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Abstract: Suspended sediments have profound impacts onmarine primary productivity and the eco‑
logical environment. The Yellow River estuary and its vicinity waters, with a high dynamic range
of suspended sediment concentration (SSC), have important eco‑environmental functions for the
sustainable development in this region. The multispectral imager (MI) on board China’s first Sus‑
tainable Development Goals Science Satellite 1 (SDGSAT‑1) features seven high‑resolution bands
(10 m). This study employs multispectral imagery obtained from SDGSAT‑1 with single‑band and
band‑ratio models to monitor the SSC in the Yellow River estuary and its vicinity waters. The results
show that SDGSAT‑1 images can be used to estimate the SSC in the Yellow River estuary and its
vicinity waters. The overall pattern of the SSC exhibits a notable pattern of higher concentrations in
nearshore areas and lower concentrations in offshore areas, and the retrieved SSC can attain values
surpassing 1000 mg/L in nearshore areas. The R2 values of both the single‑band and the band‑ratio
models for SSC inversion exceed 0.7. The single‑band model R(854) demonstrates superior perfor‑
mance, achieving the highest R2 value of 0.93 and the lowestmean absolute percentage error (MAPE)
of 44.04%. The single‑band model based on SDGSAT‑1 R(854) tends to outperform the band‑ratio
models for waters with algal blooms, which may be used for inversions of SSC and/or suspended
particulate matter (SPM) in the waters full of algal blooms and suspended sediments. The moni‑
toring results by SDGSAT‑1 suggest that the complex SSC distributions in the Yellow River estuary
and its vicinity waters were highly impacted by the river sediments discharge, tide, currents and
wind‑induced waves.

Keywords: Sustainable Development Goals Science Satellite 1; suspended sediment concentration;
the Yellow River estuary; Laizhou Bay; the Bohai Sea

1. Introduction
The suspended sediment concentration (SSC) is a key parameter of waters, and pre‑

vious studies have shown a good correlation between water turbidity and SSC [1]. Due to
factors such as soil erosion and sediment deposition in the Loess Plateau in China, the SSC
concentration within the Yellow River estuary is generally high, with differences in con‑
centration of up to several hundred or even thousands of mg/L compared to its vicinity
waters [2]. Suspended sediments can elevate water turbidity, intensifying the absorption
and scattering of solar radiation and subsequently impacting primary productivity and the
carbon–nitrogen cyclewithinmarine ecosystems [3,4]. Furthermore, suspended sediments
serve as significant carriers of pollutants and organicmatter, entering the ocean via riverine
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inputs and fostering conditions conducive to extensive algal proliferation, thereby jeopar‑
dizing the marine ecosystem’s habitat for aquatic organisms [5–7]. Hence, conducting an
investigation of SSC in the Yellow River estuary and its vicinity waters holds significant
importance for the quantitative analysis of water quality and ecological management in
this region.

Regarding investigations on water body SSC, there are currently mainly traditional
point measurements and satellite remote sensing inversionmethods. Satellite remote sens‑
ing inversion surpasses traditional methods by enabling extensive, continuous monitoring
that fulfils the temporal and spatial analysis needs for SSC across the entire sea area. Ex‑
tensive prior research has established remote sensing technology as an effective means of
measuring water quality parameters [4,5]. Several satellite sensors, including the Coastal
Zone Color Scanner (CZCS), Sea‑viewing Wide Field of View Sensor (Sea‑WIFS), Moder‑
ate Resolution Imaging Spectroradiometer (MODIS), Hyperspectral Imager for the Coastal
Ocean (HICO), and Coastal Zone Imager (CZI), are currently utilized for the inversion
of suspended sediment concentration (SSC) in water color remote sensing [8–14]. How‑
ever, the spatial resolution of these marine color sensors is relatively low, which makes it
difficult to achieve fine‑scale monitoring of water quality parameters. Land observation
satellites are also extensively employed for water quality monitoring, such as Sentinel‑2,
Landsat‑8, GF‑1, and others [15–17]. However, these satellites exhibit fewer spectral bands
with high spatial resolution, narrower image swathwidths, lower temporal resolution, and
a lack of dedicated bands for nearshore coastal area monitoring. Regarding the remote
sensing inversion of SSC in coastal areas, various inversion methods have been proposed,
encompassing empirical models, semi‑analytical models, analytical models, and neural
networks [18–20]. Empirical models, which require only a limited amount of input data
from measurements, are relatively simple to implement and exhibit strong applicability
for regional SSC inversion, as demonstrated in the Yellow River estuary.

In 2021, China’s first Sustainable Development Goals Science Satellite 1 (SDGSAT‑1)
was launched by China and equipped with a multispectral imager (MI) [21]. The MI offers
a swath width of 300 km and an 11‑day revisit cycle, comprising seven spectral bands with
a spatial resolution of 10 m. This satellite, to some degree, mitigates the constraints of pre‑
vious satellites in monitoring SSC. Due to the novelty of the SDGSAT‑1 satellite in China,
there is a scarcity of reported research on SSCmonitoring based on this satellite, and further
investigation into the applicability of empirical models on its imagery is urgently needed.

Therefore, this study utilizes the multispectral imagery from the SDGSAT‑1 MI sen‑
sor, in conjunction with in situ SSC measurements, to construct empirical models. The
applicability of these models to the imagery from this innovative satellite is analyzed, and
the spatiotemporal distribution of SSC in the Yellow River estuary and its vicinity waters
region is examined. The findings are anticipated to provide a reference for water quality
assessment and implementation of ecological management in coastal zones.

2. Datasets and Methods
2.1. Study Area

The study area is centered around the Yellow River estuary and its vicinity waters
(37.11◦N—40.21◦N, 118.73◦ E—121.22◦ E), encompassing theYellowRiver estuary, Laizhou
Bay, and the central area of the Bohai Sea (Figure 1b). The Yellow River estuary is located
in Huanghekou Town, Kenli District, Dongying City, Shandong Province, at the intersec‑
tion of the Bohai Sea and Laizhou Bay (Figure 1c). Due to soil and water loss on the Loess
Plateau and other reasons, the Yellow River estuary experiences notably high suspended
sediment concentrations (SSCs), and the SSCs of the coastal waters vary greatly [2]. The
Yellow River estuary and its vicinity waters are typical areas for SSC remote sensing in‑
version research, and monitoring the SSC in this area holds significant implications for
assessing the inversion capabilities of new satellite (SDGSAT‑1) data.
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color.gsfc.nasa.gov/, accessed on 2 March 2023). In addition, the tidal data and reanalysis 

Figure 1. (a) Study area overview. (b,c) True‑color images of the study area based on SDGSAT‑1
satellite imagery captured on 12 November 2021. The image within the blue or purple border in
(b) represents a standard SDGSAT‑1 multispectral image. (c) The image magnified from the red
rectangular region in (b).

2.2. Datasets
The satellite image data used in this study include multispectral images of SDGSAT‑1,

Sentinel‑2, Landsat‑8, HJ‑1 andMODIS (Table 1), whichwere downloaded from the SDGSAT‑1
data open system, the European Space Agency website (https://scihub.copernicus.eu/, ac‑
cessed on 21 March 2023), the US Geological Survey website (https://earthexplorer.usgs.
gov/, accessed on 21March 2023), the China Centre for Resources Satellite Data and Appli‑
cation website (https://www.cresda.com/, accessed on 28 November 2022), and the web‑
site of the National Aeronautics and Space Administration (NASA) of the United States
(https://ladsweb.modaps.eosdis.nasa.gov/, accessed on 29 November 2022), respectively.
Among them, the L4A level data of SDGSAT‑1 MI are the result of orthorectification us‑
ing ground control points and digital elevation models based on level 1 standard products.
When generating SSC data, the auxiliary data encompass not only HJ‑1 multispectral im‑
ages but also the in situ SSC, flow and sediment content data from stations. The SSC data
were measured by the research group in 2013 (Figure 2a–c), and the flow and sediment
content data were downloaded from the official website of the Yellow River Water Conser‑
vancy Commission of the Ministry of Water Resources (http://www.yrcc.gov.cn/, accessed
on 28 November 2022). For the analysis of anomalous waters, chlorophyll‑a (Chl‑a) data
were derived fromMODIS imagery and obtained from the watercolor products available on
NASA’s Ocean Colorwebsite (https://oceancolor.gsfc.nasa.gov/, accessed on 2 March 2023).
In addition, the tidal data and reanalysis wind field data used in the result analysis were
downloaded from the official website of the tide table (https://www.cnss.com.cn/tide/, ac‑
cessed on 2 March 2023) and the official website of the European Centre for Medium‑Range
Weather Forecasts (https://www.ecmwf.int/, accessed on 2 March 2023), respectively.

https://scihub.copernicus.eu/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://www.cresda.com/
https://ladsweb.modaps.eosdis.nasa.gov/
http://www.yrcc.gov.cn/
https://oceancolor.gsfc.nasa.gov/
https://www.cnss.com.cn/tide/
https://www.ecmwf.int/
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Table 1. Remote sensing data information.

Sensor/Source Data Level Capture Date Time/UTC + 8 Spatial
Resolution

SDGSAT‑1 MI L4A

12 November 2021 09:59

10 m
6 March 2022 09:57
25 June 2022 10:02

12 October 2022 09:59
Sentinel‑2 MSI L2A 12 November 2021 10:49 10 m
Landsat‑8 OLI L1A 12 November 2021 10:42 30 m

HJ‑1 CDD L1A
24 April 2013 10:19

30 m15 August 2013 10:12
7 September 2013 10:09

MODIS L1B
25 April 2013 12:55

250 m7 September 2013 13:00
12 November 2021 13:25
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locations of field-measured SSC data in 2013, with data collected on 25 April (a), 14 August (b), and 
Figure 2. Distribution of SSC sample data. In figures (a) to (c), black “〇” symbols represent the
locations of field‑measured SSC data in 2013, with data collected on 25 April (a), 14 August (b), and
7 September (c). The background images in figures (a) to (c) correspond to near‑temporal HJ‑1 satel‑
lite true‑color images acquired on 24 April (a), 15 August (b), and 7 September (c), matching the
field SSC data collection times. In figure (d), black “▲” symbols represent artificially generated SSC
data locations, with the background image corresponding to a true‑color image from SDGSAT‑1 on
12 November 2021. The red numbers adjacent to the black “〇” and “▲” symbols indicate the SSC
values at those locations, measured in mg/L.
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Due to the lack of SSC measured data close to the time of SDGSAT‑1 images, this
study manually generated a batch of SSC data based on the SSC measured data in 2013,
referring to the HJ‑1 multispectral images and flow and sediment content data of nearby
stations close to its time. The validation of the generated data is elaborated in Section 4.1
of the discussion. In true color images (Figure 2a–c), waters with high SSCs are depicted
as yellow, and deeper shades of yellow in the water body indicate higher SSCs; the SSC
at the Yellow River estuary significantly exceeds that of the surrounding waters, while the
SSC within the river channel remains relatively stable. According to Table 2, the sediment
content of waters in the Yellow River estuary is related to flow; the higher the flow is, the
higher the sediment content. Therefore, based on the above rules, for the SDGSAT‑1 multi‑
spectral image on 12November 2021, a batch of point data for SSCwasmanually generated
(Figure 2d) and applied to the construction of an SSC remote sensing inversion model.

Table 2. Lijin station flow and sediment concentration.

Time 25 April
2013

14 August
2013

7 September
2013

12 November
2021

6 March
2022

25 June
2022

12 October
2022

Lijin
Station

Flow
(m3/s) 398 1560 417 2420 912 2460 824

Sediment
Concentration (kg/m3) — 4.35 0.633 — — 6.78 1.67

2.3. Data Preprocessing and Methods
Previous studies have indicated that the utilization of the FLAASH model can yield

relatively superior results in reflectance retrieval [22,23]. Compared to the measured spec‑
tral reflectance, the inversionmodel establishedusing the atmosphere‑corrected reflectance
and themeasured suspended sediment concentration (SSC) data is superior [2,22,23]. There‑
fore, in this study, radiometric calibration was first performed on the images, followed by
atmospheric correction using the FLAASH model on the multispectral images. The cor‑
rected results and SSC data were then used to construct the inversion models. The theoret‑
ical formula of the FLAASH model is shown in Equation (1).

L =

(
A × R

1 − ρe × S

)
+

(
B × ρe

1 − ρe × S

)
+ La (1)

where L represents the total radiance received by the pixel at the sensor, R represents
the surface reflectance after atmospheric correction, ρe represents the average surface re‑
flectance around the pixel, S represents the atmospheric spherical albedo, La represents the
atmospheric backscatter radiance (atmospheric path radiance), and A and B are two coef‑
ficients dependent on atmospheric and geometric conditions. A, B, S, and La are derived
using the MODTRAN radiative transfer model.

When constructing the SSC inversion model, we first analyzed the correlation be‑
tween the reflectance of seven bands of SDGSAT‑1 multispectral images and the SSC of
waters. Then, referring to the correlation and empirical bands [2,24–26], single‑band and
band‑ratio models for SSC inversion were constructed, including R(656) (reflectance at
656 nm), R(776), R(854), R(656)/R(556), R(776)/R(553), R(854)/R(553), R(776)/R(656), and
R(854)/R(656).

In the evaluation of the SSC inversion model, the evaluation method used is the mean
absolute percentage error (MAPE), which is calculated as shown in Equation (2).

MAPE =
100%

n ∑n
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ (2)

where ŷi represents the predicted value, yi represents the actual value, and n represents
the number of samples involved in the error calculation.
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In Section 4.2 of the discussion, when analyzing the image differences between anoma‑
lous waters (e.g., algal blooms, represented by black waters in Figure 1b) and sediment‑
laden waters, relative differences are calculated using Equation (3).

RD(i) =
|DNaw(i)− DNsw(i)|

DNsw(i)
(3)

where RD(i) represents the relative difference between anomalous waters and sediment‑
laden waters for model factor i and DNaw(i) and DNsw(i) represent the image values of
anomalous waters and sediment‑laden waters for model factor i, respectively.

3. Results and Analysis
3.1. Construction and Evaluation of SSC Inversion Models

As shown in Figure 3, the reflectance of bands B1, B2, B3, and B4 of the SDGSAT‑1
imagery show weak correlations with SSC, with R2 values below 0.5. In contrast, R(656),
R(776), and R(854) demonstrate strong correlations with SSC, with R2 values exceeding 0.7.
Specifically, both R(776) and R(854) have R2 values greater than 0.9. This is because the
SSC in the Yellow River estuary generally has a good correlation with the reflectance of
waters in longer wavelengths such as red and near‑infrared [2]. The R2 values between the
reflectance of the SDGSAT‑1 image bands and SSC gradually increase as the wavelength
increases, which is consistent with the findings of Zhou Yuan et al. (2018) [27].
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spectral imagery and SSC. The vertical axis (R) represents reflectance.

Figure 4 illustrates the SSC inversion models constructed in this study. The R2 values
are at their highest when both the single‑band and band‑ratio models are formulated as
exponential functions. Except for the models R(656) and R(656)/R(553), the R2 values for
the other models are all higher than 0.85, and the mean absolute percentage error (MAPE)
values are all below 66%. Among them, the single‑band model R(854) has the highest R2
value and the lowest MAPE, with an MAPE below 45%. The MAPE values for the single‑
band models R(776) and R(854) are both lower than those of the band‑ratio models. For
the band‑ratio models, the R(776)/R(553) model has the highest R2 value and the smallest
MAPE. When using the same band as the denominator to construct the ratio model, the
MAPE of R(776) involved in themodel construction is lower than that of R(656) and R(854).
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3.2. Analysis of Applicability of SSC Inversion Models
The SSC inversionmodels constructed in this studywere applied to the SDGSAT‑1 im‑

agery on 12November 2021, and the results are shown in Figure 5. In the central part of the
Bohai Sea, the SSC estimates obtained using the single‑band models displayed relatively
minimal fluctuations, and subtle changes in SSCwere not apparent. In contrast, the SSC es‑
timates based on the band‑ratio models showed larger overall variations and were able to
capture the fine features of SSC distribution in this area. This is because the band ratio can,
to some extent, eliminate the influence of the atmosphere and enhance the contrast of the
original weak signals. It is noteworthy that, apart from the models used in Figure 5h,i, the
inversion results of the other models indicated high SSC values in nearshore areas, while
the SSC values were lower in offshore areas, and the findings are consistent with previous
studies [28–31]. The band‑ratio models (Figure 5h,i) appear to overestimate the SSC in off‑
shore regions, possibly due to the presence of anomalous waters in the offshore areas, as
indicated by the dark‑colored waters of algal blooms in Figure 5a.
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To elucidate the overestimation of SSC by the band‑ratio models in areas with anoma‑
lous waters, some samples of sediment‑laden waters, normal waters, and anomalous wa‑
ters were depicted in the image acquired on 12 November 2021, as shown in Figure 6a.
On the same day, the MODIS water color product depicting chlorophyll‑a (Chl‑a) con‑
centrations is shown in Figure 6b. It can be observed that the anomalous water areas ex‑
hibit higher Chl‑a concentrations, generally exceeding 7µg/L; This concentration is notably
higher than that in the surrounding normal seawater, likely indicating the presence of algal
blooms within the anomalous waters. The reflectance of sediment‑laden waters in the vis‑
ible light spectrum is significantly higher than that of anomalous waters (Figure 6c). The
spectral curve of normal waters typically lies between those of sediment‑laden and anoma‑
lous waters. At longer wavelengths (656 nm, 776 nm, and 854 nm), there is a greater differ‑
ence in reflectance between sediment‑laden waters and anomalous waters. The stronger
absorption induced by algal blooms on R(656) may lead to the overestimation of SSC with
the band‑ratios of R(776)/R(656) and R(854)/R(656).

Zeng et al. (2013) [22] found that the R(Red)/R(Green) model yielded the best inver‑
sion results for SSC in the Poyang Lake. Zhang et al. (2018) [32] and Pan et al. (2020) [33]
achieved good inversion results for SSC in the Zhoushan coastal waters using a model
based on R(Red)/R(Green). Liu et al. (2013) [34] and Shao et al. (2020) [35] found that the
R(NIR)/R(Red) model had the smallest mean relative error (MRE) in SSC inversion in the
Hangzhou Bay. In the SSC inversions in the Poyang Lake, the Zhoushan coastal waters and
the Hangzhou Bay, there were no obvious algal blooms in the study areas, and the ratio
models did not overestimate SSC. When algal blooms manifest in the marine environment
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(as depicted in the black waters in Figure 5a), the suspended particulate matter (SPM) may
be dominated by phytoplankton particles rather than suspended sediments (SS), and thus
the ratio models for suspended sediment concentration may no longer be applicable. For
the Yellow River estuary and its vicinity with complex variation in water constituents, the
single‑band model based on R(854) is more robust in the SSC inversion.
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3.3. Spatiotemporal Characteristics of SSC
Figure 7 shows the SSC in the Yellow River estuary and its vicinity waters for the time

span of 2021 to 2022, revealing substantial variations in SSC among different periods. In
the SSC inversion results on 6 March 2022, a distinctive strip‑like region is observed. This
phenomenon can be attributed to the presence of sparse, thin cloud cover in the imagery,
influencing the accuracy of the results. Similarly, the SSC inversion results on 25 June 2022
exhibit a similar pattern. The texture features of the thin‑cloud area (strip‑shaped) in the
inversion result differ significantly from those of the high SSC areas (SSC > 70 mg/L, fan‑
shaped). Therefore, the presence of a small amount of thin clouds does not affect the anal‑
ysis of the overall spatiotemporal distribution characteristics of SSC in the Yellow River
estuary and its vicinity waters.
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As shown in Figure 7, the SSC in the Yellow River channel on 25 June 2022 is notably
higher than those on other dates. This could be attributed to the fact that the Yellow River
Basin on 25 June 2022 was in the summer seasonwith increased runoff and suspended sed‑
iments. According to the records for the Lijin hydrological station, a high flow of 2460m3/s
was measured on 25 June 2022 (Table 2) and a high SSC was measured in the Yellow River
channel. Especially during instances of flood disasters, the SSC within the Yellow River
channel could reach even higher levels [36]. Concerning the estuary and coastal waters
of Laizhou Bay, the SSC on 12 November 2021 was notably higher than that during the
other three observed periods. In certain areas of the northwestern region of Laizhou Bay
(highlighted as the red zone in Figure 7a), the SSC even exceeded 2000 mg/L, surpassing
the SSC in the river channel. This could be attributed to the fact that the zone in red color
shown in Figure 7a is located at the old Yellow River estuary, where a significant amount
of historical sediment has accumulated. Additionally, on 12 November 2021 during the
image acquisition, Laizhou Bay was undergoing low tide, with a tidal height of approx‑
imately 75 cm. The lower tidal level may have caused the exposure of sandy sediments,
resulting in the inverted SSC being higher than that of the river channel.
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Comparing the two periods with the greatest difference in range (12 October 2022
and 12 November 2021), the tidal level on 12 October 2022 in Laizhou Bay (approximately
140 cm) is noticeably higher than that on 12 November 2021. Furthermore, during the
flying‑over of the satellite on 12 October 2022, the wind speed in most of Laizhou Bay
was less than 5 m/s, while on 12 November 2021, the wind speed was higher than 6 m/s
(Figure 8). Previous research findings have consistently demonstrated that the dispersion
patterns of suspended sediments are influenced by the dynamics of tidal currents [37,38].
Variations in suspended sediment concentrations are primarily induced by seasonal os‑
cillations in sea surface elevation and wind‑induced waves [39], with tidal level fluctua‑
tions regarded as short‑term variations in sea surface elevation. Similarly, the distribution
range of high SSC areas in this study may be related to tidal levels and wind speeds. The
broader dispersion of high SSC areas occurs when the tidal level is lower and the wind
speed is higher, which may bring stronger at least short‑term impacts than the Yellow
River discharges.

Water 2023, 15, x FOR PEER REVIEW 11 of 17 
 

 

Figure 7. SSC inversion results at different time periods. The base map image and SSC inversion 
results shown in (a) are from 12 November 2021. Similarly, the dates for (b–d) are 6 March 2022; 25 
June 2022; and 12 October 2022, respectively. 

Comparing the two periods with the greatest difference in range (12 October 2022 and 
12 November 2021), the tidal level on 12 October 2022 in Laizhou Bay (approximately 140 
cm) is noticeably higher than that on 12 November 2021. Furthermore, during the flying-
over of the satellite on 12 October 2022, the wind speed in most of Laizhou Bay was less than 
5 m/s, while on 12 November 2021, the wind speed was higher than 6 m/s (Figure 8). Previ-
ous research findings have consistently demonstrated that the dispersion patterns of sus-
pended sediments are influenced by the dynamics of tidal currents [37,38]. Variations in 
suspended sediment concentrations are primarily induced by seasonal oscillations in sea 
surface elevation and wind-induced waves [39], with tidal level fluctuations regarded as 
short-term variations in sea surface elevation. Similarly, the distribution range of high SSC 
areas in this study may be related to tidal levels and wind speeds. The broader dispersion 
of high SSC areas occurs when the tidal level is lower and the wind speed is higher, which 
may bring stronger at least short-term impacts than the Yellow River discharges. 

 
Figure 8. Surface wind fields during the passage of the SDGSAT-1 satellite. The time difference be-
tween satellite passage and wind field data is within 3 min. The wind field data shown in (a,b) 
correspond to the dates of 12 November 2021 and 12 October 2022, respectively. In the wind field 
diagram, the arrows indicate the direction of the wind. 

4. Discussion 
4.1. Cross-Validation on SSC between MODIS and SDGSAT-1 

This study employed an indirect approach, relying on SSC inversions using MODIS 
data, to validate artificially generated SSC point data. An SSC inversion model was estab-
lished using actual SSC measurements collected in April and September of 2013 within 
the Yellow River estuary, alongside quasi-synchronous MODIS imagery. The model is de-
fined as log(SSC) = 1.0615 exp(5.7775 × R(858)), with an R2 of 0.85 and an MAPE of 51.82%. 
This model was applied to MODIS imagery from 12 November 2021 to generate the de-
picted SSC distribution in Figure 9a. As shown in Figure 9b, the same-day SSC data ob-
tained from SDGSAT-1 imagery were resampled to a resolution of 250 m and co-registered 
with the MODIS imagery. The spatial distributions of the SSC results derived from SDG-
SAT-1 imagery and MODIS inversions, as shown in Figure 9a,b, exhibit spatial con-
sistency. Higher SSC values are observed within the Yellow River channel and nearshore 
areas of the Yellow River estuary, while offshore areas have comparatively lower SSC val-
ues. The differences in feather-shaped currents at the Yellow River estuary and fine details 
of SSC distribution between Figure 9a,b are attributed to the disparity in imaging times 
between MODIS and SDGSAT-1. The time difference of approximately 3.5 h can lead to 
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diagram, the arrows indicate the direction of the wind.

4. Discussion
4.1. Cross‑Validation on SSC between MODIS and SDGSAT‑1

This study employed an indirect approach, relying on SSC inversions using MODIS
data, to validate artificially generated SSC point data. An SSC inversion model was estab‑
lished using actual SSCmeasurements collected in April and September of 2013 within the
YellowRiver estuary, alongside quasi‑synchronousMODIS imagery. Themodel is defined
as log(SSC) = 1.0615 exp(5.7775× R(858)), with an R2 of 0.85 and anMAPE of 51.82%. This
model was applied to MODIS imagery from 12 November 2021 to generate the depicted
SSCdistribution in Figure 9a. As shown in Figure 9b, the same‑day SSCdata obtained from
SDGSAT‑1 imagery were resampled to a resolution of 250 m and co‑registered with the
MODIS imagery. The spatial distributions of the SSC results derived from SDGSAT‑1 im‑
agery and MODIS inversions, as shown in Figure 9a,b, exhibit spatial consistency. Higher
SSC values are observedwithin the YellowRiver channel and nearshore areas of the Yellow
River estuary, while offshore areas have comparatively lower SSC values. The differences
in feather‑shaped currents at the Yellow River estuary and fine details of SSC distribution
between Figure 9a,b are attributed to the disparity in imaging times between MODIS and
SDGSAT‑1. The time difference of approximately 3.5 h can lead to distinct tidal current
conditions, consequently leading to divergent suspended sediment distributions.

The SSC inversions derived from MODIS and SDGSAT‑1 imagery at the sampling
point locations are presented in Figure 9c, and the SSC values based on SDGSAT‑1 data ex‑
hibit a consistency with those fromMODIS, yielding an R2 of 0.71 and anMAPE of 34.21%.
Sampling pointswith better correspondence based on the true‑color imaging and sediment
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distribution patterns were selected (as shown in Figure 9b), and a higher consistency in the
SSC valueswas observed betweenMODIS and SDGSAT‑1, with an R2 of 0.96 and anMAPE
of 7.09%.
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Figure 9. Verification of artificially generated SSC data. (a) presents the distribution of SSC inverted
based onMODIS imagery and sampling points at 5 km intervals. (b) presents the distribution of SSC
inverted based on SDGSAT‑1 imagery and more closely matched sampling points. The image times
for (a,b) are both on 12 November 2021. (c) presents the SSC at the sampling point locations from (a).
(d) presents the SSC at the sampling point locations from (b).

4.2. Comparisons in the SSC Inversion Models with Sentinel‑2 and Landsat‑8
To evaluate the applicability of single‑band and band‑ratio models for SSC inversion,

the inversion models constructed using R(NIR) and R(NIR)/R(Red) model factors were as‑
sessed usingmultispectral images fromSDGSAT‑1, Sentinel‑2, and Landsat‑8. The optimal
SSC inversionmodel was constructed using R2 andMAPE as evaluationmetrics, as shown
in Table 3. For the three types of satellite images, when the functional form is exponential,
the optimal SSC inversion model is achieved, with an R2 exceeding 0.85. The MAPE for
the single‑band model R(NIR) consistently remains below 45% and lower than the MAPE
of the band‑ratio model R(NIR)/R(Red) for the same satellite.

Table 3. SSC inversion models for different satellites.

Satellite Sensor SSC Inversion Models R2 MAPE
(%)

SDGSAT‑1 MI
SSC = 5.8437 exp(34.181 × R(854)) 0.93 44.05

SSC = 2.5509 exp(8.4277 × R(854)/R(656)) 0.88 65.52

Sentinel‑2 MSI
SSC = 8.4735 exp(30.061 × R(833)) 0.92 44.01

SSC = 6.5026 exp(6.0027 × R(833)/R(665)) 0.91 50.62

Landsat‑8 OLI
SSC = 13.057 exp(34.912 × R(865)) 0.90 44.42

SSC = 12.317 exp(6.2096 × R(865)/R(655)) 0.87 54.03
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As shown in Figure 10, the ratio model R(NIR)/R(Red) for the SDGSAT‑1 multispec‑
tral image overestimated the suspended sediment concentration (SSC) in anomalous wa‑
ters. However, this phenomenon was not evident in the multispectral images of Sentinel‑2
and Landsat‑8. To investigate this phenomenon, profiles L1 and L2were plotted, as shown
in Figure 11a. Profile L1 is located in the sediment‑laden waters, while profile L2 is situ‑
ated in the anomalous waters, characterized by algal blooms. The spectral curves at these
profile positions are depicted in Figure 11b. For all three types of satellite images, profile
L1 consistently exhibits higher reflectance in the visible light spectrum than profile L2. For
the Sentinel‑2 and Landsat‑8 images, the relative differences (RD) of profiles L1 and L2
of both the R(NIR) and R(NIR)/R(Red) factors exceed 0.8, as shown in Table 4. For the
SDGSAT‑1 image, the RD of profiles L1 and L2 of the R(NIR) factor exceeds 0.7, while
for the R(NIR)/R(Red) factor, it is below 0.2. The results suggest that for SSC inversion in
regions with algal blooms, the single‑band model R(NIR) is generally suitable across all
three satellite images. However, the ratio model R(NIR)/R(Red) is not applicable for SSC
inversion in SDGSAT‑1 multispectral images. This finding is intricately linked to the band
configurations of the respective satellite images, suggesting that the SSC remote sensing of
optically complex water is very sensitive to band settings.
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Figure 10. SSC inversion results are based on different satellites and models. True‑color images
captured by SDGSAT‑1, Sentinel‑2, and Landsat‑8 are represented by (a–c), respectively, with all
images taken on 12 November 2021. (d–i) present the inversion results of SSC. (d,g) present the SSC
inversion results based on the SDGSAT‑1 multispectral image using the R(854) and R(854)/R(656)
models, respectively. (e,h) present the SSC inversion results based on the Sentinel‑2 image using the
R(833) and R(833)/R(665) models, respectively. (f,i) present the SSC inversion results based on the
Landsat‑8 image using the R(865) and R(865)/R(655) models, respectively.
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Figure 11. The profile positions and corresponding spectral curves. (a) presents the geographical
positions of the profiles, with the blue line representing profile L1 (sediment‑laden waters), the red
line representing profile L2 (anomalous waters), and the base map utilizing the SDGSAT‑1 image
from 12 November 2021. (b) presents the spectral curves at the respective positions of the profiles,
with T‑shaped error bars indicating standard deviation.

Table 4. The relative differences in profiles L1 and L2 at the model factors.

Satellite Sensor
Relative Difference (RD)

R(NIR) R(NIR)/R(Red)

SDGSAT‑1 MI 0.70 0.13
Sentinel‑2 MSI 0.99 0.97
Landsat‑8 OLI 0.98 0.86

5. Conclusions and Prospectives
In this study, we developed SSC inversion models for the waters of the Yellow River

estuary and its vicinity waters based on SDGSAT‑1 satellite images and analyzed the spa‑
tiotemporal variations in SSC. The research results indicate that the reflectance of the red to
near‑infrared bands in the SDGSAT‑1 satellite imagery shows a good correlation with SSC,
with an R2 value above 0.7, and the single‑bandmodel R(854) has the lowest MAPE among
the SSC retrieval models. When estimating the SSC in waters affected by algal blooms, the
single‑bandmodels developed using SDGSAT‑1 imagery demonstrate superior overall sta‑
bility compared to the band‑ratio models. However, the discrepancy in estimating the SSC
between the single‑bandmodels and band‑ratio models of SDGSAT‑1 may be further stud‑
ied and used to discriminate the inorganic particle‑dominated suspended sediments and
the phytoplankton‑dominated suspended particles.

As shown by the results observed by SDGSAT‑1, the spatiotemporal distributions of
SSC in the Yellow River estuary and its vicinity waters are highly impacted by the river
sediment discharge, historic deposition of sediments, tide, currents, winds and human
disturbance (e.g., changing the old Yellow River estuary to the current one). To obtain
more detailed information on the natural and anthropogenic impacts on the evolutions
of the Yellow River Delta and the estuarine waters, the high‑resolution thermal infrared
imager and the night light imager on SDGSAT‑1 satellite together with the multi‑spectral
imager can be used to map this region more frequently.
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