are located in differ-
ent regions of South Korea and possess diverse hydrogeological properties, making the
forecasting of GWLs a challenging task. Considering the diversity in the dataset, a robust
methodology was established to study the influence of meteorological variables on the
forecasted GWLs. Accordingly, the experiments were performed using three input feature
categories to find the best set of features which produces the optimal results. In this study,
the TCN model was proposed for GWL forecasting due to its ability to efficiently capture
long-range dependencies using dilated and causal convolutions. For each monitoring
well, the predictions were made for 1-, 3-, and 6-month lead times. For comparison, the
state-of-the-art models LSTM and ANN were developed to assess the prediction accuracy
of the proposed model. The obtained results for the groundwater wells showed that the
proposed model outperformed LSTM and ANN in 1-month lead time forecasting. More-
over, it achieved significantly higher prediction accuracy, by 21% and 37% for the 3-month
lead time and by 25% and 47% for the 6-month lead time, compared to the respective
models. These results demonstrate the robustness of the TCN model for long-term fore-
casting (at 3- and 6-month lead times). In addition, the best results were achieved from the
models developed using category-1 input features, namely, GWL, GWL-1, GWL-2, and P.
The inclusion of the temperature variable as input feature consistently resulted in poorer
performance. Importantly, the proposed model was computationally time-efficient in both
development and inference as compared to the LSTM and ANN models. Remarkably, for
the top performing models, it took only half the time of the LSTM when forecasting at a
1-month lead time. This further strengthens the applicability of the model introduced in
this study for multiscale GWL forecasting in real time and advances the sustainability of
groundwater resources. Future research will be focused on optimizing the hyperparameters
of the proposed model to achieve optimal results for each groundwater well.

While the TCN model yielded greater prediction accuracy, it has its own limitations.
For instance, increasing the depth of the network can significantly increase the model’s
complexity, compared to LSTM and ANN. Based on the success of very deep CNN networks
for image analysis, it is stated that the deeper the network, the better the accuracy [44].
However, this is not necessarily the case for time-series analysis. Therefore, the structure of
the network must be carefully designed, considering the nature of input variables alongside
optimal selection of hyperparameters, in order to achieve the best results.
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Appendix A

Table A1. Accuracy of the proposed TCN model of 17 groundwater wells for 3-month lead time
developed using category-1 inputs (GWL, GWL-1, GWL-2, P). Tr-In Time is the cumulative training
and inference time of the model measured in seconds.

Well Model 3-Month Lead Time Well Model 3-Month Lead Time

NSE RMSE PR Tr-In
Time(s) NSE RMSE PR Tr-In

Time(s)

11751 TCN 0.960 0.086 0.981 58.205 73547 TCN 0.742 0.378 0.878 78.461
LSTM 0.466 0.313 0.944 130.925 LSTM 0.732 0.384 0.873 155.065
ANN 0.815 0.172 0.901 48.473 ANN 0.665 0.428 0.829 180.744

11763 TCN 0.809 0.489 0.916 196.223 82027 TCN 0.920 0.153 0.966 64.783
LSTM 0.776 0.530 0.896 232.629 LSTM 0.899 0.172 0.950 182.546
ANN 0.794 0.521 0.892 211.557 ANN 0.779 0.244 0.887 115.892

11774 TCN 0.808 0.194 0.917 188.141 82029 TCN 0.565 0.537 0.861 181.326
LSTM 0.359 0.355 0.703 111.162 LSTM 0.243 0.708 0.785 295.124
ANN 0.529 0.296 0.801 152.329 ANN 0.559 0.547 0.800 166.849

11800 TCN 0.645 0.555 0.859 179.653 84020 TCN 0.833 0.251 0.948 175.166
LSTM 0.610 0.581 0.756 270.098 LSTM 0.823 0.259 0.932 274.569
ANN 0.396 0.726 0.603 50.485 ANN 0.635 0.381 0.853 97.944

11804 TCN 0.334 0.751 0.790 90.558 95512 TCN 0.818 0.353 0.918 191.902
LSTM 0.176 0.835 0.787 247.692 LSTM 0.801 0.369 0.894 291.118
ANN 0.138 0.834 0.718 152.667 ANN 0.636 0.497 0.817 53.559

3546 TCN 0.533 0.297 0.792 195.984 9858 TCN 0.820 0.249 0.909 127.637
LSTM 0.467 0.318 0.763 214.415 LSTM 0.751 0.293 0.868 125.706
ANN −0.007 0.404 0.556 52.728 ANN 0.560 0.398 0.759 179.028

65051 TCN 0.681 0.390 0.915 101.667 9903 TCN 0.242 0.645 0.548 83.606
LSTM 0.402 0.534 0.865 299.583 LSTM 0.285 0.626 0.603 309.726
ANN 0.524 0.473 0.831 91.620 ANN −0.029 0.742 0.358 87.016

65053 TCN 0.883 0.155 0.942 60.056 9908 TCN 0.520 0.430 0.754 130.383
LSTM 0.855 0.173 0.935 219.955 LSTM 0.522 0.429 1.000 235.154
ANN 0.818 0.191 0.906 189.019 ANN 0.321 0.514 0.679 128.786

65589 TCN 0.457 0.496 0.694 70.358
LSTM 0.359 0.539 0.626 85.132
ANN 0.281 0.569 0.535 63.216

Table A2. Accuracy of the proposed TCN model of 17 groundwater wells for 6-month lead time
developed using category-1 inputs (GWL, GWL-1, GWL-2, P). Tr-In Time is the cumulative training
and inference time of the model measured in seconds.

Well Model 6-Month Lead Time Well Model 6-Month Lead Time

NSE RMSE PR Tr-In
Time(s) NSE RMSE PR Tr-In

Time(s)

11751 TCN 0.939 0.095 0.977 66.553 73547 TCN 0.767 0.367 0.896 75.937
LSTM −0.043 0.393 0.867 247.127 LSTM 0.771 0.365 0.893 163.170
ANN 0.877 0.135 0.944 95.110 ANN 0.608 0.476 0.813 95.915

11763 TCN 0.824 0.502 0.918 184.696 82027 TCN 0.906 0.142 0.954 248.170
LSTM 0.751 0.597 0.885 208.385 LSTM 0.852 0.178 0.932 219.407
ANN 0.773 0.570 0.879 289.275 ANN 0.731 0.240 0.863 198.411

https://www.gims.go.kr/en/brochure.do
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Table A2. Cont.

Well Model 6-Month Lead Time Well Model 6-Month Lead Time

NSE RMSE PR Tr-In
Time(s) NSE RMSE PR Tr-In

Time(s)

11774 TCN 0.797 0.204 0.918 140.097 82029 TCN 0.602 0.529 0.875 195.457
LSTM 0.657 0.265 0.864 308.295 LSTM 0.416 0.640 0.816 192.243
ANN 0.361 0.362 0.755 95.533 ANN 0.526 0.577 0.784 209.325

11800 TCN 0.634 0.597 0.872 96.493 84020 TCN 0.809 0.291 0.945 107.710
LSTM 0.599 0.625 0.810 160.500 LSTM 0.833 0.272 0.935 299.926
ANN 0.653 0.581 0.709 192.022 ANN 0.695 0.367 0.864 70.034

11804 TCN 0.276 0.802 0.820 130.049 95512 TCN 0.793 0.383 0.903 72.768
LSTM 0.320 0.777 0.743 124.559 LSTM 0.784 0.391 0.881 366.572
ANN −0.282 1.067 0.707 165.872 ANN 0.690 0.469 0.826 214.996

3546 TCN 0.568 0.255 0.764 76.797 9858 TCN 0.806 0.269 0.900 98.521
LSTM 0.463 0.284 0.813 190.978 LSTM 0.722 0.322 0.851 120.095
ANN 0.327 0.318 0.766 144.934 ANN 0.482 0.439 0.715 260.219

65051 TCN 0.635 0.399 0.901 198.751 9903 TCN 0.288 0.620 0.582 109.746
LSTM 0.224 0.582 0.831 155.154 LSTM 0.194 0.660 0.566 245.625
ANN 0.353 0.531 0.755 93.793 ANN −0.058 0.756 0.279 51.344

65053 TCN 0.793 0.184 0.919 69.162 9908 TCN 0.519 0.444 0.864 120.703
LSTM 0.849 0.158 0.923 148.065 LSTM 0.447 0.476 0.643 150.363
ANN 0.733 0.209 0.897 258.734 ANN −0.023 0.648 0.377 62.733

65589 TCN 0.466 0.498 0.667 126.293
LSTM 0.294 0.572 0.610 63.040
ANN 0.294 0.573 0.576 93.069

Table A3. Accuracy of the proposed TCN model of 17 groundwater wells for 1-month lead time
developed using category-2 inputs (GWL, GWL-1, GWL-2, T). Tr-In Time is the cumulative training
and inference time of the model measured in seconds.

Well Model 1-Month Lead Time Well Model 1-Month Lead Time

NSE RMSE PR Tr-In
Time(s) NSE RMSE PR Tr-In

Time(s)

11751 TCN 0.870 0.166 0.980 62.926 73547 TCN 0.648 0.457 0.805 68.429
LSTM 0.319 0.379 0.969 206.709 LSTM 0.656 0.452 0.824 161.278
ANN 0.899 0.143 0.950 57.688 ANN 0.640 0.447 0.816 109.145

11763 TCN 0.851 0.427 0.925 107.874 82027 TCN 0.871 0.204 0.940 88.263
LSTM 0.746 0.557 0.888 117.113 LSTM 0.874 0.201 0.940 193.384
ANN 0.789 0.507 0.893 141.819 ANN 0.797 0.239 0.903 122.978

11774 TCN 0.774 0.223 0.935 200.742 82029 TCN 0.589 0.552 0.854 157.761
LSTM −1.330 0.718 0.736 44.206 LSTM 0.271 0.734 0.803 187.854
ANN 0.278 0.388 0.593 43.440 ANN 0.538 0.543 0.796 199.000

11800 TCN 0.543 0.623 0.797 79.067 84020 TCN 0.740 0.318 0.928 167.283
LSTM 0.494 0.656 0.690 59.688 LSTM 0.698 0.343 0.906 123.860
ANN 0.501 0.649 0.685 53.197 ANN 0.745 0.309 0.891 116.712

11804 TCN 0.421 0.702 0.763 92.032 95512 TCN 0.653 0.525 0.840 136.935
LSTM 0.175 0.839 0.720 111.337 LSTM 0.571 0.584 0.825 224.514
ANN 0.227 0.804 0.722 136.251 ANN 0.191 0.770 0.510 30.312

3546 TCN 0.460 0.322 0.772 41.872 9858 TCN 0.720 0.297 0.861 251.934
LSTM 0.466 0.320 0.828 191.021 LSTM 0.616 0.349 0.786 96.990
ANN 0.098 0.416 0.567 56.181 ANN 0.429 0.435 0.667 37.401

65051 TCN 0.624 0.414 0.885 171.605 9903 TCN 0.214 0.648 0.495 129.426
LSTM 0.181 0.611 0.814 187.370 LSTM 0.182 0.661 0.491 154.957
ANN −1.693 1.123 0.565 29.811 ANN −0.032 0.743 0.243 50.446
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Table A3. Cont.

Well Model 1-Month Lead Time Well Model 1-Month Lead Time

NSE RMSE PR Tr-In
Time(s) NSE RMSE PR Tr-In

Time(s)

65053 TCN 0.629 0.268 0.886 49.990 9908 TCN 0.505 0.422 0.739 145.578
LSTM 0.737 0.226 0.901 42.892 LSTM 0.511 0.420 0.981 100.441
ANN 0.771 0.212 0.887 115.237 ANN 0.380 0.481 0.457 124.940

65589 TCN 0.399 0.565 0.669 126.387
LSTM 0.296 0.611 0.578 59.748
ANN 0.327 0.608 0.597 129.278
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