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Abstract: Soil moisture is a crucial factor that directly influences agricultural drought. As such,
investigating drought-monitoring methods utilizing soil moisture data is of significant importance
for accurately evaluating and predicting agricultural drought. However, the current soil moisture
data for the Daling River Basin is insufficient. Therefore, the variable infiltration capacity (VIC)
hydrological model was utilized to simulate soil moisture in the Daling River Basin. The simulated
data were then analyzed in conjunction with the standardized moisture anomaly index (SMAPI)
to analyze and evaluate the spatio-temporal characteristics of agricultural drought in the Darling
River Basin. The results indicate that the frequency of drought occurrence in the basin follows a
seasonal pattern of winter > spring > autumn > summer. Between 1981 and 2019, 24 out of 39 years
experienced slight or greater drought, 15 years experienced moderate or more severe drought, and
4 years experienced severe drought. Drought conditions have become exceptionally severe in the
21st century. Specifically, the frequency of drought occurrence from 2001 to 2019 was nearly 10 times
higher compared to the period from 1981 to 2000. The droughts were most severe in the southeast
and southwest of the Daling River Basin, while the northeast and northwest experienced relatively
mild drought. Agricultural drought is influenced by numerous complex factors. The contribution of
climate change (CC) and other factors (OF) to agricultural drought was quantified by using a partial
derivative under six different scenarios. Results showed that SMAPI was positively correlated with
precipitation and solar radiation, while negatively correlated with temperature. From 1981 to 2000,
SMAPI exhibited an increasing trend that accounted for 61.66% of variability, while a decreasing
trend accounted for 38.34%. From 2001 to 2019, SMAPI exhibited a significant decreasing trend that
accounted for 93.53% of the variability, while the increasing trend only accounted for 6.47%. CC was
the dominant factor in most of the areas with increased SMAPI. OF was the main controlling factor
for areas with decreased SMAPI.

Keywords: VIC model; soil moisture; agricultural drought; Daling River Basin

1. Introduction

Soil moisture is a crucial factor in agricultural drought monitoring as it directly impacts
the water and energy exchange between the surface and the atmosphere interface [1,2].
In agricultural applications, soil moisture is a more direct influencing factor than precipita-
tion [3]. Agriculture is most directly and severely affected by drought, and changes in soil
moisture reflect many climatic variables, vegetation, and soil characteristics as a compre-
hensive index [4–6]. Thus, soil moisture is a key factor in the occurrence and development
of drought. The value of soil moisture is essential in determining whether agricultural
drought occurs, which directly determines the degree of agricultural drought [7–11].

Obtaining soil moisture data on a large scale is challenging and primarily depends on
three methods: site monitoring; remote sensing; and hydrological simulation. Soil moisture
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station monitoring has some limitations, including a small number of stations nationwide,
a short monitoring time series, and uneven spatial distribution of stations [12]. Although
remote-sensing technology compensates for the limited coverage of the monitoring stations,
it can only monitor the moisture of the soil surface up to 0–20 cm and cannot reflect
the soil root water that affects the growth and development of crops [7]. In contrast,
distributed hydrological models based on physical mechanisms can comprehensively
consider precipitation, vegetation, soil characteristics, and other factors. These models
can overcome the limitations of soil moisture stations and remote-sensing monitoring,
providing soil moisture data with a long time series, uniform spatial distribution, and at
different depths.

The VIC Model is widely used as it is a large-scale distributed hydrological model
with good simulation ability [13,14]. Studies have shown that using the daily soil moisture
simulated by the VIC model to build a daily-scale drought index can accurately reflect the
actual drought conditions [15]. Ye Zhu applied the VIC model to construct a new Palmer
index that can achieve short-term drought monitoring [16]. Other studies by Fan et al. [17],
Leng et al. [18], Wu et al. [19] and others have demonstrated the efficacy of using the VIC
model to simulate soil moisture for describing and expressing agricultural drought. The
simulation values can replace measured values for drought research. The impact of drought
disasters is far-reaching, and it is necessary to study the dynamic monitoring of agricultural
drought [20,21]. The mechanism of drought disasters is complex, and a comprehensive
understanding of the spatio-temporal distribution characteristics of agricultural drought
and quantitative analysis of the response relationship between climate factors and other
factors to drought is a prerequisite for conducting research on drought disaster risk [22].

This study selected the Daling River Basin as the study area. The daily soil moisture
of the watershed was simulated by the VIC model, and the spatio-temporal variation
characteristics of drought were analyzed from aspects such as drought coverage area,
drought frequency, and drought intensity using SMAPI. The response of SMAPI to major
meteorological factors was identified using partial correlation coefficients and multiple
linear regression equations. The objective was to reveal the regional characteristics and
influencing factors of drought disasters in the Daling River Basin and provide a basis for
drought-risk monitoring and assessment in the region.

2. Materials and Methods
2.1. Study Area

Daling River Basin, located in northwest Liaoning Province, China, is the largest river
in the region (Figure 1). It is prone to frequent agricultural drought, and the widespread
cultivation of crops exacerbates the drought risk, leading to the saying “nine droughts in
ten years”. Its geographical location, climate type, hydrometeorology, and soil type are
shown in Table 1. The upper reaches of the Daling River Basin are joined by two rivers in
the north and south directions and are injected into the Bohai Sea through Linghai station.
In this study, Linghai hydrological station is selected to control the basin, and there are five
weather stations in total.
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Figure 1. Location of the study area.

Table 1. Overview of Daling River Basin [23–25].

Study Area Geographic
Location

Drainage
Area Climate Type Hydrometeorological

Characteristics
Topographical

Conditions Soil Type Drought
Situation

Control
basin of
Linghai

hydrological
station of

Daling River

Northwest
Liaoning Province,
119◦00′–122◦00′ E,
40◦30′–42◦30′ N

23,057 km2

Temperate
continental
monsoon

climate, cold
and dry in

winter, hot and
humid in

summer, dry
and windy in

spring and
autumn.

The average
precipitation is

400~600 mm, the
average temperature

is 7~10 ◦C, the
average wind speed

is 2~3 m/s, the
average evaporation
is 900~1200 mm, and
the average runoff is

1.633 billion m3.

Low mountain
and hilly area,

17~1311 M
above sea level,
and the terrain
decreases from

west to east.

Mainly
brown soil,
combined

with
brown

forest soil.

There were 10
major droughts

from 1901 to
1949. In the

20 years from
1959 to 1978,
there were 10

Spring
Droughts and

8 autumn
droughts. In

2009, it
suffered the
most serious

historical
drought in

60 years, and
in 2015,

Liaoning
suffered the
most serious
drought in
64 years. A

major drought
occurs on

average every
6–7 years.
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2.2. Data Sources and Preprocessing

The data used in the study include meteorological data, DEM digital elevation data,
vegetation data, soil data, and hydrological data used for VIC Model simulation. Drought
data are used for drought-monitoring verification. See Table 2 for data types and sources.

Table 2. Data used in the study.

Data Type Data Name Data Source

Meteorological
data

Daily precipitation, daily average
temperature and daily average wind

speed from 1981 to 2019

China Meteorological Data Network (http://data.cma.cn/url:
accessed on 20 October 2022)

Hydrological data Daily runoff from 1981 to 2017 National water and rain information website
(http://xxfb.mwr.cnurl: accessed on 20 October 2022)

DEM SRTM 90 m resolution digital elevation Geospatial data cloud (http://www.gscloud.cn/searchurl:
accessed on 20 May 2018)

Vegetation data China WESTDC series land cover
data products

Science and technology center in cold and dry regions
(http://www.landcover.org/data/landcover/data.shtmlurl:

accessed on 20 May 2022)

Soil data 5 min FAO soil map of the world Food and Agriculture Organization of the United Nations
(http://www.fao.org/statistics/zh/url: accessed on 20 May 2022)

Drought data Drought-affected area of crops from
2004 to 2014

Statistical system for flood control and Drought Relief (Dynamic
Statistics of Agricultural Drought)

Among them, the meteorological data were used as the forcing data of the model, and
the 90 m DEM data were used for the grid division of the model. In order to match the
simulation grid with the DEM, the research area was divided into a 9 km × 9 km spatial
resolution grid and ran through the VIC Model. Vegetation data and soil data were used
as input data of the model. Runoff data from Linghai hydrological station in Daling River
Basin were used for model calibration and validation.

According to the crop drought area data in the agricultural drought dynamic statistical
table of the flood control and drought relief statistical system, the total drought area of
crops in Liaoning Province from 2004 to 2014 was calculated on an annual scale (Table 3).

Table 3. Statistical table of crop drought-affected areas in Liaoning from 2004 to 2014 (103 hm2).

Year 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Liaoning 240.32 1.47 5350.29 6567.58 785.18 31,366 2065.82 951.76 122.19 1312.44 23.34

2.3. Methodology

The Daling River Basin was divided into 433 grids by Arc GIS, and grid data of daily
precipitation, temperature, and wind speed from 1981 to 2019 were obtained through
the spatial interpolation method as meteorological forcing data for the VIC model. The
inverse-distance weighted interpolation method, considering elevation, was used for spatial
interpolation of precipitation and temperature, as they exhibited a good gradient relation-
ship with elevation. Only the inverse-distance weighted interpolation method was used for
wind speed interpolation, as it has a small impact on the accuracy of model simulation. The
soil and vegetation data were generated from the global 1 km land vegetation cover data
and the global 10 km soil database as corresponding parameter files, which together serve
as input files to run the VIC model. The runoff data from hydrological stations were used to
calibrate and validate the accuracy of the simulation. The simulated soil moisture data were
combined with SMAPI to monitor the drought in the watershed, and the drought-affected
area of crops was used to verify the monitoring results. Second-order partial correlation
analyses were used to study the correlation between climate factors and SMAPI, and the
multiple linear regression approach was used to quantify the impact of climate factors and
other factors on SMAPI in the Daling River Basin. Quantitative analysis was conducted on

http://data.cma.cn/url
http://xxfb.mwr.cnurl
http://www.gscloud.cn/searchurl
http://www.landcover.org/data/landcover/data.shtmlurl
http://www.fao.org/statistics/zh/url
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the contributions of climate change (CC) and other factors (OF), such as human activities,
to agricultural drought. See Figure 2 for details.

Figure 2. Flow chart of this study.

2.3.1. Soil Moisture Simulation

The study used the VIC model to simulate the soil moisture of the basin, which is also
known as the “variable infiltration capacity model”. The VIC model is a grid based semi-
distributed, large-scale hydrological model that considers the effects of vegetation, terrain,
and soil on the exchange of moisture and energy between land and atmosphere [26–28].
The model takes into account the influence of spatial heterogeneity of precipitation and soil
heterogeneity within the sub grid, which makes up the deficiency of traditional hydrological
models in describing energy processes [29]. One of its major outputs is runoff, which is a
direct and important part of the water cycle that the model seeks to simulate. While soil
moisture is a crucial parameter, it is not the only factor determining runoff production.
Other variables such as precipitation, evapotranspiration, and the physical characteristics
of the watershed also play significant roles. Therefore, using runoff data for validation
can better capture the integrated effect of these factors, providing a more comprehensive
evaluation of the model’s performance. The research shows that the VIC model has a
good ability to simulate a wide range of soil moisture [30,31]. Using runoff data for both
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calibration and validation can help to ensure consistency and reliability in the model’s
performance evaluation [32–34].

In this study, calibrations were made manually and the simulation results are calibrated
and validated with the observed monthly runoff values. The multi-year relative error
(Equation (1)) and the Nash–Sutcliffe model efficiency coefficient (Equation (2)) were used
as the objective functions, which describe the degree of process line matching between
simulated and observed values [35].

Er = (Qc −Q0)/Q0 (1)

where Q0 and Qc are the mean observed and simulated runoffs, respectively.
The relative error reflects the total amount of accuracy. The smaller the absolute value,

the higher the simulation precision.

Ce =
∑
(
Qi,0 −Q0

)2 −∑(Qi,c −Qi,0)
2

∑
(
Qi,0 −Q0

)2 (2)

where Qi,0 and Qi,c are the observed and simulated runoffs, respectively.
The Nash efficiency coefficient reflects the flow process of runoff. The larger the value,

the better the process fitting and the higher the simulation accuracy.

2.3.2. Agricultural Drought Assessment

SMAPI (soil moisture anomaly percentage index) is the most basic and widely used
index based on soil moisture, which takes into account the dynamic change characteristics
of soil moisture in different regions. SMAPI is a dimensionless relative drought index,
which can be used to compare drought characteristics of different regions in different
periods. It is defined as the degree to which the simulated soil moisture deviates from the
multi-year average [35]. The calculation is shown in Equation (3).

SMAPI =
m−m

m
× 100% (3)

where m is the current soil moisture; m is the average soil moisture in the same period,
which can also be regarded as the climatic suitable value of soil moisture.

The division standard of drought level based on the SMAPI was determined using the
comprehensive frequency distribution method proposed by Wu et al. [9]. The frequency
distribution of SMAPI has small regional differences and can be integrated into a curve,
which can be used to compare the degree of drought in different regions. The daily SMAPI
values of the Daling River Basin from 1981 to 2019 were calculated in descending order.
The occurrence probability of 0.005 was defined as extreme drought, and the probability of
0.02 was defined as severe drought. The specific probability and classification criteria for
drought levels are shown in Table 4.

Table 4. Assessment criteria for drought level of SMAPI.

Drought Level Frequency SMAPI/%

Extreme drought 0.005 ≤−18
Severe drought 0.020 −18~−14

Moderate drought 0.100 −14~−9
Slight drought 0.200 −9~−3.85
Non-drought 0.675 ≥−3.85

2.3.3. Partial Correlation

Second-order partial correlation analyses were used to eliminate the interference of
other variables and analyze the correlation between climate factors and SMAPI [36–38].
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The partial correlation coefficients of the grid-scale between SMAPI and temperature,
precipitation, and solar radiation were calculated according to Equation (4).

rxy,zλ =
rxy,z − rxλ,z × ryλ,z√
1− r2

xλ,z ×
√

1− r2
yλ,z

(4)

where x and y are the factors used to calculate the partial correlation coefficient, and z and
λ are the control variables. rxy,zλ > 0 indicates a positive correlation between variables x
and y; rxy,zλ < 0 indicates a negative correlation between variables x and y.

The t-test is usually used as a significance test method for the partial correlation
coefficient, and the calculation is shown in Equation (5).

t =
rxy,zλ√

1− r2
xy,zλ

√
n−m + 1 (5)

where t is the significance test coefficient, n is the number of samples, m is the number
of independent variables, and the critical values for different significance levels can be
obtained by looking up the t-distribution table.

2.3.4. Quantifying the Contributions to SMAPI

In order to quantify the response of climate change and other factors to SMAPI,
precipitation, temperature, and solar radiation were selected as key climate factors in this
study. However, the response of climate factors to SMAPI may not be entirely linear, and
the selection of a nonlinear model requires a detailed statistical analysis of various types
of data. In addition, similar studies have shown that multiple linear regression models
can also perform well [39,40]. Considering that the purpose of the study is to reveal an
empirical regulation—the extent to which climate change and other factors affect SMAPI—
we established a multiple linear regression method among the annual SMAPI, precipitation,
temperature, and solar radiation. The calculation is shown in Equation (6).

y = a× P + b× T + c× SR + ε (6)

where y is the annual SMAPI, P, T, and SR are the annual average temperature, annual
precipitation, and annual average solar radiation, respectively, a, b, and c are the fitted
regression coefficients, and ε is the residual error term.

CC represents climate change; OF represents other factors. The partial derivative
method was used to evaluate the contributions of CC and OF to SMAPI, and the calculation
formula is shown in Equation (7).

K = CCcon + OFcon = Pcon + Tcon + SRcon + OFcon ≈
∂y
∂P
× dP

dt
+

∂y
∂T
× dT

dt
+

∂y
∂SR

× dSR
dt

+ OFcon (7)

where K is the SMAPI trend and CCcon is the contribution of CC, which includes Pcon
(contribution of precipitation), Tcon (contribution of temperature), and SRcon (contribution
of solar radiation); OFcon is the contribution of OF, equal to the residual between K and
CCcon. t is the research period. ∂y

∂P and dP
dt are the slope of the linear regression equation

between SMAPI and precipitation, and the slope of the linear regression equation between
precipitation and year, respectively. A similar definition is suitable for ∂y

∂T , ∂y
∂SR , dT

dt , and dSR
dt .

According to the driving mechanism, the contribution of driving factors can be divided
into six scenarios, as shown in Table 5 [38].
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Table 5. Contribution calculations and corresponding scenarios of the driving factors of SMAPI.

K Driving
Factors

CCcon OFcon
Contribution (%)

Scenario
CC OF

Increasing
SMAPI >0

CC and OF >0 >0 |CCcon |
|CCcon |+|OFcon |

|OFcon |
|CCcon |+|OFcon |

ICO

CC >0 <0 100 0 IC
OF <0 >0 0 100 IO

Decreasing
SMAPI <0

CC and OF <0 <0 |CCcon |
|CCcon |+|OFcon |

|OFcon |
|CCcon |+|OFcon |

DCO

CC <0 >0 100 0 DC
OF >0 <0 0 100 DO

Abbreviations: SMAPI, soil moisture anomaly percentage index; K, slope of SMAPI; CC, climate change; OF, other
factors; ICO, SMAPI increase due to CC and OF; IC, SMAPI increase due to CC; IO, SMAPI increase due to OF;
DCO, SMAPI decrease due to CC and OF; DC, SMAPI decrease due to CC; DO, SMAPI decrease due to OF.

The slope calculation formula is shown in Equation (8).

K =
n×∑n

i=1 i× SMAPIi −∑n
i=1 i ∑n

i=1 SMAPIi

n×∑n
i=1 i2 − (∑n

i=1 i)2 (8)

where K represents the slope of linear regression, i represents the year of the independent
variable, n is 39 years, and SMAPIi is the SMAPI value in the i year; K > 0 indicates an
increase in SMAPI over time, while K < 0 indicates a decrease in SMAPI over time.

3. Results

In this paper, the VIC model was used to simulate the soil moisture of Daling River
Basin and SMAPI was used to describe the spatio-temporal distribution characteristics of
agricultural drought in the basin. A partial correlation coefficient statistical method was
used to analyze the impact of climate factors on agricultural drought, and then to analyze
the contribution of climate factors and other factors to agricultural drought.

3.1. VIC Model Simulation

The daily observed discharge data over the period 1981–1999 was chosen for model
warm-up, the period of 2000–2010 was chosen for model calibration and parameter op-
timization, and the period of 2011–2017 was chosen for validation. The VIC model has
six main parameters to calibrate [41,42], and it has no automated optimization function,
which makes the parameter optimization difficult. Eventually, the best daily simulation
results were obtained by manual adjustment of parameters. In this study, the multi-year
relative error and the Nash–Sutcliffe model efficiency coefficient were used as the objective
functions [43], which describe the total accuracy and the matching extent of the hydrograph
between the simulated and observed values. During the calibration period, the relative
error of the Daling River Basin was 0.07 and the Nash efficiency coefficient was 0.58. The
relative error of the Daling River Basin was −0.09 and the Nash efficiency coefficient was
0.67 during the validation period.

Figure 3 gives the observed and simulated monthly discharge processes in the Daling
River Basin. The simulated results show a hydrograph trend that is largely consistent
with the observed discharge. However, due to the uncertainty and limitations of the VIC
model, there were general errors in model simulation. On the one hand, the VIC model
had a complex structure and a large parameter system. Although the determination of
parameters was given a clear physical meaning, generalization, homogenization, and
formula, calculation methods were still used to determine the parameters, resulting in
uncertainty in the model. On the other hand, the VIC model simulated natural runoff
without considering the impact of human activities, and the measured data obtained in
this study had human interference factors that affected the simulation results. Overall,
the results demonstrate the VIC model’s effectiveness for simulating soil moisture in the
Daling River Basin.
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Figure 3. Observed and simulated monthly discharge during the calibration and validation period.

3.2. Monitoring and Evaluation of Agricultural Drought
3.2.1. Time Series Analysis of Drought

1. Analysis of annual drought characteristics

In order to analyze the interannual drought of the basin, the SMAPI values and the
precipitation distribution of the corresponding time series were counted to analyze the
annual-scale drought characteristics. According to Figure 4, the Daling River Basin was
relatively wet from 1994 to 1999, and relatively dry after the 21st century. In 39 years,
there were 24 years of slight-or-above drought, 15 years of moderate-or-above drought,
and 4 years of severe drought, respectively, in 2009, 2010, 2012, and 2018. In particular,
moderate and severe drought occurred for 8 consecutive months from August 2009 to
March 2010, Slight, moderate, and severe drought occurred for 6 consecutive months from
October 2011 to March 2012, and moderate and severe drought occurred for 7 consecutive
months from July 2015 to February 2016.

Figure 4. Time series change in SMAPI and precipitation in Daling River Basin.

According to the statistical data of the drought-affected area of crops in Liaoning
Province on an annual scale from 2004 to 2014, the most serious year of agricultural
drought in Liaoning Province was 2009, and the agricultural drought was also serious
in 2006, 2007, and 2010. The statistical results of the drought-affected area of crops are
consistent with the results of this study, indicating that the method used in this study is
reasonable and feasible.
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The scatter line in Figure 5 shows the annual actual change trend, while the dashed
short line shows the decadal change trend. The average drought coverage rate of Daling
River Basin was 35% from 1981 to 2019, and the drought coverage rate was more than 80%
for 10 years. The largest drought coverage area was 98% in 2009, and the drought coverage
rate was 0 from 1994 to 1999, with a large interannual difference. The average drought
coverage area from 1981 to 2000 was 6.84%, but from 2001 to 2019, the average drought
coverage area reached 64.65%, with an increase of nearly 10 times, indicating a clear trend
of drought. As shown in the figure, a sudden drought occurred in 2006. In the middle
of summer, there was a continuous period of sunny, hot, and rainy weather. In 2006, the
western region of Liaoning Province was evaluated as the most severe drought since the
founding of the People’s Republic of China [44].

Figure 5. Annual drought coverage rate of Daling River Basin.

2. Analysis of seasonal drought characteristics

The SMAPI values of the Daling River Basin from 1981 to 2019 were calculated.
According to the data in Table 4, the frequencies of drought in the basin in the four seasons
were calculated as shown in Table 6.

Table 6. Seasonal drought frequency distribution in Daling River Basin.

Drought
Grade

Extreme
Drought

Severe
Drought

Moderate
Drought

Slight
Drought

Non-
Drought

Spring 0.008 0.014 0.074 0.226 0.678
Summer 0 0.011 0.078 0.202 0.709
Autumn 0.006 0.011 0.099 0.177 0.707
Winter 0.007 0.047 0.123 0.195 0.629

According to Table 6, the frequency of drought occurrence in the Daling River Basin
is winter > spring > autumn > summer. Severe drought occurs most frequently in winter,
followed by spring, autumn, and summer; the frequency of moderate drought occurrence
is winter > autumn > summer > spring; the probability of slight drought occurring in
spring is the highest, followed by summer, winter, and autumn. Daling River Basin is dry
in winter and spring, hot in summer, and dry and windy in spring and autumn. There
is less rainfall from winter to early summer, resulting in a tendency towards drought
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in winter and spring, which is basically consistent with previous studies [45–47]. Based
on the information provided, it seems that the Daling River Basin is more influenced by
precipitation regulation and storage.

By analyzing the drought coverage area of the Daling River Basin in the four seasons
from 1981 to 2019 (Figure 6), it can be seen that the average drought coverage areas in the
four seasons of spring, summer, autumn, and winter are 34.6%, 32.96%, 32.64%, and 38.85,
respectively. Among them, there were 8 years when spring drought coverage exceeded
80%, with 2010 having the largest coverage at 98.6%, along with 5 years having 0% coverage
(Figure 6a). For summer, 9 years had over 80% coverage, with 2009 having the maximum
at 98.4%, and 8 years had 0% (Figure 6b). In autumn, coverage surpassed 80% in 10 years,
with 2009 and 2015 exceeding 98%, and 7 years having 0% (Figure 6c). Finally, winter
had over 80% coverage in 12 years, with 2009 and 2010 over 98%, and 6 years being 0%
(Figure 6d).

Figure 6. Seasonal drought coverage rate of Daling River Basin.

3.2.2. Analysis of Spatial Characteristics of Drought

3. Distribution characteristics of drought frequency

The annual drought frequency of Daling River Basin is between 26–44%, showing
a regional distribution pattern of high frequency in the north and low frequency in the
south (Figure 7). The frequency of drought in the northern, western, and central regions
is relatively high, reaching over 36%, while the frequency of drought in the southeastern
and southwestern regions is relatively low, both below 33%. The frequency of drought
occurrence in most other regions ranges from 33% to 36%.
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Figure 7. Annual drought frequency distribution of Daling River Basin.

Figure 8 shows the frequency of drought in the four seasons of Daling River Basin.
The regional differences of drought frequency in the four seasons are small, ranging
from 24% to 42%. In spring, the higher frequency occurs in the northeast to northwest
of Daling River Basin, and the lower frequency occurs in the southeast and southwest
(Figure 8a). In summer, only some areas in the northeast and northwest have a higher
frequency of occurrence, while most other areas have a frequency below 35% (Figure 8b). In
autumn, except for the northeast and northwest, the central region has a higher frequency
of occurrence (Figure 8c). The overall frequency of winter drought is relatively high, with
only some areas in the southeast having a lower frequency, while the frequency of drought
in other areas is above 35% (Figure 8d).

Figure 8. Seasonal drought frequency distribution of Daling River Basin in spring (a), summer (b),
autumn (c), and winter (d).
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4. Distribution characteristics of drought intensity

A continuous drought process was defined as three or more consecutive months
experiencing mild drought or worse. The average value of continuous drought processes
is used as the drought intensity indicator, with lower values representing more severe
droughts. Figure 9 shows that the distribution of drought intensity in Daling River Basin
is strongest in the north, followed by the northwest, and weakest in the southeast. This
pattern is not entirely consistent with the frequency of drought occurrence, as Chaoyang
has a higher frequency of drought occurrence but a weaker drought intensity.

Figure 9. Drought intensity distribution of Daling River Basin.

5. Drought distribution in typical years.

Daling River Basin experienced severe and frequent droughts in 2009–2010, 2011–2012,
and 2015–2016. Based on the actual drought losses, it can be inferred that 2009–2010
experienced a relatively severe drought. Therefore, this year was selected as a typical
drought year in the Daling River Basin to analyze the spatial distribution characteristics of
seasonal changes.

According to Figure 10, from March to June 2009, the entire basin mostly presented
slight drought, with a large area of moderate drought beginning in July 2009, and the
largest areas of severe and extreme drought occurring in November. According to the
spatial distribution of drought in this year, it can also be seen that the severity of drought is
proportional to the elevation, and the drought severity presents a trend of spreading from
the periphery to the center.
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Figure 10. Spatial change in drought from March 2009 to February 2010.

3.3. Analysis of Driving Factors for SMAPI

Reduced precipitation and increased temperature are the main factors causing drought.
Changes in global solar radiation can cause changes in atmospheric circulation, leading
to drought or flooding in some areas. This study selected precipitation, temperature, and
solar radiation as the main meteorological factors affecting drought. The study found that
droughts have been exceptionally severe since the beginning of the 21st century, so this
study analyzed the factors affecting drought in two periods: 1981–2000 and 2001–2019.

3.3.1. Partial Correlation between SMAPI and Major Meteorological Factors

In order to better understand the relationship between SMAPI and climate factors,
the partial correlation calculation formula (Equation (4)) is used to calculate the partial
correlation coefficient between SMAPI and precipitation, temperature, and solar radiation,
thereby analyzing the correlation between SMAPI and major climate factors.

From 1981 to 2000, the partial correlation coefficient between SMAPI and precipita-
tion ranged from −0.613 to 0.793 (Figure 11a). A total of 69.52% of the area is positively
correlated with precipitation, while 30.48% of the area is negatively correlated. The par-
tial correlation coefficient between SMAPI and temperature ranges from −0.408 to 0.292
(Figure 11c). A total of 36.03% of the area is positively correlated with temperature, while
63.97% of the area is negatively correlated. The partial correlation coefficient between
SMAPI and solar radiation ranges from −0.192 to 0.593 (Figure 11e). A total of 60.05% of
the area is positively correlated with solar radiation, while 39.95% is negatively correlated.
From 2001 to 2019, the partial correlation coefficient between SMAPI and precipitation
ranged from−0.778 to 0.509 (Figure 11b). A total of 80.6% of the area is positively correlated
with precipitation, while 19.4% of the area is negatively correlated. The partial correlation
coefficient between SMAPI and temperature ranges from −0.576 to 0.694 (Figure 11d).
A total of 17.32% of the area is positively correlated with temperature, while 82.68% is
negatively correlated. The partial correlation coefficient between SMAPI and solar radiation
ranges from −0.337 to 0.55 (Figure 11f). A total of 75.06% of the area is positively correlated
with solar radiation, while 24.48% of the area is negatively correlated.
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Figure 11. Spatial distributions of partial correlation coefficients between SMAPI and precipitation
(a), temperature (c), and solar radiation (e) from 1981 to 2000 and the partial correlation coefficients
between SMAPI and precipitation (b), temperature (d), and solar radiation (f) from 2001 to 2019.

3.3.2. Contribution of Climate Change and Other Factors to SMAPI

In order to better understand the contribution of climate change and other factors to
SMAPI, partial derivative methods were applied to analyze their impact on SMAPI. The
contributions of climate change and other factors were calculated according to Table 5, as
shown in Figure 12 (1981–2000) and Figure 13 (2001–2019). The area of SMAPI showed that
an upward trend accounted for 61.66%, while the downward trend accounted for 38.34%
from 1981 to 2000. In the areas where SMAPI had increased, the average contributions of
climate change and other factors were 70.14% and 29.86%, respectively (Figure 12a,b). In
the areas where SMAPI had decreased, the average contributions of climate change and
other factors were 37.25% and 62.75%, respectively (Figure 12c,d). Among the areas where
SMAPI had increased, 79.5% of the area was dominated by climate change, and 20.5% was
dominated by other factors. However, in the areas where SMAPI had decreased, 66.9%
of the area was dominated by other factors and 33.1% was dominated by climate change
(Figure 12e,f).



Water 2023, 15, 3809 16 of 20

Figure 12. Impacts of climate change and other factors on changes in SMAPI from 1981–2010.
Contributions to areas with increased (climate change (a) and other factors (b)) and decreased
(climate change (c) and other factors (d)) SMAPI. Spatial distribution of dominant factors on increases
(e) and decreases (f) in SMAPI.

Figure 13 shows that SMAPI showed an upward trend in 6.47% of the area, with a
downward trend accounting for 93.53% from 2001 to 2019. In the areas where SMAPI had
increased, the average contributions of climate change and other factors were 64.24% and
35.76%, respectively (Figure 13a,b). In the areas where SMAPI had decreased, the average
contributions of climate change and other factors were 26.25% and 73.75%, respectively
(Figure 13c,d). Among the areas where SMAPI had increased, 67.9% of the area was
dominated by climate change, and 32.1% was dominated by other factors. However, in the
areas where SMAPI had decreased, 79.8% of the area was dominated by other factors and
20.2% was dominated by climate change (Figure 13e,f).
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Figure 13. Impacts of climate change and other factors on changes in SMAPI from 2001–2019.
Contributions to areas with increased (climate change (a) and other factors (b)) and decreased
(climate change (c) and other factors (d)) SMAPI. Spatial distribution of dominant factors on increases
(e) and decreases (f) in SMAPI.

4. Discussion
4.1. Drought Characteristics in the Study Area

The Daling River Basin experiences distinct seasonal drought patterns. Wintertime
is dominated by dry, cold air flow resulting in little precipitation. Spring is characterized
by dry, strong southerly winds leading to high evaporation and limited rainfall. Autumn
sees prevailing northerly winds while the summer monsoon brings high temperatures and
substantial precipitation. The basin has seen an increasing frequency of severe drought
events since 2000, with the 2001–2019 average drought area coverage rate 10 times higher
than 1981–2000. Although the distribution of drought frequency and drought intensity
in the Daling River Basin is not completely consistent, both tend to be higher in the
southeast and southwest compared to the northeast and northwest. The conclusions
obtained in this study are basically the same as previous conclusions on the spatio-temporal
distribution characteristics of drought. From the 1980s to the 21st century, there was an
overall trend of intensification, weakening, and intensification of drought [48]. There
are deviations between individual years and seasons, which may be due to previous
conclusions mostly considering a meteorological perspective, while this study considers a
soil moisture perspective. The high incidence of spring droughts could significantly impact
crop growth during the cultivation period, warranting close attention.

4.2. The Impact and Role of CC and OF on SMAPI

Previous studies confirm that climate change significantly impacts agricultural drought,
as verified by the strong correlation between SMAPI and precipitation, temperature, and
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solar radiation. Lower SMAPI values indicate drier conditions. Precipitation shows a
positive correlation with SMAPI, as higher rainfall leads to wetter soils. Temperature
exhibits a negative correlation, since higher temperatures can increase evapotranspiration
and reduce soil moisture, exacerbating drought. Additionally, strong solar radiation melts
snow and permafrost, increasing soil moisture. However, excessive radiation may also
cause high evaporation rates, worsening drought. Climate change has played a major
role in influencing SMAPI, while other factors also influence agriculture drought both
positively and negatively. The southwest of Daling River Basin is Jianchang County, the
southeast is Linghai City, the west is Lingyuan County, and the north is Fuxin Mongol
Autonomous County and Naiman County of Inner Mongolia, with a large population
distribution. The study found that SMAPI mainly showed an upward trend from 1981 to
2000, while SMAPI mainly showed a downward trend from 2001 to 2019, which is mainly
influenced by other factors. In recent years, urbanization has increased impervious surfaces,
reducing infiltration while growing city populations have heightened water consumption.
In addition, agricultural production has led to an increase in irrigation water consumption,
and the interception and evaporation losses caused by water conservancy projects are also
the reasons for drought [49,50]. It is crucial to consider the impacts of climate change and
other factors on drought, in order to adopt more targeted drought-resistance measures.

5. Conclusions

Using the VIC model, the research simulated the soil moisture of Daling River Basin
and defined the agricultural drought-assessment criteria for the study area based on the
SMAPI. The spatio-temporal characteristics of agricultural drought were analyzed. The
partial derivative methods were applied to evaluate the effects of climate change and other
factors on SMAPI. The following are the main conclusions drawn from the study:

1. The VIC model adequately simulated the rainfall-runoff process of the Daling River
Basin, with Nash efficiency coefficients of 0.58 (calibration) and 0.67 (validation).

2. Drought was most frequent in winter, followed by spring, summer, and autumn. Over
39 years, the basin experienced slight-or-worse drought in 24 years, moderate-or-
worse in 15 years, and severe drought in 4 years. Drought frequency from 2001–2019
was 10 times higher compared to 1981–2000.

3. SMAPI was positively correlated with precipitation (accounting for 69.52%) and
solar radiation (60.05%), while negatively correlated with temperature (63.97%) from
1981 to 2000. From 2001 to 2019, these correlations were 80.6%, 75.06%, and 82.68%,
respectively.

4. Climate change was the dominant factor increasing SMAPI from 1981–2000, while
other factors were the main factors decreasing SMAPI from 2001–2019, indicative of
intensifying agricultural drought.

This study analyzes the spatio-temporal distribution characteristics and influencing
factors of agricultural drought in the Daling River Basin, which has certain reference value
for future research on regional agricultural drought. The use of the VIC model, which is
based on water balance and energy balance, to simulate soil moisture in the Daling River
Basin has improved the limitations of traditional methods and the shortcomings of remote
sensing. However, since there are several indicators to evaluate agricultural drought,
further research is necessary to explore the use of other drought indicators. Moreover,
monitoring and evaluating agricultural drought is essential, and future efforts should focus
on predicting drought by using soil moisture as an important indicator.
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