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Abstract: Reservoir operation optimization is a technical measure for flood control and is beneficial
owing to its reasonable and reliable control and application of existing water conservancy and
hydropower hubs, while ensuring dam safety and flood control, as well as the normal operation of
power supply and water supply. Considering the beneficial functions of reservoirs, namely flood
control and ecological protection, this paper firstly established a two-objective optimal operation
model for the reservoir group in the middle reaches of the Yellow River. We aim to maximize the
average output of the cascade reservoir group and minimize the average change in ecological flow
during the operation period under efficient sediment transport conditions, with the coordination
degree of water and sediment as the constraints of reservoir discharge flows. The paper aims to
construct an evaluation index system for reservoir operation schemes, apply a combined approach of
objective and subjective evaluations, and introduce the gray target and cumulative prospect theories.
By uniformly quantifying the established scheme evaluation index system, screening the reservoir
operation schemes with the fuzzy evaluation method, and selecting the recommended scheme for
each typical year, this paper provides a new scientific formulation of the operation schemes of
reservoirs in the middle reaches of the Yellow River. The selected schemes are compared with actual
data, demonstrating the effectiveness of joint reservoir operation and for multidimensional benefits
in terms of power generation, ecology, and flood control.

Keywords: Yellow River basin; cascade reservoir; operation optimization; sediment transport;
water and sediment coordination degree

1. Introduction

Reservoirs mainly undertake a variety of important tasks such as flood control, power
generation, and water supply, but there is a synergistic competition relationship between
different objectives. The means to scientifically and reasonably allocate water resources and
achieve the maximum total benefits of reservoirs is the goal pursued by managers [1–6].
In sediment-rich rivers, reservoirs are mainly constructed to intercept large amounts of
sediment upstream to ensure the normal function of downstream rivers; however, this leads
to the siltation of reservoir capacity and seriously affects the service life of reservoirs [7].
In the past half century, due to the influence of human activities, the water and sediment
characteristics of rivers have changed significantly, the regulation, storage capacity, and
ecological environment of basins have transformed, and reservoir operation has affected
the ecological environment [8–10]. Reservoir operation tends to be basin-based and multi-
objective [11]. In the process of reservoir operation, considering not only the hydraulic
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connection of upstream and downstream reservoirs but also the maximization of reservoir
functions and benefits is necessary. Additionally, the maintenance of long-term effective
reservoir capacity and the improvement of sedimentation patterns, including the impact of
discharge flow on downstream flood control, water supply, and ecology, and the influence
of outgoing sediment on the downstream river regime and riverbed must be considered.
To this end, the future regulation of water and sediment in the basin for long-term reservoir
service must focus on meeting the requirements for a balance between the water and
sediment in the basin and give play to the comprehensive benefits of reservoirs without
affecting the water–sediment–electricity multi-objective joint operation optimization.

Research on the joint water–sediment operation of reservoirs has played an important
role in the construction of water conservancy projects and the optimal spatiotemporal
allocation of resources in sediment-rich rivers. This is a typical multi-objective problem of a
large system. The relevant research has developed greatly since it was proposed in the late
1980s, and it focuses on the selection of joint water–sediment operation objectives, as well
as the construction, processing, and solving of multi-objective models. Since 1974, when the
Sanmenxia reservoir adopted an operation mode of “storing clean water and discharging
muddy flows, regulating water and sediment”, scholars in China have started research
on the joint water–sediment operation of reservoirs on sediment-rich rivers. In 1992, to
minimize sedimentation in the downstream river, Du et al. embedded a sediment erosion
and deposition computation model into the constructed stochastic dynamic programming
model of joint water–sediment operation in the Sanmenxia reservoir. They verified the
rationality of the current operation mode centered on the issue of “dimensionality reduc-
tion”. However, they did not consider the siltation site and the development level of
reservoir sediment due to the development level of the sediment discipline [12]. Zhu and
Qiu established a multi-objective optimization model of power generation and siltation re-
duction for cascade reservoirs in the upper reaches of the Yellow River and transformed the
multi-objective problem into a single-objective one by the weighting method; however, the
siltation reduction weighting factor was not set clearly [13]. With the rapid development of
the sediment discipline within hydropower energy, the joint water–sediment operation of
reservoirs has become increasingly complicated. Many scholars have carried out theoretical
and practical research on the contradiction between long-term beneficial use, sediment dis-
charge, and siltation reduction in reservoirs. These studies include models of hyperpycnal
flow [14,15], optimal joint water–sediment operation [16], and erosion/deposition compu-
tation [17]. Based on the contradiction between water storage and the sediment discharge
of reservoirs, a multi-objective decision-making model of joint water–sediment operation
with reservoir flood control, power generation, and shipping operations as sub-modules
was constructed. The joint water–sediment operation model of the Three Gorges Reservoir
made multi-objective decisions on the water storage time and operation mode at the end of
flood season possible [18]. Further studies have focused on maximizing sediment runoff
and power generation [19] and intelligent algorithm-particle swarm optimization to obtain
multiple feasible solutions, which received noteworthy attention from researchers on joint
water–sediment operation [20]. Lian et al. also used the thinking method of multi-objective
planning in combination with a genetic algorithm and the neural network approach for the
joint water–sediment operation of reservoirs [21].

The multi-objective joint optimal water–sediment operation of reservoirs is a high-
dimensional, multi-objective, nonlinear, and complex optimization problem with multi-
ple constraints and variables [22]. Common solutions are mathematical programming
methods and artificial intelligence optimization methods [23,24]. These include genetic
algorithms [25–27], particle swarm optimization [28,29], artificial neural networks [30,31],
ant colony optimization [32,33], simulated annealing [34,35], support vector machines [36],
and fuzzy computation [37]. Early joint optimal water–sediment operation of reservoirs
was usually solved by transforming the multi-objective problem into a single-objective one
through weighted non-dimensionalization [38]. Further studies have used the analytical
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hierarchy process to determine the weights of objectives [39] and adopted a neural network
prediction method to compute the amount of reservoir sedimentation [40].

The purpose of reservoir optimization scheduling is to use optimization methods to
formulate optimal scheduling methods for the inflow process and comprehensive utilization
requirements of the reservoir, in order to achieve better benefits. The optimization strategy
aims to maximize energy production rather than income, which is related to the energy
market in different contexts [41]. At present, large-scale reservoir joint operation has become
a key focus in the field of reservoir operation, with more and more constraints and objective
functions. Therefore, the optimization of algorithms has become one of the bottlenecks
that constrain joint operation. Reddy and Kumar, based on the framework of particle
swarm optimization, designed a multi-objective parallel optimization to take irrigation
and power generation into account [42], which was further improved by Brouwer and
Groenwold and Zhou et al. [43,44]. Building upon the theory of Pareto optimization could
achieve satisfactory results for decision making [45]. Qin et al. constructed a multi-objective
optimal operation model by analyzing the restrictive and competitive relationships between
power generation and flood control [46]. Wang Xuebin et al. proposed an improved fast
non-inferiority ranking genetic algorithm (ICGC-NSGA-II) based on individual constraint
and population constraint techniques. They established a multi-objective operation model
for cascade reservoirs in the lower reaches of the Yellow River by considering water for
ecological functions and comprehensive utilization needs in different periods in the lower
reaches. ICGC-NSGA-II allowed them to explore the relationship between water supply
benefits, power generation benefits, and ecological benefits of the reservoirs [47]. With the
interdisciplinary research and application of different disciplines, the research results of
underground gas storage can also provide a new perspective for reservoir scheduling [48].

In summary, the existing research has explored modeling and solution techniques
for the optimal operation of reservoirs, but the research and application of algorithms
for solving high-dimensional objective optimization problems for reservoir operation are
relatively limited. With the significant reduction in incoming water and sediment and
the development of cascade reservoirs in the basin, the water–sediment contradiction in
improving the comprehensive benefits of cascade reservoirs and the operation for flood
control and siltation reduction is becoming more prominent. This contradiction is especially
apparent for cascade reservoirs in sediment-rich rivers. In-depth research on the multi-
objective optimal operation of water, sediment, electricity, and ecology of cascade reservoirs
under variations in water and sediment is necessary. This study aims to establish a two-
objective optimal operation model for the reservoir group in the middle reaches of the
Yellow River, in order to maximize the average output of the cascade reservoir group and
minimize the average change in ecological flow during the period of operation. Herein,
efficient sediment transport and the coordination degree of water and sediment serve as
the constraints of reservoir discharge flow. The study also aims to construct an evaluation
index system for reservoir operation schemes to provide theoretical support for the optimal
operation of cascade reservoirs in the Yellow River basin.

2. Construction of a Two-Objective Optimal Operation Model for the Cascade
Reservoir Group

Complex hydraulic connections among reservoir areas and between major parameters
in the optimal operation model of a cascade reservoir group, as well as constraints in the
time distribution of parameters for different stages, are considered in the development of a
two-objective operation model. The joint operation of the Sanmenxia and the Xiaolangdi
reservoirs serves as a backbone water conservancy hub, and the Wanjiazhai reservoir com-
plements the Wanjiazhai, Sanmenxia, and Xiaolangdi cascade reservoirs built in the middle
reaches of the Yellow River. Together, they can enhance the mutual cooperation and inter-
connection among reservoirs and strengthen the subsequent dynamics for the operation of
the Xiaolangdi reservoir. Taking the Wanjiazhai, Sanmenxia, and Xiaolangdi reservoirs as
research subjects, a two-objective optimal operation model of cascade reservoirs, which uses
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months as a basic operation period and considers both economic and ecological benefits,
was constructed to empower the high-quality development of the Yellow River basin.

2.1. Objective Function

The operation model uses the water level of each reservoir at the end of the flood
season in each period (month) as the decision variable and constructs a two-objective
optimal operation model for the cascade reservoir group. The overall objective O1 is:

O1 = F(M11, M12) (1)

where M11 is the economic benefit target, i.e., the maximum average output during the
period of operation of the reservoir group. M12 is the ecological benefit target, i.e., the
minimum average change in ecological flow of each reservoir during the reservoir group’s
period of operation.

M11 = max(
1
N

N

∑
n=1

1
T

T

∑
t=1

AnQn
t
out∆Hn

t) (2)

An = 9.81ηn (3)

where N is the total number of reservoirs in the reservoir group; T is the total number
of periods during the period of operation; t is the number of periods; n is the reservoir
number; An is the comprehensive output coefficient of the hydropower station of the nth
reservoir; Qn

t
out is the average outflow of the nth reservoir during the period (month) t in

m3/s; ∆Hn
t is the average head of the nth reservoir during the period (month) t in m; ηn is

the efficiency coefficient of the hydraulic turbine generator of the nth reservoir.

M12 = min[
1
N

N

∑
n=1

1
T

T

∑
t=1

(
Qn

t
out −Qn

t
AEF

Qnt
AEF

)
2

] (4)

where t is the number of periods; n is the reservoir number; Qn
t
AEF is the suitable eco-

logical flow of the downstream river of the nth reservoir in the period (month) t in m3/s;
M12 ∈ [0, 1] is inversely proportional to the ecological benefit. The appropriate ecological
flow of the downstream river in each period is obtained using the monthly frequency
computation method.

2.2. Constraints

The constraints considered in the model include the water volume constraint of
the cascade reservoirs, the water balance and level constraints, and the outflow and
output constraints.

2.2.1. Water Volume Constraint of Cascade Reservoirs

A certain hydraulic connection between the cascade reservoirs is defined as where the
outflow from the upstream reservoir and the inflow to the downstream reservoir satisfy
the following constraints:

Qn+1
t
in∆t = Qn

t
out∆t + Wt

n (5)

where t is the number of periods; n is the reservoir number; Qn+1
t
in is the average inflow

of the (n + 1)th reservoir during the period t in m3/s; ∆t is the time during the period t in
s; Wn

t is the interval inflow between the nth and (n + 1)th reservoirs during the period t
in m3.
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2.2.2. Water Balance Constraints

The conversion of periods is achieved through a water balance equation in which the
reservoir capacity and inflow and outflow at the beginning and end of each period of a
single reservoir satisfy the following constraints:

Vt+1
n −Vt

n = (Qt
nin −Qt

nout)∆t (6)

where t is the number of periods; n is the reservoir number; Vt
n is the initial reservoir

capacity of the nth reservoir during the period t in billion m3; Vt+1
n is the initial reservoir

capacity (the final reservoir capacity during the period t) of the nth reservoir during the
periods t + 1 in billion m3; Qt

nin is the average inflow of the nth reservoir during the period
t in m3/s.

2.2.3. Water Level Constraint

Reservoirs at the beginning of the design from the dam safety perspective have a set
normal storage level, high water level for flood control, flood-limited water level, and dead
water level. Reservoirs in different stages of operation have different requirements for
water level. Therefore, the water level amplitude is specified based on safety considerations.
The water level during the period t meets the following conditions:

Zt
nmin ≤ Zt

n ≤ Zt
nmax (7)

where t is the number of periods; n is the reservoir period; Zt
n is the initial water level of

the nth reservoir during the period t in m. Zt
nmax and Zt

nmax are the upper and lower water
level limits of the nth reservoir during the period t, respectively, in m. In this paper, the
water level constraint for each period is set according to the upper and lower water level
limits for each period and the reservoir operation rules in actual reservoir operation.

2.2.4. Outflow Constraint

The outflow constraint conditions should consider the needs of power generation,
flood control, ice-jam flood prevention, water supply, etc. The outflow at any moment
during the period t should meet the following conditions:

Qn
t
min ≤ Qn

t
out ≤ Qn

t
max (8)

where t is the number of periods; n is the reservoir number; Qn
t
max and Qn

t
min are the

upper and lower outflow limits of the nth reservoir during the period t, respectively,
in m3/s. In this paper, the outflow constraint for each period is set according to the
upper and lower outflow limits for each period and the reservoir operation rules in actual
reservoir operation.

2.2.5. Output Constraint

The reservoir output is limited by the water level of reservoir, the maximum power
of the hydraulic turbine, the maximum flow through turbine, and other engineering
parameters. The output of the reservoir at any moment during the period t should meet
the following conditions:

Nn
t
min ≤ Nt

n ≤ Nn
t
max (9)

where t is the number of periods; n is the reservoir number; Nn
t is the average output of the

nth reservoir during the period t in kW; Nn
t
max and Nn

t
min are the upper and lower output

limits of the nth reservoir during the period t, respectively, in kW.
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3. Solution of the Multi-Objective Optimal Reservoir Operation Model
3.1. Model Coding

The optimal operation model of the cascade reservoirs takes a month as the regulation
unit and a year as the operation unit. The model selects the periods from 31 October to
1 November of the following year, and the corresponding number of periods is T = 12. The
decision variable selected for the model is the initial (final) water level Zt

i during the period
t of reservoir i in cascade reservoirs, in which i is the reservoir code and t is the period
code. The time dimension of the decision variable is dt = 12, and the cascade reservoir
group includes three reservoirs, namely Wanjiazhai, Sanmenxia, and Xiaolangdi. Therefore,
the spatial dimension of the decision variable is di = 3, and the dimension of the decision
variable matrix is 3× 12.

In summary, the decision variable of the model is expressed as:

Z =


Z1

1 , Z2
1 , · · · , Zt

1, · · · , ZT
1

Z1
2 , Z2

2 , · · · , Zt
2, · · · , ZT

2

Z1
3 , Z2

3 , · · · , Zt
3, · · · , ZT

3

 (10)

3.2. Computation Steps

The fast non-dominated genetic algorithm (NSGA-II) is a multi-objective optimiza-
tion algorithm based on a genetic algorithm and combining non-dominated sorting and
crowding distance sorting. A fast, non-dominated sorting genetic algorithm based on a
successive approximation approach, namely SA-NSGA-II, which adds successive cycles, a
variable search space of decision variables, and the selection of a Pareto optimal solution
set relative to NSGA-II, is introduced in this study. The main parameters and process are
described in detail below.

To set the number of cycles, the size of the maximum number of iterations, generation,
of a single cycle in successive cycles is related to the total number of successive cycles, K,
and the total number of iterations of cycles, max run. The number of iterations of a single
cycle is variable with the following values:

generation(k) = gs + k−1
K−1 (gs− g f )

g f = 2 maxrun
K − gs

s.t.g f > gs

(11)

where k is the number of cycles, generation(k) is the maximum number of iterations for
the kth cycle, gs is the maximum number of iterations for the initial cycle, and gf is the
maximum number of iterations for the last cycle. The maximum number of iterations of
successive cycles increases in turn to continuously improve the optimizing ability of the
current cycle. The specific values of the total number of iterations of cycles, max run, the
total number of successive cycles, K, and the maximum number of iterations for the initial
cycle, gs, depend on the complexity of the problem.

For the determination of the variable search space, the upper limit Xmax and lower
limit Xmin of the search space of the decision variables change with the number of cycles, k,
of successive cycles, i.e., the search scope decreases continuously at each stage:

width(k) = Xmax−Xmin
ek

k :
Xmax =

{
xt

maxn + width
}

Xmin =
{

xt
minn − width

}
s.t.

{
Xmax ≤ Xmax1

Xmin ≥ Xmin1

(12)
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where k is the number of cycles, n is the number of stages, Xmax1 and Xmin1 are the upper
and lower limits of the search space of the decision variable at the beginning of the first
cycle, respectively, and e is the amplification coefficient. According to the size of the search
space, the scaling controls the size of width to be adapted to the search scope. Xmax and
Xmin are the upper and lower limits of the search space of the decision variables of the kth
cycle, while xt

maxn and xt
minn are the upper and lower limits of the optimal solution set at

the stage n corresponding to the Pareto optimal solution set obtained in the (k − 1)th cycle.
The population size has a large impact on the optimization results. If it is too small,

the global search ability will be poor and finding the optimal solution may be difficult. If it
is too large, processing will take longer and have a lower efficiency. The specific value can
be determined based on the size of the search space. In order to ensure the search efficiency
with certain precision, the number of populations can be adjusted by the following equation:

k : popsize = maxpop− (k− 1)(maxpop−minpop)
maxrun

(13)

where k is the number of cycles, popsize is the population size of the kth cycle, max pop is
the population size with the maximum number of populations in the first cycle, and min
pop is the population size with the minimum number of populations in the last cycle.

To select the Pareto optimal solution set, the total number of successive cycles is K. In
every cycle, the same Pareto optimal solution set as the number of populations is generated,
and the Pareto optimal solution sets of all single cycles are mixed by non-dominated and
crowding distance sorting, among which the non-dominated solution set is selected as the
final Pareto optimal solution set of the algorithm.

In addition, the setting of parameters such as the cross distribution and variance
distribution index in the algorithm is no different from the NSGA-II algorithm [49]. The
overall program block diagram of SA-NSGA-II is shown in Figure 1.

To determine the decision variables of the model, the monthly average inflows of the
Wanjiazhai reservoir from 31 October to 1 November of the following year in typical years
(high flow/sediment year, median water/sediment year, and low flow/sediment year)
are selected as input parameters, respectively. The model is solved, with specific steps
as follows.

Step 1: The model parameters are initialized, and the population size popsize = N
the total number of cycles K, and the number of iterations of single cycle gen are set. The
inflow of upstream reservoir, operation cycle, initial water level for regulation, interval
inflow, and downstream suitable ecological flow are input. The constraints are set and the
decision variables according to Equation (7) with its upper and lower limits Zmin and Zmax
of the search space are generated.

Step 2: Based on the upper and lower limits Zmin and Zmin of the current search space,
the decision variables for each reservoir during each period are randomly generated, which
constitute the initial population.

Step 3: The decision variables for each reservoir during each period of the current
population must comply with the constraints. Accordingly the decision variables that
violate the constraints must be rectified, and the target values for each individual in the
population, i.e., M1 (average output during the period of operation) and M2 (average
change in downstream ecological flow during the period of operation), are calculated.

Step 4: Simulated binary crossover and polynomial variation on the current parent P
are performed to generate the offspring Q. Step 3 is performed on the offspring Q.

Step 5: The parent P and the offspring Q are mixed to produce a mixed population
R = P ∪ Q, and the mixed population R is sorted non-dominantly to generate each non-
dominant layer (F1, F2, · · · , FL).

Step 6: The crowding distance of each non-dominated layer is sorted, and individuals
to be incorporated into the next generation of parent population according to the sorting
result are selected until the number of populations reaches N and the next generation of
parent population is generated.
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Step 7: If the current iteration termination condition is met, continue with Step 8; if
not, return to Step 4.

Step 8: The current population P is saved and the decision scheme is set to K = 5. If
the total cycle termination condition is satisfied, the Pareto optimal solution set of decision
solution set S is output as the set of cascade reservoir operation solution; if not, generate a
new search space and return to Step 2.
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4. Analysis of the Multi-Objective Operation Results

The optimal operation values of the cascade reservoir group in the middle reaches
of the Yellow River in three kinds of typical year (high flow/sediment year, median
water/sediment year, and low flow/sediment year) were selected. (The data selection
time range is from 30 April 2006 to 31 December 2022). Among them, November 2008 to
October 2009 was selected for the high flow/sediment year, November 2010 to November
2011 was selected for the median water/sediment year, and November 2016 to October
2017 was selected for the low flow/sediment year. The relevant data of the Wanjiazhai,
Sanmenxia, and Xiaolangdi reservoirs were obtained from the hydrological yearbook of
the Yellow River basin, as shown in Table 1, in which the suitable ecological flow of the
downstream river during each period (month) of each reservoir was calculated by the
monthly frequency computation method.

SA-NSGA-II was used to optimize the actual cascade reservoir model for solution. The
specific parameters of the algorithm were set as follows: the total number of cycles K = 5,
the number of populations maxpop = 250 and minpop = 200, the number of iterations of a
single cycle gs = 200, the cross distribution index of the algorithm is 20, and the variance
distribution index is 20. According to the solution process, the Pareto optimal solution
sets of the two-objective optimal operation model of the cascade reservoir group in the
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middle Yellow River for each typical year are computed by inputting the inflow data of the
corresponding years.

Table 1. The mean monthly discharge, upper limit of water level, and lower limit of water level in
the Wanjiazhai, Sanmenxia, and Xiaolangdi reservoirs.

Typical Year Years with High Flow/Sediment
(November 2008–October 2009)

Years with Median Flow/Sediment
(November 2010–October 2011)

Years with Low Flow/Sediment
(November 2016–October 2017)

Mean Monthly
Discharge (m3/s) Wanjiazhai Sanmenxia Xiaolangdi Wanjiazhai Sanmenxia Xiaolangdi Wanjiazhai Sanmenxia Xiaolangdi

11 515 734 758 451 558 504 289 458 442

12 249 313 336 360 546 444 392 528 494

1 290 326 310 376 429 322 362 453 419

2 403 591 658 440 506 482 445 445 444

3 954 916 984 768 866 874 546 614 539

4 990 918 980 700 680 644 301 579 529

5 305 443 508 347 489 440 192 298 283

6 350 494 663 392 504 468 217 402 391

7 336 383 391 406 599 670 321 464 542

8 504 640 625 447 744 668 354 637 625

9 1063 1484 1577 915 2460 2486 716 1020 1079

10 521 712 632 487 961 935 517 1228 1087

Wanjiazhai Sanmenxia Xiaolangdi

Maximum Water
Level (m) a 980.01 319.42 273.5

Minimum Water
Level (m) 921.38 283.46 205.01

Note: a Water level data selected between 30 April 2006 and 31 December 2022.

4.1. High Flow/Sediment Year

The number of Pareto optimal solution sets obtained by solving the two-objective
optimal operation model for the cascade reservoir group in the typical high flow/sediment
year was 138, i.e., 138 optimal operation schemes for the cascade reservoir group, as shown
in Table 2. The maximum average output of the target value of the operation scheme
set A was 3.2013× 105 kW, and the minimum average output was 2.8759× 105 kW. The
maximum average change in ecological flow was 0.1389, and the minimum was 0.0745.

The Pareto frontier distribution of reservoir operation schemes in the target space
is shown in Figure 2. There is a negative correlation between the two objectives of each
operation scheme in the target space. Each frontier point is relatively evenly distributed.

Table 2. Operation scheme set in the typical year of high flow/sediment.

Operation Scheme Set A Average Output (105 kW) Average Change in Ecological Flow

A1 2.8759 0.0745

A2 2.8886 0.0752

. . . . . . . . .

A138 3.2013 0.1389
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4.2. Median Water/Sediment Year

The number of Pareto optimal solution sets obtained by solving the two-objective
optimal operation model for the cascade reservoir group in the typical year of median
water/sediment is 111, i.e., 111 operation schemes for the cascade reservoir group.

As shown in Table 3, the maximum average output of the target value of the operation
scheme set B is 2.8324× 105 kW, and the minimum average output is 2.6493× 105 kW. The
maximum average change in ecological flow is 0.2627, and the minimum is 0.1908. The
Pareto frontier distribution of the reservoir operation scheme in the target space is shown
in Figure 3. The Pareto frontier changes are comparable with the previous typical year. The
change in incoming water and sediment from the upstream results in changes in hydraulic
and constraining relationships among reservoirs, affecting the number and distribution of
solution sets.

Table 3. Operation scheme set in the typical year of median water/sediment.

Operation Scheme Set B Average Output (105 kW) Average Change in Ecological Flow

B1 2.6493 0.1908

B2 2.6496 0.1910

. . . . . . . . .

B111 2.8210 0.2502
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4.3. Low Flow/Sediment Year

The number of Pareto optimal solution sets obtained by solving the two-objective
optimal operation model for the cascade reservoir group in a typical low flow/sediment
year is 91, i.e., 91 operation schemes for the cascade reservoir group.

Table 4 shows that the maximum average output of the target value of the operation
scheme set C is 2.5702 × 105 kW, and the minimum average output is 2.4513 × 105 kW. The
maximum average change in the ecological flow is 0.2892, and the minimum is 0.2130.

Table 4. Operation scheme set in the typical year of low flow/sediment.

Operation Scheme Set C Average Output (105 kW) Average Change in Ecological Flow

C1 2.5540 0.2691

C2 2.5552 0.2705

. . . . . . . . .

C91 2.5518 0.2653

The Pareto front distribution of reservoir operation schemes in the target space is
shown in Figure 4. Based on Figures 2–4, we conclude that the upper and lower limits of
the range of target value for the average output of the operation schemes are decreasing
in parallel with the reducing incoming water and sediment, and the average change in
ecological flow is also affected.

From the above results, it can be shown that the average output and ecological flow
changes in reservoirs in years with a high flow/sediment, median flow/sediment, and
low flow/sediment generally exhibit a competitive relationship. When reservoirs pur-
sue power generation benefits, they will sacrifice some ecological benefits. Moreover,
this competitive relationship is closely related to the water volume, such as significant
differences in overall power generation efficiency in years with a high flow/sediment,
median flow/sediment, and low flow/sediment, ranging from 2.8759 to 3.2014 × 105 kW,
2.6493 to 2.8267 × 105 kW, and 2.5540 to 2.5518 × 105 kW, respectively. The ecological
benefits have the same pattern, with the average change range of the three typical annual
ecological flows being 0.0746–0.1389, 0.1908–0.2587, and 0.2691–0.2653, respectively. The
overall ecological benefits are still closely related to annual runoff, and there is more water
available for regulation in a high flow/sediment year, so the degree of regulation is also the
highest, followed by a median flow/sediment year, and the worst in low flow/sediment
years. Overall, annual runoff is the most important factor affecting power generation and
ecological benefits. The more water there is, the greater the degree of regulation and the
greater the benefits generated. However, due to the competitive relationship between
power generation efficiency and ecological benefits, there is a trend of eliminating each
other. Therefore, how to scientifically select the most suitable scheduling plan from the
optimal solution set is worth in-depth research.
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5. Comprehensive Evaluation of the Multidimensional Coordination Operation
Scheme of Cascade Reservoirs

The cascade reservoir operation scheme for the Wanjiazhai. Sanmenxia, and Xi-
aolangdi reservoirs was obtained based on the multi-objective algorithm. Each scheme in
the set was a non-dominated solution of the operation model, and the optimal solution
meets the multi-objective operation model. In order to determine the operation scheme
with the greatest comprehensive benefits in each typical year, the multi-objective reser-
voir operation scheme needed to be evaluated and optimized. This paper constructs an
evaluation index system for reservoir operation schemes, applies a combined approach of
objective and subjective evaluation, and introduces the gray target and cumulative prospect
theories. Moreover, this paper quantifies the established scheme evaluation index system
uniformly and optimizes the reservoir operation scheme by the fuzzy evaluation method
to select the recommended scheme for each typical year, which provides a new scientific
formulation of reservoir operation schemes in the middle reaches of the Yellow River.

5.1. Evaluation Index System

To further distinguish the advantages and disadvantages of the comprehensive benefits
of each optimal reservoir operation scheme set, an evaluation index system is constructed
according to the target space of each optimal operation scheme. This system mainly includes
three perspectives: power generation, ecological, and flood control indices. Specifically, in
the optimal operation scheme of the cascade reservoir group, the first-level index consists
of three second-level indices. The second-level indices Xk1, Xk2, and Xk3 correspond to
the average output of the reservoir, the average change in downstream ecological flow of
the reservoir, and the maximum peak clipping rate of the reservoir, respectively, as shown
in Figure 5.

For the optimal operation scheme for single reservoirs, there is only one second-
level index under the first-level one, namely the optimal operation scheme target of the
single reservoir.

(1) The power generation index X1 is composed of the average output index, compris-
ing the second-level index of each reservoir during the corresponding operation period.
When the average output is higher, the benefits of the reservoir are greater. The average
output index is defined as an income-oriented index.

(2) The ecological index X2 is composed of the average change index, comprising the
second-level index of downstream ecological flow during the corresponding operation
period of each reservoir. When the average change in ecological flow is greater, the
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ecological benefits of the reservoir are reduced. The ecological flow change degree index is
defined as a cost-oriented index.

(3) The flood control index X3 is comprised of the maximum peak clipping rate
index, encompassing the second-level index of each reservoir during the corresponding
operation period. When the maximum peak clipping rate is larger, the benefit of flood
control of the corresponding reservoir is greater. The maximum peak clipping rate index is
defined as a revenue-oriented index. For cascade reservoirs, the maximum peak clipping
rate can be calculated according to the inflow and outflow of each reservoir during the
operation period.
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5.2. Evaluation Index Method

For optimal reservoir operation, various factors need to be considered. There are
uncertain relations among these various factors. The gray target theory is a gray correlation
analysis theory proposed by Deng Julong [50] that utilizes data indicators that best reflect
the advantages and disadvantages of the scheme to form corresponding data patterns.

The cumulative prospect theory is an improvement on prospect theory [51]. The
cumulative prospect theory achieves comprehensive analysis of multiple results, allowing
different weight functions for gains and losses. The size of a prospect value is determined
by the value function and decision weight together. Different value and weight functions
are selected by setting a reference point according to the gain or loss determined by the data
indicators. In this evaluation system, the value function represents the quantification of the
evaluation index system for risk aversion or pursuit states in the face of gain or loss. The
weight function is used to balance the structural proportion of each index in the evaluation
system and seeks to maximize the prospect value.

5.3. Evaluation Index System Data

Based on the optimal operation scheme set of the Wanjiazhai, Sanmenxia, and Xi-
aolangdi cascade reservoir group, the power generation, ecological, and flood control
indices of each reservoir are calculated. The initial values of the second-level index for each
typical year’s cascade reservoir operation scheme are shown in Tables 5–7.
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Table 5. Index data of the cascade reservoir operation scheme in years with a high flow/sediment.

Operation
Scheme Set A

Power Generation Index X1 Ecological Index X2 Flood Control Index X3

X11 X12 X13 X21 X22 X23 X31 X32 X33

A1 3.3946 0.0929 0.1431 1.9825 0.0913 0.2343 3.2503 0.0395 0.4922

A2 3.3936 0.0945 0.1442 1.9988 0.0907 0.2356 3.2732 0.0405 0.4907

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A138 3.4746 0.0977 0.1008 2.2681 0.0970 0.2506 3.8612 0.2220 0.9874

Table 6. Index data of the cascade reservoir operation scheme in years with a median flow/sediment.

Operation
Scheme Set B

Power Generation Index X1 Ecological Index X2 Flood Control Index X3

X11 X12 X13 X21 X22 X23 X31 X32 X33

B1 2.9483 0.0941 0.1380 1.8842 0.4029 0.2913 3.1153 0.0753 0.8529

B2 2.9473 0.0939 0.1376 1.8843 0.4028 0.2856 3.1171 0.0764 0.8583

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

B111 3.0063 0.1105 0.1055 2.0555 0.3961 0.3706 3.4241 0.2694 0.8938

Table 7. Index data of the cascade reservoir operation scheme in years with a low flow/sediment.

Operation
Scheme Set C

Power Generation Index X1 Ecological Index X2 Flood Control Index X3

X11 X12 X13 X21 X22 X23 X31 X32 X33

C1 2.2495 0.1630 0.1615 1.9110 0.4174 0.3133 3.5013 0.2266 0.9721

C2 2.2503 0.1632 0.1608 1.9130 0.4187 0.3159 3.5023 0.2295 0.9607

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C91 2.2435 0.1516 0.1801 1.9220 0.4202 0.2709 3.4897 0.2240 0.9872

5.4. Optimization and Analysis of Reservoir Operation Scheme

Taking the optimal selection of the cascade reservoir operation scheme for the Wanji-
azhai, Sanmenxia, and Xiaolangdi reservoirs in typical years with a high flow/sediment
as an example, the average output of the three reservoirs in the comprehensive benefit
evaluation index system under the power generation index are benefit-oriented indexes.
The decision matrix of the power generation index is standardized to determine the positive
(negative) bullseye of each second-level index and obtain the positive (negative) bullseye
coefficient matrix from the power generation index, as shown in Table 8.

Similarly, the positive (negative) bullseye coefficient matrix of the ecological and flood
control index can be calculated in sequence. Next, the comprehensive prospect values of
each first-level index are calculated according to the cumulative prospect theory. Firstly,
the index weights of the second-level index are set. As the main controlling reservoir in
the middle reaches of the Yellow River, the Xiaolangdi reservoir has a corresponding index
weight of 0.4. The Wanjiazhai and Sanmenxia reservoirs, as supplementary reservoirs in
the middle reaches of the Yellow River, have corresponding index weights of 0.3. Secondly,
the comprehensive prospect values of the power generation, ecological, and flood control
indices are calculated, as shown in Table 9.

According to Table 9, based on the comprehensive prospect values of each first-level
index, the fuzzy evaluation method is used to evaluate the comprehensive benefit value of
the reservoir operation scheme set. The fuzzy evaluation matrix of each first-level index was
calculated and established, and the membership degree of sediment regulation potential
for each water conservancy hub under five evaluation levels was calculated, as shown in
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Table 10. Among them, Scheme A138 has a greater membership degree than other schemes
at Grade 1 (very high), 2 (high), and 3 (general), and lower than them at Grade 4 (low) and
5 (very low), indicating that the comprehensive benefit of this scheme is better than that of
other schemes. The comprehensive benefit scores and rankings of all operation schemes
are shown in Table 11. Among them, Scheme A138 has the highest score (73.2936) and
ranks first, while Scheme A43 has the lowest score (68.6195) and ranks 138th. The optimal
operation scheme for the cascade reservoirs in each typical year is shown in Table 12, and
the corresponding actual operation data are shown in Table 13.

Table 8. Positive and negative bullseye coefficients of the power generation index.

Scheme Set A No.
Positive Bullseye Coefficient Negative Bullseye Coefficient

X11 X12 X13 X11 X12 X13

Scheme A1 0.3362 0.3333 0.3333 0.9752 1 1

Scheme A2 0.3333 0.3464 0.3419 1 0.8980 0.9301

. . . . . . . . . . . . . . . . . . . . .

Scheme A138 0.9723 0.9893 1 0.3365 0.3345 0.3333

Table 9. Comprehensive prospect values of first-level indexes.

Scheme Set A No. X1 X2 X3

Scheme A1 −1.6355 0.0664 −0.7731

Scheme A2 −1.5573 −0.1248 −0.6834

. . . . . . . . . . . .

Scheme A138 0.6565 −1.5664 −0.1283

Table 10. Membership degree under each evaluation level.

Scheme Set A No. Very High High General Low Very Low

Scheme A1 0.1016 0.1482 0.2001 0.2520 0.2979

Scheme A2 0.0859 0.1350 0.1953 0.2608 0.3229

. . . . . . . . . . . . . . . . . .

Scheme A138 0.1553 0.1876 0.2112 0.2230 0.2229

Table 11. Comprehensive benefit score of the scheme.

Scheme Set A No. Score Ranking

Scheme A1 70.0368 45

Scheme A2 69.0019 94

. . . . . . . . .

Scheme A138 73.2936 1

Table 12. Optimal operation scheme of cascade reservoirs of the Wanjiazhai, Sanmenxia, and Xi-
aolangdi reservoirs.

Typical Year Scheme No. Average Output
/105 kW

Average Change in
Ecological Flow Score

Year with high flow/sediment Scheme A138 3.2013 0.1389 73.29

Year with median flow/sediment Scheme B66 2.8324 0.2627 73.17

Year with low flow/sediment Scheme C33 2.4513 0.2130 72.51
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Table 13. Actual operation data of cascade reservoirs of the Wanjiazhai, Sanmenxia, and
Xiaolangdi reservoirs.

Typical Year Average Output/105 kW Average Change in Ecological Flow

Years with high flow/sediment 2.8245 0.1575

Years with median flow/sediment 2.5656 0.3703

Years with low flow/sediment 2.1067 0.3803

Table 12 shows the operation scheme set of the cascade reservoirs, which is optimized
based on the gray target-cumulative prospect theory and the fuzzy evaluation method.
Among them, the optimal operation schemes corresponding to the typical years with a
high and median flow/sediment feature the maximum average output in the scheme set
but the most average change in ecological flow. Since the evaluation method is oriented
by loss aversion, Schemes A138 and B66 have the highest returns in terms of the power
generation index and comparatively low losses in the ecological index during large inflows
of water and sediment. The optimal scheme corresponding to a typical year with a low
flow/sediment is characterized by a minimal average change in ecological flow. In the case
of a small inflow of water and sediment, the optimal scheme C33 is given priority to ensure
ecological benefits while taking power generation benefits into account.

Table 13 shows a further comparison based on actual operation data for cascade
reservoirs for each typical year, in which Scheme A138 intersects the actual operation data,
increasing the average output by 13.34% and reducing the average change in ecological flow
by 11.81%. Scheme B66 intersects with the actual operation data, increasing the average
output by 10.40% and reducing the average change in ecological flow by 29.05%. Scheme
C33 intersects with the actual operation, increasing the average output by 16.36% and
reducing the average change degree in ecological flow by 43.99%. Since the multi-objective
joint optimal operation of the Wanjiazhai, Sanmenxia, and Xiaolangdi reservoirs utilizes
the unified management of the operation data of each reservoir, such as flow and water
level operation, and the optimization algorithm has continuously optimized each operation
target, it allows the reasonable allocation and regulation of water resources in the middle
reaches of the Yellow River. Therefore, compared with the actual data of the reservoirs in
the middle reaches based on their respective operation rules, the optimized operation plans
have great advantages in terms of the comprehensive benefits, such as average output and
average change in ecological flow.

The dynamic water levels of each reservoir in each optimal operation scheme during
the operation period are shown in Figure 6.

The proposed evaluation decision-making method based on gray target theory and
cumulative prospect theory-fuzzy evaluation method, which introduces gray target theory
and cumulative prospect theory, uniformly quantifies the established scheme evaluation
index system, and can effectively deal with uncertain issues such as cognitive limitations
and bounded rationality of decision-makers. The fuzzy evaluation method is used to
optimize the reservoir operation plan, reducing the subjectivity of the decision-making
process as much as possible. This method can comprehensively consider the impact of
different weighting methods and decision-maker bounded rationality on the evaluation
results, and the recommended scheme can better reflect the multi-objective scheduling
purpose, resulting in more reasonable results.

In addition to flood control and sedimentation reduction during the flood season, the
reservoirs in the Yellow River basin, along with other reservoirs in the upper reaches of
the Yellow River, also undertake various scheduling tasks such as ecology, water supply,
and irrigation. Selecting a relatively simple objective function for comprehensive power
generation benefits and ecological benefits can be applicable to the operation of cascade
reservoirs during non-flood seasons; however, for the Yellow River, which is severely short
of water resources, with severe soil erosion, and frequent downstream water disasters, a
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multi-reservoir joint scheduling approach should be adopted to establish a multi-objective
scheduling model for reservoir groups that comprehensively considers flood control, power
generation, sediment reduction, ecology, and water supply irrigation, and explore its
efficient solution methods. Relevant research work will be carried out in the future.
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Figure 6. Water level process of the optimal operation schemes. (a) Wanjiazhai Reservoir, (b) San-
menxia Reservoir, (c) Xiaolangdi Reservoir. 

The proposed evaluation decision-making method based on gray target theory and 
cumulative prospect theory-fuzzy evaluation method, which introduces gray target the-
ory and cumulative prospect theory, uniformly quantifies the established scheme evalua-
tion index system, and can effectively deal with uncertain issues such as cognitive limita-
tions and bounded rationality of decision-makers. The fuzzy evaluation method is used 
to optimize the reservoir operation plan, reducing the subjectivity of the decision-making 
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Figure 6. Water level process of the optimal operation schemes. (a) Wanjiazhai Reservoir,
(b) Sanmenxia Reservoir, (c) Xiaolangdi Reservoir.

6. Conclusions

(1) SA-NSGA-II, a two-objective optimal operation model of the Wanjiazhai, San-
menxia, and Xiaolangdi cascade reservoir group in the middle reaches of the Yellow River,
is solved for three typical years, with multiple Pareto optimal operation sets and formulat-
ing three reservoir operation scheme sets, including 138, 111, and 91 operation schemes,
respectively. The operation scheme set fully utilizes the water resources of the middle
reaches of the Yellow River by optimizing the ecological benefits of the downstream river
channel, while ensuring the output of the reservoir.

(2) This paper illustrates the construction of a comprehensive benefit evaluation index
system for reservoir operation schemes, based on the three first-level indices of power
generation, ecology, and flood control. This is achieved by integrating each reservoir’s
data and combining the gray target theory and cumulative prospect theories to obtain
recommended schemes. The selected schemes are similar to A138, B66, and C33 in high
flow/sediment, median flow/sediment, and low flow/sediment years, respectively.

(3) Through evaluation and optimization, six optimal schemes were obtained for each
typical year. Compared with actual operation data, Scheme A138 increases the average
output by 13.34% compared to actual operation, and decreases the average change in
ecological flow by 11.81%; Scheme B66 intersects with actual scheduling, increasing the
average output by 10.40% and reducing the average change in ecological flow by 29.05%;
Scheme C33 intersects with actual scheduling, increasing the average output by 16.36%
and reducing the average change in ecological flow by 43.99%, which can simultaneously
balance power generation and ecological benefits. This provides a new decision-making
approach and technical support for the optimal operation of reservoirs in the middle
reaches of the Yellow River.
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