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Abstract: In this study, a seepage prediction model was established for roller-compacted concrete
dams using support vector regression (SVR) with hybrid parameter optimization (HPO). The model
includes data processing via HPO and machine learning through SVR. HPO benefits from the corre-
lation extraction capability of grey relational analysis and the dimensionality reduction technique
of principal component analysis. The proposed model was trained, validated, and tested using
22 years of monitoring data regarding the Shuidong Dam in China. We compared the performance
of HPO with other popular methods, while the SVR method was compared with the traditional
time-series prediction method of long short-term memory (LSTM). Our findings reveal that the HPO
method proves valuable real-time dam safety monitoring during data processing. Meanwhile, the
SVR method demonstrates superior robustness in predicting seepage flowrate post-dam reinforce-
ment, compared with LSTM. Thus, the developed model effectively identifies the factors related to
seepage and exhibits high accuracy in predicting fluctuation trends regarding the Shuidong Dam,
achieving a determination coefficient R2 > 0.9. Further, the model can provide valuable guidance for
dam safety monitoring, including diagnosing the efficacy of monitoring parameters or equipment,
evaluating equipment monitoring frequency, identifying locations sensitive to dam seepage, and
predicting seepage.

Keywords: support vector regression; hybrid parameter optimization; grey relational analysis;
principal component analysis; roller-compacted concrete dam; seepage

1. Introduction

Reservoir dams are large-scale transnational projects constructed for water supply,
agriculture, industry, power generation, flood control, tourism, and cultural entertainment,
among other purposes. Various countries consider them as major projects [1]. Among these
projects, roller-compacted concrete (RCC) dams have gained popularity in China over the
last century as they combine the safety of concrete dams with the construction convenience
of roller dams. Accordingly, thorough assessments of dam safety are becoming increasingly
crucial to mitigate the potential risk of dam breakage. Statistics indicate that dam breaks are
predominantly caused by seepage, accounting for 30–40% of all dam failures [2]. However,
accurate placement of necessary seepage sensors, particularly for older RCC dams with
outdated monitoring systems, remains challenging due to the random nature of seepage
occurrences. Therefore, collecting data on seepage often requires manual observations.
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There are four common modeling methods associated with dam safety and dam
monitoring issues: deterministic method, statistical method, machine learning algorithm,
and hybrid method. The deterministic method is a model developed based on the dam’s
structural form, mechanical parameters, and foundation and environmental characteristics.
Using these, the seepage of the dam is described and predicted through theoretical or
numerical analysis, such as a one-dimensional consolidation theory for dam seepage in
saturated soils [3], a mathematical model between the seepage field and the stable tempera-
ture field of a dam body [4,5], and a finite element simulation model for the temperature
field of a dam body on seepage fields [6]. However, this numerical model has several
limitations, such as the requirement for large amounts of field data, complex calibration
procedures using rigorous optimization techniques, and a comprehensive understanding
of the underlying physical processes [7,8]. Some researchers use statistical methods, such
as those widely used in multiple linear regression, stepwise regression, and partial least
squares regression, to solve unknown model coefficients for studying the thermal displace-
ment of concrete dams [9] and monitoring dam structural health [10]. The advantages of
statistical methods are clear physical explanations, simple model structure, and fast execu-
tion speed [11]. However, due to the fact that most statistical methods use linear regression,
this often limits the accuracy and reliability of fitting when dealing with complex nonlinear
problems such as dam seepage and deformation. Recently, machine learning algorithms
(MLAs) have demonstrated great potential in predicting and modeling nonlinear character-
istics in many fields, such as analysis on air quality [12,13], hydrology [14–16], and dam
seepage [17,18]. MLAs provide an effective method to handle vast amounts of dynamic,
nonlinear, and noisy data, particularly in cases where essential physical relationships can-
not be accurately understood, making MLAs particularly suitable for interpreting dam
behavior [19]. In many cases, MLAs can provide more accurate predictions than statistical
models [11]. There are also hybrid methods that combine MLAs with deterministic or sta-
tistical method to improve the accuracy of the prediction model for dam deformation [20]
and seepage [21,22].

The most commonly used MLAs in dam safety and monitoring issues include Gaus-
sian process regression [19,23], support vector machine (SVM) [11,24–28], artificial neural
networks (ANNs) [29–32], extreme learning machine [33], adaptive network-based fuzzy
inference system [34], radial basis function networks [35], random forest [36], boosted
regression trees [37], and extreme gradient boosting [38]. Looking back at previous studies,
methods used by researchers may not consistent due to differences in dam types, environ-
mental factors, and monitoring and simulation parameters. Overall, SVM and ANN are
the two most widely used MLAs in dam safety monitoring [11,35]. The back propagation
neural network (BPNN) and long short-term memory (LSTM) in ANNs were used for pre-
dicting dam seepage and uplift pressure [31,32]. The accuracy of seepage prediction can be
further improved by using ANNs. However, dam safety monitoring systems lack the sup-
port of high-performance clusters, where deep neural networks are rarely applied, urgently
requiring a simple but efficient seepage prediction model. Compared with ANN, SVM has
advantages in solving small sample, high-dimensional, and nonlinear problems [11,19,28].
Accordingly, in this study, we used a regression algorithm based on SVM, namely, support
vector regression (SVR), which has excellent nonlinear processing capability for solving the
nonlinear problem of dam seepage prediction and is edge-end device-friendly owing to its
calculation simplicity [39].

In addition, different forms of dams, such as roller compacted concrete (RCC) dams
and traditional concrete dams, have different seepage mechanisms and characteristics [40].
However, there have been few previous studies focusing on the prediction of seepage in
RCC dams. In the study of RCC dams, Wei et al. [21] used statistical regression methods
combined with numerical analysis to establish a seepage prediction model for RCC dams.
Their research focuses on the variation characteristics of monitoring parameters over time
and the delayed effects of water level and rainfall. The input factors for SVR are usually
selected based on experience or manual engineering [39,41,42]. However, this study focuses
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on the effectiveness of screening all monitoring parameters without preset conditions as
well as establishing a seepage prediction model for RCC dams using simple and quick-
acting SVR combined with hybrid parameter optimization (HPO).

This study takes the Shuidong RCC dam in China as an example for seepage pre-
diction. The dam has 22 years of monitoring data, during which time it has experienced
reinforcement engineering. The seepage before and after dam reinforcement has undergone
significant changes; thus, the dam provides a good example for the development of a
seepage prediction model of an RCC dam and to examine the reasonability of the model.
However, previous studies lacked long-term monitoring data to develop and examine the
related model. In addition, multiple physical parameters were monitored in the case of this
study, with monitoring points distributed around the dam. There are a total of 60 physical
monitoring parameters covering both temporal and spatial factors. Some of the monitoring
factors may be ineffective, but, currently, there is no effective data processing method in this
study area to verify the applicability of monitoring points, and there is a lack of intelligent
seepage prediction models. Therefore, in order to develop an optimal input factor set for
seepage prediction in this study, grey relational analysis (GRA) was employed to identify
input factors showing a high correlation with seepage prediction, followed by principal
component analysis (PCA) to eliminate input factors with duplicate contributions. The
effectiveness and precision of the SVR model with hybrid parameter optimization (HPO)
for predicting seepage in RCC dams were demonstrated. The primary contributions of this
study are specified below.

(1) A novel SVR-based prediction model for RCC dam seepage is proposed and evaluated
using 22 years of monitoring data with two distinct seepage patterns (before and after
dam reinforcements), demonstrating good prediction accuracy and robustness.

(2) An HPO approach is introduced to screen the input factors of the SVR model, which
combines the correlation analysis ability of GRA and the data dimensionality reduc-
tion capability of PCA.

(3) The proposed SVR model incorporating HPO provides new insights for seepage re-
search and safety monitoring of RCC dams, including the placement of uplift pressure
orifices as well as the selection of the type and frequency of dam-monitoring data.

(4) The methodology employed by HPO for the selection and screening of input parame-
ters in seepage prediction models exhibits broader application potential in advanced
prediction modeling work.

2. Study Area
2.1. Background on Shuidong Dam

Shuidong Dam is located on the Youxi River, a tributary of the middle reaches of the
Minjiang River in Fujian Province, China (Figure 1). The watershed area is 3784.5 km2

above the dam site. The Shuidong Dam is an RCC dam constituting two water-retaining
dam sections on the left and right banks and one overflow section, as shown in Figure 2. The
maximum height of the dam is 63 m, and the top length is 197 m. The dam was completed
in 1994 and is mainly used for hydroelectric power generation and partially to supply
public water. Owing to the poor quality of the incompletely compacted concrete sections
and severe seepage in the dam body, the safety of the dam was endangered. Therefore,
reinforcement of the dam was conducted from 14 October 2002 to 1 July 2003.

2.2. Dataset Description

The physical parameters considered for monitoring the dam include seepage flows,
upstream and downstream water levels, uplift pressures, vertical and horizontal displace-
ments, and air temperatures. The data recording period included pre-reinforcement moni-
toring data from 1 September 1999 to 31 December 2002 and post-reinforcement monitoring
data from 1 January 2004 to 30 June 2021. Table 1 lists the recording frequency, sample
size, and monitoring methods for all physical parameters. These physical parameters were
measured at different locations and recorded at different scales: day, month, quarter, and
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year. Thus, a total of 60 factors (labeled 1–60) were considered in this study, as listed in
Table A1 in Appendix A.1, including seepage flow qs; dates in year, quarter, month, and
day (denoted as ty, tq, tm, and td, respectively); upstream water level hu; downstream water
level hd; water level difference hD between hu and hd (i.e., hD = hu − hd); uplift pressure
coefficient Cli; vertical and horizontal displacements with interval and cumulative (denoted
as dVi, DVi, dHi, and DHi, respectively); elevation Eli; and air temperature Ti. These factors
were mostly measured at different positions around the dam, such as Ti and Cli from
13 observation sites at the dam base; dVi, DVi, and Eli from 7 observation points; and dHi
and DHi, from 3 sites. The minimum recording unit for these factors is the day. However,
in cases of heavy rainfall or abnormal monitoring values, some factors such as seepage
flow may be recorded multiple times a day. In these cases, abnormal data were excluded
and the multiple recorded values were averaged as representative data for the day. Owing
to inconsistent sampling or recording times for each physical parameter, samples with the
same corresponding time for all factors were selected for analysis in this study.
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Figure 1. Location of Shuidong Dam on the Youxi River, a tributary of the middle reaches of the 
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on the left and right banks and one overflow section. The changes in temperature, water level, and 
uplift pressure were observed using 13 uplift pressure orifices spanning the dam foundation, 

Figure 1. Location of Shuidong Dam on the Youxi River, a tributary of the middle reaches of
the Minjiang River in Fujian Province, China. (a) Fujian Province, (b) Youxi county and county
government (red star symbol) in Fujian Province, and (c) Surroundings of Shuidong Dam.
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Figure 2. Cross section and compositions of Shuidong Dam, including two retaining water sections
on the left and right banks and one overflow section. The changes in temperature, water level,
and uplift pressure were observed using 13 uplift pressure orifices spanning the dam foundation,
namely, UP01–UP13. A collection well, indicated as H, was used to measure seepage. Horizontal
and vertical displacements were measured at three points, I1–I3, and seven points, L2–L8, on the dam
crest, respectively.

Table 1. Physical parameters monitored from 1 January 1999 to 30 June 2021, in this study.

Monitoring
Parameter Monitoring or Recording Method Recoding

Frequency Size of Sample

Seepage flow qs (l/h)

A collection well at H (Figure 2) collected the
total seepage flow rate qs from the dam body and

the dam base at the right and left banks of the
dam; qs was determined by water level changes
at the well, measured using an electromagnetic

water level gauge with an accuracy of ≤0.02 mm.

Data are generally recorded once
a day. In special circumstances,

such as heavy rainfall or
abnormal seepage, some

parameters will be measured
multiple times a day.

9097

Upstream water level
hu

The upstream water level was monitored at the
water inlet of the dam. A pontoon water level

gauge was used to measure the water level with
an accuracy of ≤0.01 m.

8253

Downstream water
level hd

The downstream water level was monitored at
the tailwater of the dam. A pontoon water level
gauge was used to measure the water level with

an accuracy of ≤0.01 m.

8253

Uplift pressure
coefficients Cli

Piezometers were installed at 13 locations,
UP01–UP13 (Figure 2), to determine Cli through
water levels or rock bed level *. The piezometer

was manufactured by Geokon
(GK4500AL-70KPa model) with a measurement
range of 170 KPa and an accuracy of 0.025% FS.

8339–9061

Air temperature Ti

The temperature was measured using a
thermistor at the same 13 positions, UP01–UP13

(Figure 2), with an accuracy of ±0.02 ◦C.
9195–9559
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Table 1. Cont.

Monitoring
Parameter Monitoring or Recording Method Recoding

Frequency Size of Sample

Elevation Eli

Elevation Eli was observed at 7 points, L2–L8
(Figure 2), at the dam top, using 1st-class digital
levels (Leica DNA03) with an accuracy of 0.2′′.

Data are generally recorded once
a month. In special circumstances,

such as heavy rainfall or
abnormal monitoring values,

some parameters will be
measured multiple times a month.

288

Vertical displacement,
dVi and DVi (mm)

Changes in elevation, including interval vertical
displacement dVi (mm) and accumulated vertical

displacement DVi (mm), were calculated at 7
observation points, L2–L8 (Figure 2), at the dam
top. DVi is the summation of dVi calculated from
1 January 1999. dVi was determined by 1st-class
digital levels (Leica DNA03) with an accuracy

of 0.2′′.

288

Horizontal
displacement, dHi and

DHi (mm)

Interval horizontal displacement dHi (mm) and
accumulated horizontal displacement DHi (mm)

were measured at 3 observation points, I1–I3
(Figure 2), at the dam top. DHi is the summation

of dHi calculated from 1 January 1999. dHi was
determined using a total station (Leica TS60i)

with an accuracy of 0.5′′.

308

Note(s): * Uplift pressure coefficient Cli at measuring point i (= 1–13) with water level hi can be calculated using bot-
tom water level hd, top water level hu, or bedrock elevation at measuring point hbi ; i.e., Cli = (hi − hd)/(hu − hd)
when hd > hbi , and Cli = (hi − hbi)/(hu − hd) when hd < hbi .

This work aimed to develop a model of seepage associated with the factors listed in
Table A1 for the Shuidong Dam. All the factors monitored locally were considered for
two main reasons: firstly, to avoid artificially filtering out important input parameters;
secondly, to find parameters with high correlation through system optimization and check
the rationality of the proposed model. That is to say, the input parameters in this study
assume that all monitoring factors (including time and space) are valid and then filter
out invalid factors through data processing methods. In addition, random selection was
performed to select 10% of the pre- and post-reinforcement data for the training and
validation of the model while the remaining 90% were used as the test set.

3. Methodology: Dam Seepage Model with Hybrid Parameter Optimization (HPO)

In this study, a dam seepage model with HPO based on SVR was proposed considering
22 years of monitoring data on the Shuidong Dam; a corresponding flowchart of the model
is presented in Figure 3. The HPO approach, which combines the correlation analysis
ability of GRA and the data dimensionality reduction capability of PCA, was introduced to
the input factors of SVR. The principles of the GRA, PCA, and SVR are briefly described in
the following sections.

3.1. HPO

Data processing, which includes cleaning, transforming, and organizing data, is
crucial for MLA because it helps prepare data optimization for analysis and modeling.
Two methods are commonly used for data optimization in MLA. One method screens
for the relevance of predictors, such as the Pearson correlation coefficient method and
point-biserial correlation, which can screen out input factors with higher relevance to the
prediction variables. However, these methods cannot distinguish between the impact fac-
tors with repeated contributions [43]. The other method reduces the spatial dimensionality
of feature variables, such as PCA, discriminant analysis, and multidimensional scaling.
These methods have more restrictions on the type of data and can only retain the primary
data information, which does not guarantee the validation and relevance of the informa-
tion [44,45]. Thus, we introduced an HPO technique that selects input factors with high
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correlation using GRA. The input factors with repeated contributions were subsequently
removed via PCA for the dam seepage prediction model. The principles and methods of
the GRA and PCA are briefly presented in the following two sections.

Water 2023, 15, x FOR PEER REVIEW 6 of 25 
 

 

Uplift pressure co-
efficients 𝐶  

Piezometers were installed at 13 locations, UP01–UP13 (Figure 2), to 
determine 𝐶  through water levels or rock bed level*. The piezome-
ter was manufactured by Geokon (GK4500AL-70KPa model) with a 

measurement range of 170 KPa and an accuracy of 0.025% FS. 

8339–9061 

Air temperature 𝑇  
The temperature was measured using a thermistor at the same 13 

positions, UP01–UP13 (Figure 2), with an accuracy of ± 0.02 °C. 9195–9559 

Elevation 𝐸  
Elevation 𝐸  was observed at 7 points, L2–L8 (Figure 2), at the dam 
top, using 1st-class digital levels (Leica DNA03) with an accuracy of 

0.2″. 
Data are generally 

recorded once a 
month. In special 

circumstances, 
such as heavy 

rainfall or abnor-
mal monitoring 
values, some pa-
rameters will be 
measured multi-

ple times a 
month. 

288 

Vertical displace-
ment, 𝑑  and 𝐷  

(mm)  

Changes in elevation, including interval vertical displacement 𝑑  
(mm) and accumulated vertical displacement 𝐷  (mm), were cal-

culated at 7 observation points, L2–L8 (Figure 2), at the dam top. 𝐷  
is the summation of 𝑑  calculated from 1 January 1999. 𝑑  was 

determined by 1st-class digital levels (Leica DNA03) with an accu-
racy of 0.2″. 

288 

Horizontal dis-
placement, 𝑑  
and 𝐷   (mm) 

Interval horizontal displacement 𝑑  (mm) and accumulated hori-
zontal displacement 𝐷  (mm) were measured at 3 observation 

points, I1–I3 (Figure 2), at the dam top. 𝐷  is the summation of 𝑑  
calculated from 1 January 1999. 𝑑  was determined using a total 

station (Leica TS60i) with an accuracy of 0.5″. 

308 

* Uplift pressure coefficient 𝐶  at measuring point 𝑖 (= 1–13) with water level ℎ  can be calculated 
using bottom water level ℎ , top water level ℎ , or bedrock elevation at measuring point ℎ ; i.e., 𝐶 = (ℎ − ℎ )/(ℎ − ℎ ) when ℎ > ℎ , and 𝐶 = (ℎ − ℎ )/(ℎ − ℎ ) when ℎ ℎ . 

3. Methodology: Dam Seepage Model with Hybrid Parameter Optimization (HPO) 
In this study, a dam seepage model with HPO based on SVR was proposed consid-

ering 22 years of monitoring data on the Shuidong Dam; a corresponding flowchart of the 
model is presented in Figure 3. The HPO approach, which combines the correlation anal-
ysis ability of GRA and the data dimensionality reduction capability of PCA, was intro-
duced to the input factors of SVR. The principles of the GRA, PCA, and SVR are briefly 
described in the following sections. 

 
Figure 3. Flowchart of proposed dam seepage model with hybrid parameter optimization (HPO)
based on support vector regression (SVR).

3.2. Grey Relational Analysis (GRA)

GRA is used in grey system theory [46] to determine whether the elements in two sys-
tems are homogeneous or heterogeneous. If the development trends of the two elements
are the same, then there is a strong correlation between them [47,48]. The basic concept of
GRA is to determine the degree of geometric similarity between reference and comparison
sequences and compare how closely they are related: the more similar they are, the greater
the correlation. GRA involves the following steps: determining the input factors (refer-
ence and comparison sequences), normalizing the factors, calculating the grey relational
coefficient, and sorting the grey relational grades.

The input factors in this study include the seepage flow rate (reference sequence) and
other monitoring factors (comparison sequence). All sequence data should be normalized
to the same order of magnitude, which is suitable for the rational analysis of the GRA. If
x′j(i) is a monitoring value of an input factor x′j at sequence sampling point i, in which
i = 1, 2, . . ., m, and m is the number of sequence samples for the factor, the normalization
of the factor xj(i) can be calculated as:

xj(i) =
(

x′j(i)−min
(

x′j
))

/
(

max
(

x′j
)
−min

(
x′j
))

(1)

where j is the number of factors j = 0, . . ., n: j =0 for the reference sequence (x0(i)), and
j = 1, . . ., n for the comparison sequences. Here, x0(i) is represented by the seepage
flow rate qs(i). The grey rational coefficient between the sequences of xj(i) and qs(i), i.e.,
γ
(
qs(i), xj(i)

)
, is defined as:

γ
(
qs(i), xj(i)

)
=

min
j

min
i

∣∣qs(i)− xj(i)
∣∣+ ζmax

j
max

i

∣∣qs(i)− xj(i)
∣∣∣∣qs(i)− xj(i)

∣∣+ ζmax
j

max
i

∣∣qs(i)− xj(i)
∣∣ (2)
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where ζ is the distinguished coefficient, which is typically set to 0.5. By averaging the grey
relational coefficients γ obtained from all sampling points i (= 1, 2, . . ., m) in factor j, the
grey relational grade at j, rG(j), between xj(i) and qs(i) can be calculated as follows:

rG(j) =
1
m

m

∑
i=1

γ
(
qs(i), xj(i)

)
(3)

Based on the long-term monitoring data of seepage flow qs(i) and multiple factors
xj(i), in which j = 1 to 60 (as indicated in Table A1), from 1999 to 2021 in the Shuidong
Dam, this study calculated the grey relational coefficient using Equation (2), and the grey
relational grade using Equation (3); the grey relational grades for all factors were sorted to
determine the factors of high relational grade (rG(j) > 0.4) for the subsequent PCA.

3.3. Principal Component Analysis (PCA)

PCA is a dimensionality reduction technique that uses a linear transformation to trans-
form original high-dimensional data into several variables in a lower mutually exclusive
dimension [49,50]. Compared with other dimension-reduction techniques, the greatest pos-
sible amount of original information can be obtained using PCA [51,52]. Therefore, the PCA
method was adopted in this study to reduce the dimensionality of the factors after GRA as
well as to shorten the calculation time of the models developed subsequently. The basic
principle of PCA involves diagonalizing a matrix and then calculating its eigenvectors and
eigenvalues. The PCA involves the following processes for data dimensionality reduction:
first, the sample matrix must be standardized; second, the covariance matrix is calculated;
third, the eigenvalue of the covariance matrix and the eigenvector are determined; finally,
the cumulative contribution rate of the eigenvector is obtained. The first k eigenvectors
with a cumulative contribution rate greater than 99% are extracted, and the dimensionality
reduction eigenvector matrix is realized. The cumulative contribution rate L of the first
k eigenvectors was calculated as:

L =
k

∑
i=1

λi/
m

∑
i=1

λi (4)

where λi represents the eigenvalues of an eigenvector Ei within the number of eigenvectors
m. Dimensionality reduction eigenvector matrix µT was derived from the transpose of the
matrix of eigenvector µi as:

ET = (E1, E2, . . . , Ek)
T (5)

The optimal number of principal components is an important part of HPO. The
optimal number of main components is determined by the following steps. Firstly, we
calculate the contribution value or eigenvalue λi at each principal component Ei and sort
them from maximum (i = 1) to minimum (i = m). Secondly, we calculate the cumulative
contribution rate L and select components that meet L > 99%. Thirdly, we calculate the error
and accuracy (as described in the following Equations (6)–(8)) under different principal
components as well as the time spent (such as training and validation time and file I/O
time). Finally, we choose feature vectors that have a shorter computation time and higher
accuracy. Note that step 3 must be combined with SVR analysis.

3.4. Support Vector Regression (SVR)

SVR is an MLA used for regression analysis. The basic idea behind SVR is to determine
a function that can predict the values of a target variable based on the values of one or more
input variables [53]. Primarily, in SVR, input variables are mapped into a high-dimensional
feature space in which a linear regression model can be used to make predictions. The
algorithm then uses a subset of training data, known as support vectors, to define a
hyperplane that separates the data into different classes. The goal of the SVR method is to
determine a hyperplane that minimizes the error between the predicted and actual values.
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One of the main advantages of SVR is its ability to handle nonlinear relationships between
the input and target variables. This is achieved using nonlinear kernel functions to map
the data into a higher-dimensional feature space where a linear regression model can be
used. This has a wide range of applications, including time-series forecasting, stock price
prediction, and image analysis [54–56].

The process of developing a seepage model based on SVR in this study is detailed as
follows: first, we selected the first k principal components of the PCA as the input variables
for the SVR. Second, the parameter set must be established, specifically, the optimal values
of penalty coefficient c and kernel function parameter g, which provide the model training.
Then, we compared the output of the model, i.e., the predicted seepage flowrate, with the
on-site monitored seepage flowrate and determined the coefficient of determination and
mean square error. During this process, the times required for model training, testing, and
validation were measured.

During the training and validation processes of our SVR model, penalty coefficient c
and kernel function parameter g were determined using the K-fold cross-validation (K-CV)
method to identify the optimal combination [57–59]. The K-value was equivalent to the
number of groups in the partitioned training set. There is no specific limit on how much
is chosen from K; however, the larger the K value, the more groups, and the smaller the
size of each group, which may not be sufficient to train the model. Meanwhile, the smaller
the K value, the fewer groups, which may lead to overfitting of the model: K = 5 is a
relatively moderate parameter and is widely used. Thus, in this study, we employed
fivefold validation with a grid search to obtain the best parameters for the SVR model. The
group of penalty coefficients c and kernel function parameters g with the highest R2 value
and smallest value of c were chosen as the training parameters.

The calculation of the SVR model was divided into training and test subsets. After
training, model performance was evaluated using the test subset, including the accuracy,
error, and relevant execution times of the model, such as testing, training, and validation
times. The errors were assessed using the common indicators of mean squared error (Ems)
and mean absolute percentage error (Ema). The accuracy was determined by coefficient of
determination (R2). Ems, Ema, and R2 were calculated as follows:

Ems =
1
n ∑n

i=1

(
qsi − q′si

)2 (6)

Ema =
1
n ∑n

i=1

∣∣∣∣ qsi − q′si
qsi

∣∣∣∣ (7)

R2 = 1− ∑n
i=1

(
qsi − q′si

)2

∑n
i=1(qsi − qsi)

2 (8)

where q′si, qsi represent the predicted seepage flow and monitored seepage flow, respectively,
at the i-th sample and qsi is mean value of qsi. The range value of R2 is from 0 to 1. The
higher the value of R2, the higher the accuracy of the model.

In this study, the Sklearn package in Python was used for the SVR calculation. The
radial basis function (RBF) is employed as the kernel function [60]. The K-fold cross-
validation (K-CV) method for parameter optimization was also obtained from the Sklearn
package. In this study, a random selection process was utilized to select 10% of the pre- and
post-reinforcement data for training and validation of the model, while the remaining 90%
were used as the test set.

For assessing the performance of our model, the Python time package was employed
to record the time, and the hardware configuration included an Intel i5-12500 2.5 GHz
processor and 16 GB of RAM. The analysis was conducted using Python version 3.10.5.
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4. Results and Discussions
4.1. HPO
4.1.1. GRA

The seepage flow of a dam is affected by several factors [27,61] including the uplift
pressure, temperature, and displacement. This study considered all the factors monitored
locally for two main reasons: first, to avoid artificially filtering out important input parame-
ters, and second, to find parameters with high correlation through system optimization and
check the reasonableness of the model. A total of 60 input factors, as indicated in Table A1,
were considered to analyze the correlation with seepage flow qs. The grey relational grades
for all factors were calculated using Equation (3). Figure 4 shows a grey relational grade
rG between the input factors and seepage flow qs. A clear cutoff value is observed at
rG = 0.4, indicating that the 14 factors with rG > 0.4 (shaded in light green in Figure 4)
have a higher correlation with seepage flow qs. These factors include the temperature
at point UP04 (T4); uplift pressure coefficients at points UP01, UP02, UP03, UP04, UP06,
UP11, and UP12 (i.e., Cl1, Cl2, Cl3, Cl4, Cl6, Cl11, and Cl12); interval vertical displacement
at points L2, L3, and L7; and cumulative horizontal displacement at points I1, I2, and I3,
as shown in Figure 2. As indicated by the GRA results, the temperature, uplift pressure,
and vertical displacement exhibited a strong correlation with seepage flow. This finding
aligns with common hydrological knowledge [62,63]. Notably, 13 uplift pressure orifices
(Figure 2) in the dam base were considered to survey the uplift pressure coefficients Cli
(i = 1–13), but only 7 (Cl1, Cl2, Cl3, Cl4, Cl6, Cl11, and Cl12) showed a high correlation with
seepage flow. This result may help guide the layout and monitoring of uplift pressure
device points by increasing or decreasing the frequency of monitoring points related to
seepage. However, among the factors of higher rG, the datasets of dVi and DVi are small,
with less than 235 samples, which could potentially impact the accuracy of the subsequent
prediction model; consequently, these factors were excluded from the analysis. Thus, the
final impact factors determined via the PCA and SVM analyses were air temperature T4 and
uplift pressure coefficients Cl1, Cl2, Cl3, Cl4, Cl6, Cl11, and Cl12. All factors had the sample
number of 6585 on the same date scale in days. The input impact factors had dimensions
of 8 × 6585. The advantage of the GRA is that it can quickly check input factors that are
highly related to seepage; however, some input factors may contain duplicate information
in subsequent SVR seepage prediction models. This redundancy may prolong the training
time of the model and consume more resources to store the monitoring data, which is not
ideal for real-time energy-saving monitoring of dam safety. Therefore, PCA was performed
after the GRA to eliminate redundant information from the input factors.
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4.1.2. Comparison with On-Site Investigation

From the on-site investigation of Shuidong Dam, it was found that there is a large
amount of calcium carrier (white substance) on the inner wall of the dam. This is because
the seepage of the dam carried away the calcium in the concrete, and it remained on the
surface of the wall, which is particularly evident on the right bank of the dam compared
to the left bank. From the data of calcium sampling collected from multiple points on
the corridor of the dam between 2011 and 2017, we found that the average proportion of
calcium content in the water on the right bank is 12.91%, and the proportion on the left bank
is 10.53%. The percentage of calcium in the seepage water on the right bank was higher
than that on the left bank. Moreover, from the on-site investigation results, monitoring of
water drainage from the dam foundation on the right bank was more obvious than that on
the left bank.

The GRA results indicate that 14 out of the 60 factors have a high grey relational grade
with seepage, including seven uplift pressures at points UP01, UP02, UP03, UP04, UP06,
UP11, and UP12, horizontal and vertical displacements at six monitoring points (L2, L3,
L7, I1, I2, and I3), and a thermometer at UP4 point (T4), with most of them distributed on
the right bank of the dam, as shown in Figure 2. In this case, seepage on the right bank of
the dam may be more pronounced than that on the left bank, which is roughly consistent
with the on-site investigation results. This can inform the management unit that it may
be necessary to strengthen the monitoring work on the right bank, such as increasing the
sampling frequency of the current monitoring points or adding new monitoring points. For
the daily recorded uplift pressure data, it is possible to consider increasing the number of
measurements, especially during heavy rainfall or when the upstream water level of the
dam increases. We are also considering adding new uplift pressure measurement points on
the right bank to provide more favorable data. At present, the dam only monitors the total
seepage flow from the left and right banks, and the monitoring of individual seepage flows
from the right and left banks also needs to be considered.

Date-related factors, including ty, tq, tm, and td, and most thermometers installed at the
uplift observation points, excluding thermometer T4, exhibit little correlation with seepage.
Temperature changes often affect the seepage flow rate of a dam. The results of the GRA in
this study show that among the 13 long-term monitoring thermometers, only thermometer
T4 presents a high correlation with the seepage flowrate. These thermometers are of the
thermistor type, the operation of which relies on the inside of the desiccant and requires
frequent inspection and replacement. When the desiccant becomes wet, the temperature
cannot be measured accurately. In the internal corridor of a dam, humidity often reaches
90%, and these thermometers need to be replaced every 2–3 days for accuracy. This may
be because most of the thermometers installed at the uplift pressure observation points
were not maintained, and their measurement values were not accurate. Currently, they
have been replaced with observation points outside the corridor. Point T4 may be one of
the best-maintained thermometers in the internal corridor. Based on the detection results
of the thermometer, the GRA can effectively detect useful data as well as filter out invalid
monitoring points or factors. This will serve as an important reference for investigators
or monitors to diagnose whether the monitoring device, such as a thermometer, in this
example, is functioning properly.

4.1.3. PCA

Figure 5 displays the principal component contribution and cumulative principal
component contribution associated with various eigenvectors or principal components
(E1–E8) based on PCA. The cumulative principal component contribution of the first
one eigenvector (E1), or the first principal component, exceeded 95%, and the top three
eigenvectors (E1, E2, and E3) contributed more than 99%. When the top five principal
components were selected, the cumulative principal component contribution rate L (by
Equation (4) with m = 8 and k = 5) was approximately 99.9%, indicating that characteristics
of factors can be retained via the projection of the original eight-dimensional data into
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three dimensions using PCA. Figure 6 depicts the changes in monitoring seepage qs and
various principal components from 1999 to 2021. The values of the principal component
or eigenvalues extracted from the input data are also presented. The fluctuations of the
first principal component are sharp, while the remaining seven components exhibit smaller
values and fluctuations. Therefore, we introduced SVR to analyze the nonlinear relationship
between the eight eigenvectors and the seepage flowrate.
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4.2. Dam Seepage Model Based on SVR

The group of penalty coefficients c and kernel function parameters g with the highest
R2 value and smallest value of c were chosen as the training parameters for SVR by using
the grid search technique. Figure 7 displays the calculation results of the K-fold cross-
validation (K-CV) with K = 5 and five eigenvectors as inputs. Detailed information on
selecting K through hyperparameter optimization can be found in Appendix A.2. The
input data comprised n = 658 samples between 1999 and 2021. As R2 is maximum when
c = 10 and g = 0.1, these were selected as the optimal parameters to evaluate the SVR
model. Using the same approach, the optimal parameter sets (c and g) obtained using
different numbers of eigenvectors (between three and eight) are listed in Table 2. Kernel
function parameter g decreased as the number of inputted eigenvectors increased. Thus,
by increasing the dimensions of the input data or the number of eigenvectors, smaller g
values are required to fit the training results. Additionally, the various times required to
conduct the SVR model with different numbers of input eigenvectors were measured, as
indicated in Table 2. These times include the time of file I/O, i.e., the time required to read
and write files (Tio), the time of training and validation (Tt), and the prediction time (Tp).

Table 2. Training, validation, and testing of SVR model using different numbers of inputted eigenvectors.

Number of Inputted
Eigenvectors k c g

Training and
Validation Time

Tt (s)

File I/O Time
Tio (s)

R2

(Testing)
Ems (L/s)2

(Testing)
Ema

(Testing)

3 10 0.1 9.843 0.910 0.945 0.045 17.19%
4 10 0.1 10.024 1.005 0.933 0.096 25.11%
5 10 0.1 11.031 1.103 0.953 0.041 16.41%
6 100 0.01 15.123 1.399 0.941 0.056 19.18%
7 100 0.01 16.255 1.309 0.948 0.035 15.16%
8 100 0.01 20.518 1.456 0.986 0.041 16.41%
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As shown in Figure 8, Tio and Tt have a gradually increasing trend as the number
of inputted eigenvectors k increases. For example, Tt with three eigenvectors required
9.843 s, which was only half the time required for eight eigenvectors (20.518 s). However,
Tp does not increase with the increase in k. Tp is the shortest between k = 4 and 5. Figure 9
shows the relationship between the determination coefficient R2 and the number of in-
putted eigenvectors k. R2 exhibits high fluctuations within the range of k = 3 to 7. When
seven eigenvectors were inputted, the accuracy of the model did not increase significantly,
probably because inputting more eigenvectors did not provide more effective information.
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Based on the process described in Section 3.3 and the analysis of the relevant figures
and tables mentioned above (Figures 8 and 9 and Table 2), the results showed that inputting
five eigenvectors can achieve high accuracy while ensuring a shorter calculation time.
Therefore, we selected five as the optimal number for the main components and used this
as the basis for subsequent analysis.
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4.3. Comparison with Other Data Processing Methods

Maximal information coefficient (MIC) is a statistical method that quantifies the
degree of association or correlation between two sets of data points without making any
assumptions about the underlying relationship. MIC is particularly useful for identifying
relationships in complex and high-dimensional datasets where traditional linear correlation
measures may fail to capture the underlying structure. Therefore, three commonly used
data processing techniques, i.e., GRA, PCA, and MIC, were introduced for comparison
with the HPO, specifically, for the combination of GRA and PCA proposed in this study.
As shown in Figure 10a–c, the GRA and HPO methods present higher R2 values and lower
Ems and Ema values. The HPO and GRA methods produce good results compared with
PCA and MIC. Thus, GRA can extract the nonlinear relationship with the seepage flow
better than PCA or MIC. However, the GRA method cannot effectively reduce input factors
that have the same contribution to seepage prediction. Redundant input factors increase
the training time of the model and waste computing resources, such as storage and energy
consumption, which are unfriendly to edge devices. As shown in Figure 10d, training and
validation time Tt of the proposed model (HPO method) in this study is 11.03 s, which is
only one-third of that of the GRA method, with Tt = 33.60 s. Further, compared with the
GRA model, the HPO method can perform well in the real-time monitoring of dam safety.
Overall, the above results indicate that the proposed HPO method can effectively reduce
the dimensionality of the input factors without losing important information from the SVR
prediction model.
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4.4. Comparison of Models

The LSTM model is a type of artificial neural network model widely used in previous
studies [32]. We considered the seepage monitoring data collected at the Shuidong Dam
from 1999 to 2021 to compare the seepage prediction values of the proposed model in this
study (HPO-SVR), a single LSTM model, and the LSTM with HPO (HPO-LSTM) model, as
shown in Figures 11 and 12. Comparing the three models is to understand the execution
performance between SVM and LSTM, as well as to examine the effectiveness of HPO
in data processing. As shown in Figure 11, the light-green area in the figure represents
the period of dam reinforcement, and no monitoring data are available. A large seepage
flow was found from December to January each year before dam reinforcement; however,
the seepage flow was less than 1 L/s throughout the year after dam reinforcement. The
burst point of the seepage flow occurred randomly, which is different from that of the dam
before reinforcement. Both models could predict the sudden increase in seepage in 2010.
Clearly, the seepage prediction after dam reinforcement by LSTM is significantly higher
than that of seepage monitoring. Figure 13 depicts the prediction of seepage flow against
the monitoring of seepage flow for the proposed HPO-SVR and LSTM models. The values
predicted using our model are more consistent with the monitoring values (closer to the
45◦ line) for both the larger and smaller seepage (pre- and post-dam reinforcements) cases,
whereas the predicted seepage values of the LSTM model are high when the monitoring
seepage was smaller than approximately 0.5 L/s and low when the monitoring seepage
was larger than approximately 1 L/s.
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Figure 13. Prediction seepage flow q
′

si against monitoring seepage flow qsi for (a) proposed HPO-
SVR model and (b) LSTM model. In the overall process, covering the period before and after dam
reinforcements, the proposed HPO model in this study provides a better prediction of the seepage
from the Shuidong Dam than the LSTM model.

The R2, Ems, and Ema values of our proposed model (HPO-SVR), the LSTM model,
and the HPO-LSTM model were calculated and listed in Table 3. The accuracy and error
of the LSTM model in predicting the seepage before dam reinforcement are slightly better
(with slightly higher R2 values and slightly lower Ems and Ema values) than those of the
model proposed in this study. However, the model proposed in this study exhibits a higher
accuracy, with R2 = 0.9558, and a lower Ema, of 36.49%, for the prediction of seepage flow
after dam reinforcement. Further, in terms of the overall process, covering the period before
and after dam reinforcements, the model proposed in this study, with R2 = 0.9407 and
Ema = 22.21%, provides a better prediction of the seepage from the Shuidong Dam than
the LSTM model, with R2 = 0.9173 and Ema = 27.24%. This means that HPO-SVR can
predict well under both pre and post reinforcement seepage models, while LSTM only
has slightly higher accuracy under the pre-reinforcement seepage model, indicating that
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HPO-SVR has high generalizability. As indicated in Table 3, the HPO-LSTM model has a
higher R2 and lower Ems and Ema values compared with the LSTM model. HPO was able
to bring higher accuracy to LSTM. However, the HPO-LSTM model, with R2 = 0.9256 and
Ema = 22.57%, is still not as accurate as HPO-SVR, with R2 = 0.9407 and Ema = 22.21%.
Based on the results of Table 3, SVR is a more effective MLA for solving dam seepage
problems, and HPO can be applied to other MLAs to improve their prediction accuracy. We
also examined the training and validation time Tt for various models (HPO-SVR, LSTM,
and HPO-LSTM), as indicated in Table 4. The training and validation time of the HPO-SVR
model, with Tt = 11 s, is the shortest among the three models. The Tt of the HPO-LSTM
model is 87 s, while the Tt of the LSTM model without importing HPO for data processing
is 146 s. The time ratio of the two models (LSTM vs. HPO-LSTM) is 1.7 times. This shows
that combining HPO with machine learning algorithms has high timeliness and indicates
that HPO proposed in this study has high generalizability. In this case study, HPO-SVR
can be used to predict seepage faster, using fewer computational and storage resources,
and is particularly suitable for dam monitoring systems with outdated equipment. For
example, among all the monitoring data collected in this study, many from outdated and
unmaintained thermometers can also be successfully filtered by HPO. This can save the
time of this model in seepage prediction.

Table 3. The comparison of performance indicators (determination coefficient R2, mean square error
Ems, and mean absolute percentage error Ema) between the model proposed in this study (HPO-SVR),
LSTM model, and LSTM model with HPO (HPO-LSTM).

Performance
Indicators Statement HPO-SVR

(This Work) LSTM HPO-LSTM

R2
dam before reinforcement 0.9323 0.9628 0.9581
dam after reinforcement 0.9558 0.8867 0.8912

Total period * 0.9407 0.9173 0.9256

Ems
(L/s)2

dam before reinforcement 0.5711 0.4656 0.3422
dam after reinforcement 0.0421 0.0878 0.0573

Total period * 0.0751 0.1130 0.0776

Ema

dam before reinforcement 21.52% 19.43% 16.66%
dam after reinforcement 36.49% 52.70% 42.57%

Total period * 22.21% 27.24% 22.57%
Note(s): * Period between 1999 and 2021, covering the dam before and after reinforcements.

Table 4. Training and validation time Tt (s) for various models (HPO-SVR, LSTM, and HPO-LSTM).

Model HPO-SVR
(This Work) LSTM HPO-LSTM

Tt (s) 11 146 87

In this case study, SVR was performed using uplift pressure and temperature factors
related to seepage (i.e., Cl1, Cl2, Cl3, Cl4, Cl6, Cl11, Cl12, and T4). These factors were obtained
after data processing of HPO; they are considered important monitoring factors and require
appropriate management and maintenance. When these daily monitoring factors are
provided, the SVM model proposed in this study can estimate or predict the seepage
flowrate of the Shuidong Dam, providing reference for management units.

5. Conclusions and Recommendations
5.1. Conclusions

This study proposed a seepage prediction model (HPO-SVR) based on SVR in machine
learning algorithms with data processing of HPO and conducted research focusing on the
Shuidong Dam in China as an example. The HPO combines GRA to filter out meaningless
monitoring factors and uses PCA to reduce the calculation time of the model.
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The data processing results showed that factors highly correlated with the seepage
flow from the dam include uplift pressure, vertical and horizontal displacements, and air
temperature. Most effects of these monitored factors were apparent on the right bank of the
dam, implying that seepage on the right bank is more significant than on the left bank. This
finding is consistent with on-site investigations, thus demonstrating the effectiveness of the
proposed data processing model. The proposed HPO method was used to compare with
other commonly used methods (i.e., GRA, PCA, and MIC) and showed that HPO could
reduce the training, validation, and testing time threefold while maintaining high accuracy.
We also considered the seepage monitoring data collected at Shuidong Dam from 1999 to
2021 to compare the seepage prediction values of HPO-SVR, LSTM, and HPO-LSTM models.
The results show that the HPO-SVR model (R2 = 0.9407 and Ema = 22.21%) provides better
seepage prediction performance than the LSTM model (R2 = 0.9173 and Ema = 27.24%)
and the HPO-LSTM model (R2 = 0.9256 and Ema = 22.57%). In addition, HPO-SVR has
the shortest training and validation time among the three models. More specifically, the
proposed SVR model with HPO can effectively extract the nonlinear relationship between
input factors and seepage, demonstrating good accuracy in the seepage prediction of the
Shuidong Dam.

5.2. Recommendations

This study takes all monitoring data of the Shuidong Dam as an example, and these
monitoring data have not been preprocessed, assuming that all monitoring data are valid.
After being processed by the HPO, these data can effectively reduce or reduce the input
factors of SVR, thereby predicting the seepage flowrate of the dam. However, it should
be noted that SVR relies on the selection of input factors; too many input factors will
increase training difficulty or cause overfitting, and selecting fewer input factors leads to
low model accuracy [64]. Due to the differences in dam body, foundation, and surrounding
environment in different case locations, the monitoring parameters used may not be the
same. Therefore, the seepage flow prediction model proposed in this study for RCC dams
may not be applicable to other dams. However, the proposed HPO-SVR model in this
study can serve as an important reference for other RCC dams in data processing (selecting
reasonable monitoring parameters or monitoring points) and establishing seepage flow
prediction models. After all, compared to other evaluation models, the model proposed in
this article has the advantages of simplicity, efficiency, and high accuracy overall.

One of the important contributions of this study is the use of HPO to process all
monitoring data in the case. Previous studies have rarely combined mechanical learning
with HPO to predict the seepage of RCC dams. Therefore, this study developed a prediction
model for seepage using a simple and commonly used machine learning model, SVR com-
bined with HPO, and preliminarily compared it with LSTM in neural networks. However,
there are many methods for mechanical learning, and further research is needed to combine
HPO with other advanced neural network models such as BPNN. Generally speaking, more
advanced mechanical learning models may improve accuracy but typically consume more
training and validating time. With the advancement of cloud computing technology, the
training and inference of machine learning models will be migrated to the cloud. This shift
will reduce reliance on local computing resources. Therefore, future research can consider
using more complex MLA combined with the HPO method to improve the accuracy of
the model and reduce computational resource consumption. In addition, the impact of the
frequency of dam monitoring data on the prediction model can also be explored. Choosing
an appropriate monitoring frequency can reduce the burden on local information storage
resources and ensure the accuracy of predictions.
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Appendix A

Appendix A.1. Input Factors xj of GRA

Table A1. Factors xj corresponding to each number j in Figure 4.

Number j Factors xj

1 Cl11: Uplift pressure coefficient at location UP11

2 Cl1: Uplift pressure coefficient at location UP01

3 DV2: Accumulated vertical displacement at location L2 (mm)

4 Cl4: Uplift pressure coefficient at location UP04

5 Cl6: Uplift pressure coefficient at location UP06

6 Cl12: Uplift pressure coefficient at location UP12

7 DH3: Accumulated horizontal displacement at location I3 (mm)

8 Cl2: Uplift pressure coefficient at location UP02

9 DV7: Accumulated vertical displacement at location L7 (mm)

10 DH1: Accumulated horizontal displacement at location I1 (mm)

11 Cl3: Uplift pressure coefficient at location UP03

12 DV5: Accumulated vertical displacement at location L5 (mm)

13 T4: Air temperature at location UP04 (◦C)

14 DH2: Accumulated horizontal displacement at location I2 (mm)

15 DV3: Accumulated vertical displacement at location L3 (mm)

16 Cl10: Uplift pressure coefficient at location UP10

17 hD: Water level difference between upstream and downstream water levels, hD = hu − hd (m)

18 T8: Air temperature at location UP08 (◦C)

19 hu : Upstream water level (m)

20 El8 : Elevation at location L8 (m)

21 El4 : Elevation at location L4 (m)

22 td : Date in day

23 DV4: Accumulated vertical displacement at location L4 (mm)

24 El6 : Elevation at location L6 (m)

25 tm : Date in month

26 tq : Date in quarter

27 dH2: Interval horizontal displacement at location I2 (mm)

28 Cl5: Uplift pressure coefficient at location UP05

29 DV6: Accumulated vertical displacement at location L6 (mm)
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Table A1. Cont.

Number j Factors xj

30 dH1: Interval horizontal displacement at location I1 (mm)

31 dH3: Interval horizontal displacement at location I3 (mm)

32 dV3: Interval vertical displacement at location L3 (mm)

33 dV2: Interval vertical displacement at location L2 (mm)

34 dV7: Interval vertical displacement at location L7 (mm)

35 Cl9: Uplift pressure coefficient at location UP09

36 dV6: Interval vertical displacement at location L6 (mm)

37 Cl8: Uplift pressure coefficient at location UP08

38 dV5: Interval vertical displacement at location L5 (mm)

39 DV8: Accumulated vertical displacement at location L8 (mm)

40 T2: Air temperature at location UP02 (◦C)

41 dV8: Interval vertical displacement at location L8 (mm)

42 T5: Air temperature at location UP05 (◦C)

43 T3: Air temperature at location UP03 (◦C)

44 T10: Air temperature at location UP10 (◦C)

45 dV4: Interval vertical displacement at location L4 (mm)

46 T7: Air temperature at location UP07 (◦C)

47 T13: Air temperature at location UP13 (◦C)

48 Cl13: Uplift pressure coefficient at location UP13

49 T1: Air temperature at location UP01 (◦C)

50 T11: Air temperature at location UP11 (◦C)

51 T12: Air temperature at location UP12 (◦C)

52 T6: Air temperature at location UP06 (◦C)

53 T9: Air temperature at location UP09 (◦C)

54 Cl7: Uplift pressure coefficient at location UP07

55 hd : Downstream water level (m)

56 El3 : Elevation at location L3 (m)

57 El7 : Elevation at location L7 (m)

58 El2 : Elevation at location L2 (m)

59 El5 : Elevation at location L5 (m)

60 ty : Date in year

Appendix A.2. Hyperparameter Optimization

K-fold cross-validation is a rigorous model evaluation technique where the dataset is
divided into K equal-sized subsets or folds. The model has undergone frequent training
and testing, with each fold serving as the validation set once and the remaining K-1 folds
used for training. This process helps to evaluate the performance of the model on different
subsets of data, reducing the risk of bias or overfitting. We tested the performance of K-CV
at K = 2 to 10. For each case of K, we repeated the test 10 times to obtain the optimal score
of R2 (training R2) and the average predicted R2 (prediction R2), as shown in Table A2 and
Figure A1. The selection of K needs to strike a balance between the accuracy of model
evaluation and computational costs. A smaller K may be faster, but the evaluation may
not be stable enough, while a larger K may be more stable but require more computing
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resources. If the total number of datasets is not large enough, an excessively large K will
result in a small amount of data in each group, once again leading to unstable results. We
found that K values of two to three resulted in higher training R2, but the prediction R2

seemed to decrease; this indicates the instability of the results caused by the K value being
too small. When the value of K is greater than five, the larger number of subsets, i.e., fewer
samples in each subset, which does not include all features in each subset, resulted in a
decrease in accuracy. Thus, K = 5 is an appropriate value and was adopted in this study.

Table A2. Training R2 and prediction R2 at various values of K.

K Training R2 Prediction R2

2 0.9187 0.8931

3 0.9088 0.9077

4 0.9065 0.9211

5 0.9078 0.9378

6 0.8993 0.9122

7 0.8913 0.8999

8 0.9021 0.9080

10 0.8773 0.8957
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