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Abstract: This study examines all of the equations necessary to derive the parameters for seven
probability distributions of three parameters typically used in flood frequency research, namely the
Pearson III (PE3), the generalized extreme value (GEV), the Weibull (W3), the log-normal (LN3), the
generalized Pareto Type II (PG), the Rayleigh (RY) and the log-logistic (LL3) distributions, using
the higher-order linear moments method (LH-moments). The analysis represents the expansion of
previous research whose results were presented in previous materials, and is part of hydrological
research aimed at developing a standard for calculating maximum flows based on L-moments and
LH-moments. The given methods for calculating the parameters of the examined distributions are
used to calculate the maximum flows on Romania’s Prigor River. For both methods, the criterion for
selecting the most suitable distribution is represented by the diagram of the L-skewness–L-kurtosis
and LH-skewness–LH-kurtosis. The results for Prigor River show that the PG distribution is the best
model for the L-moments method, the theoretical values of the statistical indicators being 0.399 and
0.221. The RY distribution is the best model for the LH-moments technique, with values of 0.398 and
0.192 for the two statistical indicators.

Keywords: parameters; frequency analysis; log-logistic; linear moments; Pareto; Rayleigh; separation
effect; Weibull

1. Introduction and Background

Flood frequency analysis (FFA) is critical for identifying maximum flows that corre-
spond to particular annual exceedance probabilities of interest. In Romania FFA plays
a significant role in estimating maximum flows, which are critical components in dam
design [1–3].

Some of the most commonly used theoretical probability distributions in the FFA
are those from the Gamma family (Pearson III, Kritsky-Menkel, Log-Pearson), those from
the generalized Pareto family (Pareto type II, III and IV, Wakeby) and those from the
generalized extreme value family (Weibull, Frechet, Gumbel) [4–11]. Other distribution
families, such as the beta generalized, beta prime, and beta exponential families, were
recently added based on [12,13].

In terms of parameter estimation, in recent years, the use of these distributions in
the FFA has focused on the L-moments [14,15], which is a much more stable parameter
estimation method and less subject to bias [5–8,14–17], compared to other parameter
estimation methods, namely the method of ordinary moments (MOM) or the maximum
likelihood method (MLE), particularly for small and medium lengths of observed data.
With all of these advantages over previous parameter estimate approaches, Anghel and
Ilinca [18] discovered that the L-moments require some statistical indicator corrections. The
least squares approach [18] can be used to rectify them. A good observation was also made
by Gaume [17], who stated that the L-moments statistical indicators may be less affected by
the series length variability, but this advantage can be lost due to nonlinear functions of
parameter estimation.
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Considering that in FFA, the area of interest is that of small annual exceeding prob-
abilities (left-hand, rare events), it is necessary to fulfill the “separation effect” described
by Matas [9], namely the elimination of the weight of small values (right-hand, lower
part of the graph), since these do not always represent ‘’floods”. This “separation effect”
can be achieved using the higher order linear moments (LH-moments) approach. Wang
proposed this method in 1997 [16], and it quickly became one of the most popular in the
FFA, even without explicit sample censorship [14,16]. It is only approved for use in FFA
with the Annual Maximum Series (AMS) [16]. This method is a generalization of the linear
moments method [16], and it reduces the influence of small maximum values in frequency
analysis. As a result, higher significance is given to high maximum values, which always
represent floods. This method is usually used for low-flow frequency analysis [19], for
flood frequency analysis [16,20–22], for regional flood frequency analysis [23–26] and for
maximum rainfall frequency analysis [27–29].

In recent materials [30], important contributions have been made regarding the LH-
moments, being presented important information for seven statistical distributions from
the Gamma, Pareto, and GEV families.

In this article, we analyze the application of these two parameter estimation methods
and we have formulated the L- and the LH-moments for all of the analyzed distribution
(i.e., the PE3, the GEV, the W3, LL3, the LN3, the RY and the PG). The PE3 is also the main
distribution in the FFA, in Romania [2–4,31–33]. Only these two parameter estimation
methods are analyzed, since these are wanted to be included in the new normative in
Romania. These methods present the main advantage of using the resulting statistical
indicators for the regionalization process. Otherwise, the L-moments is the main parameter
estimation method used in the regionalization processes.

The major goal of this article is to derive all of the elements required to use these
distributions in FFA, particularly for distributions that do not have a close form for the
inverse function. This is significant since these distributions employing the LH-moments
approach are not yet included in dedicated applications.

This analysis represents also an extension, a development and a continuation of the
research within the Faculty of Hydrotechnics, the results of which were presented in
previous materials [3,12,13,18].

The following novelty elements, presented centrally in Table 1, are introduced for the
first time in the scientific community. These will facilitate the application of these distribu-
tions in FFA, using the LH-moments method. These elements may also be applicable in
other fields that require the performance of such statistical analyses.

Table 1. New elements presented in the manuscript.

Novelty

Distribution

Method

L-Moment LH-Moments

Exact parameter estimation Raylegh Pearson III, Weibull, log-normal,
generalized Pareto, Raylegh, log-logistic

Approximate estimation of
parameters GEV, Weibull, generalized Pareto, log-logistic Pearson III, GEV, Weibull, log-normal,

generalized Pareto, Raylegh, log-logistic

Expression of the quantile with the
frequency factor (FF)

GEV, Weibull, Raylegh,
log-normal

Pearson III, GEV, Weibull, log-normal,
generalized Pareto, Raylegh, log-logistic
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Table 1. Cont.

Novelty

Distribution

Method

L-Moment LH-Moments

Exact relationships
of the FF

GEV, Weibull, Raylegh,
log-normal

Pearson III, GEV, Weibull, log-normal,
generalized Pareto, Raylegh, log-logistic

Approximate estimation of the FF GEV, Weibull,
log-normal

Pearson III, GEV, Weibull, log-normal,
generalized Pareto, Raylegh, log-logistic

The confidence interval with
the Chow approach [34]

GEV, Weibull, generalized Pareto, log-normal,
Raylegh, log-logistic

Pearson III, GEV, Weibull, log-normal,
generalized Pareto, Raylegh, log-logistic

The skewness-kurtosis variation
graph and relationships Raylegh Pearson III, GEV, Weibull, log-normal,

generalized Pareto, Raylegh, log-logistic

Regarding the quantile function, Anghel and Ilinca provided for the first time, the
inverse function using the FF for the L-moments [12,13,18]. The same methodology is
applied to the LH-moments in this manuscript. Also, for the LH-moments, the confidence
interval (C.I.) is expressed using Chow’s relation for the first time, which uses the FF (see
Table S1 from Supplementary File). Other important new data entered are the LH-skewness
(τH3)–LH-kurtosis (τH4) variation diagram (see Supplementary File).

For a faster calculation, but characterized by small errors, the estimation relations of
these FF are presented (see Supplementary File).

Taking into account that, in some cases, it is necessary to solve non-linear systems of
equations, for easy application approximation relations are presented. The relative errors
of estimation are between 10−2 and 10−4.

A FFA is performed, using the annual observed data for the Prigor River, Romania.
The best model is chosen based on the statistical indicator values and diagrams, thus
respecting the performance criteria specific to the analyzed methods.

Next, the article discusses and describes the statistical distributions, the parameter
estimation method and the influence of sample length variability, in Section 2. In Section 3,
an At-site case study is carried out using these distributions for the Prigor River. Sections 4
and 5 present the findings, discussion, and conclusions.

2. Methods

The FFA represents a direct way of finding out the maximum flows with small ex-
ceeding probabilities, using the annual observed data. The series consists of the maximum
values that characterize each year, with the important mention that, in general, the lower
maximum values of the series do not always represent floods. It is thus necessary to re-
duce the importance of these small maximum values, by fulfilling the so-called “separation
effect”. This can be achieved using the higher order linear moments method (LH-moments).

The stages in the development of FFA are according to international recommendations,
summarized in Figure 1.

During the data curation step, the presence of outliers, homogeneity, and flow inde-
pendence were verified. The observed data are homogeneous, independent, and no outliers
were identified.
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2.1. Probability Distributions

Table 2 shows the analyzed probability distributions [3–7,10,35–38]. It can be observed
that the PE3 and LN3 distributions do not have close form for the quantile functions, they
are represented in this manuscript using predefined functions from Mathcad, but which
are equivalent in other dedicated programs such as Excel, etc. The predefined functions are
detailed in [3].

Table 2. Distributions.

Distr. Density Function
f(x)

Complementary Cumulative
Distribution Function

F(x)

Inverse Function
x(p)

PE3 (x−γ)α−1

βα ·Γ(α) · exp
(
− x−γ

β

) 1− 1
β·Γ(α) ·

x∫
γ

(
x−γ

β

)α−1

· e−
x−γ

β dx

Γ
(

α, x−γ
β

)
Γ(α)

γ + β · qgamma(1− p, α)
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Table 2. Cont.

Distr. Density Function
f(x)

Complementary Cumulative
Distribution Function

F(x)

Inverse Function
x(p)

GEV
(

1− α
β · (x− γ)

) 1
α−1
· 1

β · e
−(1− α

β ·(x−γ))
1
α

1− exp
(
−
(

1− α
β · (x− γ)

) 1
α

)
γ +

β
α ·
(
1− (− ln(1− p))α)

W3 α
β ·
(

x−γ
β

)α−1
· e−(

x−γ
β )

α

exp
(
−
(

x−γ
β

)α)
γ + β · (− ln(p))1/α

GP 1
β ·
(

1− α
β · (x− γ)

) 1
α−1 (

1− α
β · (x− γ)

) 1
α γ +

β
α · (1− pα)

RY
(√

α2+4·β·(x−γ)−α
)
·e

α·
√

α2+4·β·(x−γ)−α2−2·β·(x−γ)

4·β2

4·β·
√

α2+4·β·(x−γ)

exp
(√

α2+4·β·(x−γ)−α

2·β·
√

2

)2 γ + α ·
√

ln
(

1
p2

)
+ β · ln

(
1
p2

)
γ+ α ·

√
−2 · ln(p)− 2 · β · ln(p)

LN3

exp
(
− (ln(x−γ)−α)2

2·β2

)
(x−γ)·β·

√
2·π

1
x−γ · dnorm(ln(x− γ), α, β)

dlnorm(x− γ, α, β)

1− 1
2 ·
(

er f
(

(ln(x−γ)−α)√
2·β

)
+ 1
)

1− pnorm(ln(x− γ), α, β)

1− cnorm
(

ln(x−γ)−α
β

)
1− plnorm(x− γ, α, β)

γ + eα+β·qnorm(1−p,0,1)

γ + qlnorm(1− p, α, β)

LL3 α·
(

x−γ
β

)α−1
·
((

x−γ
β

)α
+1
)−2

β

(
1 +

(
x−γ

β

)α)−1
γ + β ·

(
1
p − 1

) 1
α

2.2. Parameter Estimation Methods

In this manuscript, two methods of estimating the parameters of the proposed dis-
tributions are analyzed, namely the L- and the LH-moments. The L-moments method
relies on linear combinations of weighted moments, whereas the LH-moments method
is a generalization of the linear moments method that relies on linear combinations of
higher-order statistics. This decreases the impact of lower maximum values, which do
not always represent floods. As a result, the high maximum values—which invariably
imply floods—are given more weight. For a better understanding and differentiation of
the two methods, Supplementary File presents the characteristic theoretical relations of
the methods.

All of the equations for estimating the parameters were determined based on the
inverse function (see Appendix A), all equations representing new elements.

Given that in many cases, systems of nonlinear equations need to be solved, approxi-
mate relations for parameter estimation are presented (see Supplementary File).

Considering that the τ3 and τH3 indicators are, in general, characterized by a single
parameter (the shape parameter), the presentation of the variation graphs helps to choose
the initial values in the iterative process, simplifying the determination of the parameters of
the distributions using the exact relations. Figure 2 shows the curves of the possible values
of the shape parameter for the W3, PG, GEV, LL3, PE3, and LN3 distributions.

Regarding the approximate relationships for parameter estimation, the relative errors
are between 10−2 and 10−4. The errors depend only on the values of the L-skewness (τ3)
and LH-skewness (τH3) as can be seen in Figure 3. For the L-moments, the graphs were
presented in previous materials [39].
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Considering that the inverse function of each distribution can be represented using
the FF characteristic of the method and the distribution, it is for the first time that, for these
distributions, the exact and the approximate relationships for the FF are presented, using
the L-moments and LH-moments method (see Supplementary File). This represents a real
help in the easy and fast application of these distributions and methods in flood frequency
analysis, thus being able to determine in an accessible way the values of the quantiles for
the most common annual exceedance probabilities. The approximations of the FF do not
depend on certain values of maximum annual flows, but they are determined based on the
theoretical values of the high-order statistical indicators, thus leading to a reduction of the
calculation time.
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2.3. The Bias Due to the Length Variability of the Records

In general, for low annual exceedance probabilities, all three-parameter distributions
have a large degree of uncertainty since they cannot calibrate the higher moments (L-
kurtosis). Another significant issue is the uncertainty regarding the variability of the
length of the data series, with each method characterized by uncertainties regarding
the values of the statistical indicators, the values of the estimated parameters, and the
values of the quantiles. However, when utilizing the L-moments technique, these three
degrees of uncertainty are considerably decreased since it is less biased and more robust to
sample variability.

The bias represents the deviation of the values obtained from the theoretical values
specific to the distribution (characteristic for a population, n > 1000 values). This bias
is influenced by the length of the data strings. It represents the difference between the
theoretical value (population) and the calculated one (sample) in percentage.

A negative value of the bias means that the calculated values are higher than the
theoretical values by that percentage (the obtained value should be corrected minus by
that percentage). A positive value means that the calculated values are lower than the
theoretical values, and should be increased by that percentage.

Thus, considering the relatively short length of the series analyzed in the case study
(31 observed data), to highlight the statistical uncertainties characteristic of the three levels,
the PG distribution is presented as example.

Assuming that the observed data are drawn from a PG distribution, starting from the
theoretical values (specific to n ≈ 1000 values), by sampling (using the Hazen empirical
formula), the new values of the statistical indicators, parameters and quantiles, as well as
the bias compared to the theoretical values, are determined. For ease of calculations, the
arithmetic mean is chosen.

2.3.1. The Bias for Statistical Indicators

Table 3 present the values of the theoretical statistical indicators and those obtained
from sampling, for τ3 = 0.3 and τ3 = 0.5. These two values were chosen so as to reflect two
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distinct situations regarding the usual torrentiality and skewness encountered on rivers.
The value 0.3 indicates a low skewness, while the value 0.5 indicates an average skewness.
In both cases, the L-coefficient of variation (τ2) is chosen 0.3.

Table 3. The bias for statistical indicators for PG and L-moments method.

PG

τ3 = 0.3 Bias [%]

Statistical
Indicators

Length (n) Length (n)

1000 80 50 25 80 50 25

L1 1 0.998 0.997 0.994 0.2 0.3 0.6

τ2 0.3 0.303 0.304 0.308 −1 −1.33 −0.8

τ3 0.3 0.303 0.305 0.309 −1.09 −1.64 −2.91

τ4 0.142 0.145 0.147 0.151 −2.11 −3.52 −6.34

τ3 = 0.5

L1 1 0.986 0.981 0.97 1.4 1.9 3

τ2 0.3 0.294 0.292 0.29 2 2.67 3.33

τ3 0.5 0.488 0.485 0.482 2.4 2.91 3.69

τ4 0.318 0.304 0.301 0.297 4.4 5.35 6.6

In general, a holistic approach involves the highlighting of biases on the entire matrix
defining the coefficient of L-variation indicators (0 < τ2 < 1), respectively L-skewness
(2 · τ2 − 1 ≤ τ3 < 1). This aspect constitutes a future research direction, involving the
Bootstrap, the Bayesian method and Monte Carlo simulations.

It can be seen from the resulting values that for low values of L-skewness the PG
distribution has small bias. For the situation of higher values of L-skewness, the PG
distribution is more affected being a distribution known as a heavy tail.

2.3.2. The Bias of Parameter Estimation

Regarding parameter estimate uncertainties, Gaume [17] stated that statistical indi-
cators obtained with L-moments may be less affected by series length variation, but this
advantage may be lost due to nonlinear functions of parameter estimation. Thus, in Table 4
the values of the parameters obtained from sampling are provided (as well as the bias
compared to the theoretical values).

Table 4. The bias of parameter estimation for PG and L-moments.

PG

τ3 = 0.3 Bias [%]

Parameters
Length (n) Length (n)

1000 80 50 25 80 50 25

α 0.077 0.069 0.065 0.056 10.39 15.58 27.27

β 0.671 0.688 0.667 0.664 0.45 0.6 1.04

γ 0.377 0.373 0.371 0.365 1 −1.62 3.18

τ3 = 0.5

α −0.333 −0.312 −0.307 −0.3 6.31 7.81 9.91

β 0.333 0.337 0.337 0.335 −1.2 −1.2 −0.6

γ 0.5 0.497 0.496 0.492 1 −0.81 1.6
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2.3.3. The Bias of Quantiles Estimation

Considering that in the analysis of the frequency of extreme events it is desired
to accurately determine the values of the maximum extreme events (rare events), the
presentation of the bias due to the variability of the data series becomes of particular
importance. Table 5 present the values of the quantiles obtained by sampling, as well as
highlighting the relative errors compared to the theoretical values specific to the analyzed
distributions, using the L-moments method.

Table 5. The bias of quantiles for PG and L-moments.

PG

τ3 = 0.3 Bias [%]

Annual
Exceedance

Probability [%]

Length (n) Length (n)

1000 80 50 25 80 50 25

0.01 4.81 4.92 4.99 5.14 −2.48 −3.75 −6.89

0.1 3.97 4.04 4.08 4.17 −1.74 −2.64 −4.83

0.5 3.30 3.34 3.36 3.41 −1.21 −1.82 −3.34

1 2.98 3.01 3.02 3.06 −0.97 −1.48 −2.69

τ3 = 0.5

0.01 21 18.5 18.0 17.1 12.07 14.69 18.91

0.1 9.5 8.7 8.5 8.2 8.14 10.04 13.26

0.5 5.3 5.1 5.0 4.8 5.52 6.92 9.41

1 4.1 4.0 3.9 3.8 4.44 5.65 7.82

As can be seen from the results, the L-moments is less affected by the variability of the
length of the recorded data for small values of L-skewness (τ3 < 0.5), the bias of estimating
the statistical indicators, and more important the quantiles (increasing with the increase of
L-skewness).

For small values of available data (n = 25), the bias corresponding to the maximum
flow with the probability of exceeding 0.01% can reach 18.91%, value much lower than
those obtained using the MOM, values presented in previous materials [18] that reached
over 40% compared to the theoretical value.

3. Case Study

The FFA aims to determine the maximum flows (particularly in areas of small an-
nual excess probabilities) using the annual observed record for the Prigor River and the
distributions presented, for the two parameter estimation approaches.

The Prigor River is located in the southwestern part of Romania, as seen in Figure 4 [40],
and is the left tributary of the Nera River.

The region has a moderately temperate continental climate with sub-Mediterranean
influences. This climate creates the mild nature of the temperature regime, the warmth
intervals throughout the winter, and the multiannual average quantities of comparatively
high precipitation between 550–1350 mm/year.

The multiannual average temperatures vary greatly over the territory, ranging from
−3 ◦C in the mountains to 11 ◦C in the plains.

The river has a watershed area of 153 km2 and a mean elevation of 713 m. The river is
33 km long and has a slope of 22‰. The sinuosity coefficient for the planned path of the
river is 1.83 [41].
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Figure 4. The Prigor River monitoring section.

The AMS over a 31-year period is used for FFA. The time period under consideration
is 1990 through 2020. The top and lower values are 88 m3/s and 6.4 m3/s, respectively.
Table 6 highlights the observed data values.

Table 6. The observed records for the Prigor River, Romania.

The AMS

Year 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

Flow [m3/s] 9.96 15 10.1 14.8 7.30 21.2 18.2 21.4 13.1 14.5 35
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

Flow [m3/s] 19.9 22.1 11.8 80.3 88 51.6 72.2 16.2 42.6 28.5 12.8
2012 2013 2014 2015 2016 2017 2018 2019 2020

Flow [m3/s] 31.2 24.1 52.2 21.1 18.9 6.40 24.9 15.1 36.6

The most important values in the analysis using the proposed methods are those of
L-skewness, L-kurtosis, respectively LH-skewness and LH-kurtosis, since they are used to
make an approximate estimation of the parameters of the analyzed distributions, as well as
the regionalization of maximum flows.

For L-moments, the expected value (L1), the L-coefficient of variation (τ2), L-skewness
(τ3) and L-kurtosis (τ4) are 27.2 m3/s, 0.386, 0.399, respectively 0.228.

For first level LH-moments, the expected value (LH1), the LH-coefficient of variation
(τH2), LH-skewness (τH3) and LH-kurtosis (τH4) are 38.2 m3/s, 0.292, 0.398, respectively 0.177.

4. Results and Discussion

The most essential quantiles in the FFA are those for low exceeding probability, since
hydrotechnical structures, particularly dams, are planned using these quantiles [1,2].

As we stated before, only these two methods were analyzed in this article, since it
represents two methods of estimating the parameters on the basis of which a regionalization
can be carried out using the statistical indicators specific to the two methods.
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Considering that currently in Romania the “parent” method is the MOM, in which the
skewness is chosen according to the origin of the maximum flows [2,3], it is thus desirable
to abandon this outdated practice and adopt the L- and LH-moments methods.

4.1. Parameter Estimation

The resulting values of the parameters are presented (see Table 7) for transparency of
the analysis and the possibility that the results can be reproduced.

Table 7. The parameters values for the case study.

Parameters
Distribution

PE3 GEV W3 PG RY LN3 LL3

L-moments

α 0.6937 −0.3277 0.848 −0.1402 −8.67 2.601 2.5083

β 26.9 10.2 17.6 17.1 13.9 0.9569 20.3

γ 8.97 16.9 8.51 7.78 10.8 6.34 0.854

LH-moments

α 0.5828 −0.2708 0.8057 −0.1496 −14.9 2.8904 2.9638

β 29.5 11.5 16.2 16.8 15.8 0.8078 27.2

γ 11.5 16.5 9.57 7.98 15.2 2.6013 −5.95

4.2. Quantile Estimation

Only the values of the quantiles for the usual and most important annual exceedance
probabilities in FFA are presented (see Table 8), paying special attention to the values charac-
teristic of very rare events that need to be forecast (left-hand, upper part of the graph).

Table 8. Quantile values for the case study.

Distr.

Annual Exceedance Probabilities [%]

L-Moments LH-Moments

0.01 0.1 0.5 1 2 3 5 80 90 0.01 0.1 0.5 1 2 3 5 80 90

PE3 231 172 130 113 95.4 85.3 72.7 11.4 9.80 239 176 133 114 96.3 85.8 72.8 13.1 12.0

GEV 623 285 163 127 97.7 83.6 68.2 12.4 9.50 489 250 152 122 96.3 83.5 69.0 11.4 7.90

W3 249 180 134 115 96.2 85.6 72.5 11.5 9.75 264 188 138 117 97.5 86.3 72.7 12.1 10.6

PG 329 207 142 118 96.8 85.1 71.4 11.7 9.59 340 211 143 119 97.0 85.2 71.3 11.8 9.76

RY 229 170 130 112 95.0 85.0 72.6 11.2 9.72 242 178 134 115 96.9 86.3 73.2 12.2 11.6

LN3 480 266 165 132 103 87.9 71.4 12.4 10.3 366 221 147 121 97.2 84.9 70.6 11.7 8.99

LL3 800 320 168 128 96.7 82.1 66.6 12.5 9.31 603 274 157 123 95.3 82.1 67.6 11.1 7.03

Figure 5 show the distributions curves for the Prigor River. For linear moments method,
the best choice for plotting-position are Hazen and IEC 56 empirical probability [42]. In
this case study, the Hazen empirical probability was used (P = (i− 0.5)/n).

The decimal logarithmic scale on the horizontal axis was used to highlight the heavy
tail (the domain of low annual exceedance probabilities).

Analyzing the values obtained for the probability of exceeding 0.01% (return period of
1000 years) it can be seen that the PE3, W3, PG, and RY distributions are the least sensitive,
since if we analyze the variation of the shape parameter, they practically intersect in around
the value corresponding to the skewness of the records. For both methods, the results
of the PE3, W3, PG, and RY distributions remain relatively constant around the value of
240 m3/s (PE3, RY, W3), respectively 320 m3/s (PG).
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For the GEV, LL3 and LN3 distributions, the variation is large around this value, which
is why a significant difference can be observed between the two methods. The results,
between the two methods, vary between 623 m3/s and 489 m3/s for GEV distribution,
between 480 m3/s and 366 m3/s for LN3 distribution, respectively between 800 m3/s
and 603 m3/s for LL3 distribution. Comparing the results it can be seen that the LH-
moments achieves to some extent the “separation effect”, by reducing the importance of
the maximum flows from the field of high annual exceedance probabilities (right-hand,
lower part of the graph), which do not always constitute (in the analysis with AMS) floods.

4.3. Performance Metrics

The performance and choosing the best fitted model, was evaluated using the criteria
specific to the analyzed methods, namely the linear and higher order linear moments values
and diagrams.

In the case of L-moment analysis, the best model is characterized by the τ3 and τ4
values, so that the difference between the natural values of the theoretical distribution and
the values of the observed data to be minimal [3,5,15,18]. The same principle is used in the
analysis with the LH-moments method.

Evidence of these selection criteria is critical, particularly for the FFA in Romania,
where the current laws [43] are severely deficient. It suggests using a variety of two and
three parameter distributions with various parameter estimation methods, keeping in mind
that the results obtained with a two-parameter distribution using the MOM cannot be
compared to the results obtained with a three-parameter distribution using L-moments,
or vice versa. The regulation suggests that you select any distribution that falls between
the lower distribution (a distribution that can be a two parameters and the L-moments
technique) and the upper distribution (a distribution than can be a three parameters and
the MOM technique).

Table 9 shows the analyzed distributions performance measures values. The perfor-
mance measures for the best distribution are marked in bold.

The RME and RAE criterion can only be used in the probability area of the records (area
of empirical probabilities), the data set being too short, for these indicators to highlight certain
performances of the distributions, over the entire range of annual exceedance probabilities.

Based on [3,13,18,37], the diagram for the L-moments contains a significant number of
theoretical distributions usually used in hydrology.

Regarding the diagram for the LH-moments, it is for the first time that such a diagram
is presented and introduced to the scientific community, as well as the explicit variation
relationships of the τH3 − τH4 (see Supplementary File).
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Table 9. Distributions performance measures for the Prigor River, Romania.

Distr.

Performance Measures

Methods for Parameter Estimation Selection Criteria

L-Moments LH-Moments L-Moments LH-Moments

RME RAE τ3 τ4 RME RAE τH3 τH4 τ3 τ4 τH3 τH4

PE3 0.0219 0.0885

0.399

0.192 0.0301 0.0953

0.398

0.197

0.399 0.228 0.398 0.177

GEV 0.0152 0.0636 0.282 0.0213 0.0925 0.250

W3 0.0201 0.0822 0.202 0.0245 0.0850 0.206

PG 0.0181 0.0765 0.221 0.0187 0.0766 0.221

RY 0.0237 0.0955 0.185 0.0391 0.1133 0.192

LN3 0.0199 0.0759 0.280 0.0148 0.0673 0.233

LL3 0.0165 0.0715 0.299 0.0307 0.1204 0.265

Figure 6 shows the variation diagrams of the τ3 − τ4 obtained with the two methods,
highlighting the values of the data.
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Thus, according to these performance criteria (imposed by the analyzed methods),
based on the results and confirmed also by the graphic representation, the best fitted model
for the L-moments is the PG distribution with τ3 = 0.399 and τ4 = 0.221, respectively
the RY distribution for the LH-moments method with τH3 = 0.398 and τH4 = 0.192. The
indicator values of these two distributions are closest to those of the data recorded, namely
τ3 = 0.399, τ4 = 0.228, τH3 = 0.398 and τH4 = 0.177.

The resulting maximum flow values (for the annual probability of exceeding 0.01%)
are 329 m3/s (L-moments) and 239 m3/s (LH-moments) in the case of PG distribution,
respectively 229 m3/s and 242 m3/s in the case of RY distribution.

Analyzing the results of these distributions with those of other distributions used on
the same case study (Pseudo-Weibull and three-parameter Chi distribution) it can be seen
that the values are similar [30].

4.4. The Bias Due to the Length Variability of the Records

To exemplify the influence of the variability of the analyzed data lengths on the results
obtained, the bias in the estimation of the quantile values corresponding to the annual
exceedance probabilities of 0.01%, 0.1%, 0.5% and 1% is highlighted (for the L-moments).
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Given that the PG distribution was found to be the best model for the L-moments, it is
reasonable to conclude that the observed data is derived from a PG distribution. Thus, the
bias of the quantiles for the length of the investigated series (n = 31) are those shown in
Table 10 for the L-moments approach.

Table 10. The bias of quantiles for the Prigor River.

τ2 = 0.386, τ3 = 0.399
n = 31 Annual Exceedance Probability [%]

P% 0.01 0.1 0.5 1

Bias [%] 1.3 1.19 1.13 1.1

It can be observed that for the analyzed case study, the biases that characterize the L-
moments, with values between 1.3% for the quantile with a return period of
10,000 years, respectively 1.1% for the event with a return period of 100 years, are very
small, the statistical errors being more than acceptable.

4.5. Confidence Intervals

Given all of these statistical uncertainties caused by the variability of data lengths, the
confidence interval (C.I.) of the inverse function must be presented (see Figure 7).
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The C.I. is based on the FF of the distribution, using Chow’s relation, for a 95%
confidence level and a Gaussian assumption. The classic Bootstrap procedure [44–48] is
another way for estimating the confidence interval, although it is more time consuming
and has certain drawbacks.

5. Conclusions

This manuscript analyzes the L-moments and LH-moments, which are two of the most
commonly employed methods in FFA, since they are less influenced by sample variability
and the presence of outliers.

The main purpose of this manuscript is to provide all of the essentials for applying a
variety of seven theoretical probability distributions using these methods for parameter
estimation. In general, the entire analysis focuses only on the statistical aspects related to
FFA. The analysis does not exclude the use of other statistical distributions or methods.

Thus, exact and approximate relations to derive the parameters and the FF are pre-
sented for the first time. In addition, relationships and their variation diagrams are pre-
sented for the LH-moments method, being of signficant help in applying these distributions
using this method. The choice of the best suitable distribution, in the case of both methods,
is carried out by reporting the values of the statistical indicators (L-skewness and L-kurtosis,
and LH-skewness and LH-kurtosis) to the values of the observed data. Regarding the L-
moments method, based on the work of Anghel and Ilinca [18,39,49], the variation diagram
for the L-moments was much improved with a significantly higher number of distributions
compared to the previously existing situation in the literature [5,6].

All of these new elements were used to determine the maximum flows for the chosen
annual exceedance probabilities, using the Prigor river in Romania as a case study. Fol-
lowing the results obtained (only from the analyzed distributions), the best model are the
PG distribution for the L-moments, respectively the RY distribution for the LH-moments.



Water 2023, 15, 3510 16 of 24

Their natural indicators (L-skewness, L-kurtosis, LH-skewness, and LH-kurtosis), have the
closest values to those of the observed data.

Since the use of software without mathematical knowledge frequently leads to flawed
analyses, mathematical support in statistical analysis is useful. All of the math needed to
use these distributions is necessary since statistical analysis software is limited.

As with other types of distributions, all of these new elements can be useful to re-
searchers, only if the main statistical criteria specific to these methods are respected.

All of the information will be concretized in informative applications that will be
included in the future proposals regarding the development of norms regarding the fre-
quency analysis of maximum flows, giving up the old Soviet influences and avoiding the
use of no-technical concepts such as the uncertainty interval [50].
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Abbreviations

MOM The method of ordinary moments
L-moments The method of linear moments
LH-moments The method of higher order linear moments
LHCs, τH3 LH-skewness
LHCv, τH2 coefficient of LH variation
LHCk, τH4 LH-kurtosis
µ Expected value; arithmetic mean
σ Standard deviation
σ2 Variance
Cv Coefficient of variation
Cs Coefficient of skewness; skewness
Ck Coefficient of kurtosis; kurtosis
L1, L2, L3 Linear moments
τ2, LCv Coefficient of variation based on the L-moments method
τ3, LCs Coefficient of skewness based on the L-moments method
τ4, LCk Coefficient of kurtosis based on the L-moments method
FFA Flood frequency analysis
Distr. Distributions
AMS Annual maximum series
RME Relative mean error
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RAE Relative absolute error
n Observed values length

Γ(α)
∞∫
0

tα−1 · e−t · dt, returns the value of the Euler gamma function of α

Γ(α, x)

∞∫
x

tα−1 · e−t · dt, returns the value of the incomplete gamma function of x with

parameter α

qgamma(p, α)
Returns the inverse cumulative probability distribution for probability p,
for gamma distribution

plnorm(x, α, β)
Returns the cumulative probability distribution for value x, for
log-normal distribution

pnorm(x, α, β)
Returns the cumulative probability distribution for value x, for
normal distribution

qlnorm(p, α, β)
Returns the inverse cumulative probability distribution for probability p,
for log-normal distribution

cnorm(x)
Returns the cumulative probability distribution with mean 0 and variance 1
(normal distribution)

dnorm(x, α, β) Returns the probability density for value x, for normal distribution
dlnorm(x, α, β) Returns the probability density for value x, for log-normal distribution

Appendix A. The First Order LH-Moments for PE3, GEV, W3, PG, LL3 and
RY Distributions

Appendix A.1. Pearson III (PE3)

For the L-moment and LH-moments, the parameters are calculated using definite
integrals and quantile functions.

For the L-moments, α can be approximate with the next relation [45]:
if 0 < |τ3| ≤ 1

3 :

α = exp

 −3.164791927− 5.108735285 · ln(|τ3|)− 4.116014079 · ln(|τ3|)2−
2.985250105 · ln(|τ3|)3 − 1.327399577 · ln(|τ3|)4 − 0.373944875 · ln(|τ3|)5−
0.065421611 · ln(|τ3|)6 − 0.006508037 · ln(|τ3|)7 − 0.000281969 · ln(|τ3|)8


if 1

3 < |τ3| ≤ 2
3 :

α = exp

 −3.9918551− 10.781466 · ln(|τ3|)− 21.557807 · ln(|τ3|)2−
33.8752604 · ln(|τ3|)3 − 35.0641585 · ln(|τ3|)4 − 22.921163 · ln(|τ3|)5−
8.5491823 · ln(|τ3|)6 − 1.3855653 · ln(|τ3|)7


if 2

3 < |τ3| < 1:

α =

5.17817436− 26.209448756 · |τ3|+ 62.12494027 · τ2
3 − 84.39423264 · |τ3|3+

67.08589624 · τ4
3 − 29.150288079 · |τ3|5 + 5.364968945 · τ6

3

1 + 0.0005134 · |τ3|+ 0.00063644 · τ2
3

β = L2 ·
√

π · Γ(α)

Γ
(

α + 1
2

)
γ = L1 − α · β

For the LH-moments method, α can be approximate with the next relation:
if 0.12 < |τH3| ≤ 0.34:

α = exp

 7757.0921831 + 40914.6033757 · ln(|τH3|) + 93713.9484593 · ln(|τH3|)2+

121792.0331514 · ln(|τH3|)3 + 98255.1222272 · ln(|τH3|)4 + 50397.8680523 · ln(|τH3|)5+

16054.8135102 · ln(|τH3|)6 + 2904.9945626 · ln(|τH3|)7 + 228.664592 · ln(|τH3|)8


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if 0.34 < |τH3| ≤ 0.85:

α = exp

 −13.4247904− 121.5293664 · ln(|τH3|)− 649.9763722 · ln(|τH3|)2−
2075.3170378 · ln(|τH3|)3 − 4110.4652507 · ln(|τH3|)4 − 5114.9286399 · ln(|τH3|)5−
3890.8525714 · ln(|τH3|)6 − 1653.2523283 · ln(|τH3|)7 − 300.612615 · ln(|τH3|)8


β =

2 · LH2

3 · z1

γ = LH1 − 2 · β · z2

where, z1 =
1∫

0
qgamma(p, α) ·

(
3 · p2 − 2 · p

)
· dp, which can be approximated with the

following equation:

z1 =
−0.00315255 + 0.87292281 · α + 0.18314623 · α2

1 + 2.01526823 · α + 0.07089912 · α2 − 0.00034641 · α3 + 0.00000094 · α4

and, z2 =
1∫

0
qgamma(p, α) · p · dp, which can be approximated with the following equation:

z2 =
0.01180195 + 0.87724953 · α + 0.46798927 · α2 + 0.01808637 · α3 + 0.00004649 · α4

1 + 0.80457526 · α + 0.03470298 · α2 + 0.0000921 · α3

Appendix A.2. Generalized Extreme Value (GEV)

For the L-moments method, the exact equations are [6]:

L1 = γ +
β

α
· (1− Γ(1 + α))

L2 = Γ(α) ·
(
1− 2−α

)
· β

L3 = Γ(α) ·
(
1− 2−α

)
· β ·

(
(1− 3−α) · 2

1− 2−α
− 3
)

Parameter α can be approximate using the next relation depending on τ3:

α =
0.283759107− 1.669931462 · |τ3|

1 + 0.441588375 · |τ3| − 0.071007671 · τ2
3 + 0.015634368 · |τ3|3

β =
L2

Γ(α) · (1− 2−α)

γ = L1 +
β

α
· (Γ(1 + α)− 1)

For the LH-moments method, the exact equations are [20]:

LH1 = γ +
β

α
·
(
1− Γ(1 + α) · 2−α

)
LH2 =

3
2
· β

α
· Γ(1 + α) ·

(
2−α − 3−α

)
LH3 =

2
3
· β

α
· Γ(1 + α) ·

(
8 · 3−α − 5 · 4−α − 3 · 2−α

)
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Parameter α can be approximate using the next relation depending on τH3:

α =
0.481461312− 2.091126798 · |τH3|+ 0.46287569 · τH3

2

1 + 0.10816836 · |τH3| − 0.118896764 · τH3
2 + 0.013328421 · |τH3|3

β =
−2 · LH2

Γ(α) · 3 · (3−α − 2−α)

γ = LH1 −
β

α
·
(
1− Γ(1 + α) · 2−α

)
Appendix A.3. Weibull (W3)

For the L-moments, the parameters for the W3 distribution are obtained using the
following expressions [6,34]:

L1 = γ + β · Γ
(

1 +
1
α

)

L2 = β · Γ
(

1 +
1
α

)
·
(

1− 2−
1
α

)

L3 = β · Γ
(

1 +
1
α

)
·
(

1− 2−
1
α

)
·
(

2 · 2−
1
α − 3−

1
α

2−
1
α − 1

+ 1

)
Parameter α has the following approximate forms depending on τ3:

α =
3.528107902− 6.294082546 · |τ3|+ 2.767652838 · τ2

3

1 + 4.599024923 · |τ3| − 7.993601572 · τ2
3 + 2.423742593 · |τ3|3

β =
L2

Γ
(

1 + 1
α

)
·
(

1− 2−
1
α

)
γ = L1 −

β

α
· Γ
(

1
α

)
For the LH-moments method, the exact equations are:

LH1 = γ− β

α
·
(

Γ
(

1
α

)
· 2−

1
α + 2 · Γ

(
1
α

))

LH2 =
β

2 · α · Γ
(

1
α

)
·
(

31− 1
α + 3− 3 · 21− 1

α

)
LH3 =

2 · β
3 · α · Γ

(
1
α

)
·
(

4 · 31− 1
α + 2− 5 · 2−

2
α − 9 · 2−

1
α

)
Parameter α can be approximate using the next relation depending on τH3:

if 0 < |τH3| ≤ 0.60:

α =
20.52313736− 9.9671098 · |τH3| − 1.50700583 · τH3

2 − 3.19977217 · |τH3|3

1 + 47.75141059 · |τH3|

if 0.60 < |τH3| < 0.89:

α =

11471.15415749− 5766.94134229 · |τH3| − 13559.73486747 · τH3
2−

5023.58871075 · |τH3|3 + 12658.21025603 · τH3
4

1 + 41914.41166725 · |τH3| − 47026.68184896 · τH3
2
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β =
2 · LH2 · α

Γ
(

1
α

)
·
(

31− 1
α + 3− 3 · 21− 1

α

)
γ = LH1 +

β

α
· Γ
(

1
α

)
·
(

2−
1
α − 2

)
Appendix A.4. Generalized Pareto (GP)

For the L-moments method, the parameters are [5–7]:

α =
1− 3 · |τ3|
|τ3|+ 1

β = 2 · L2 ·
(

1− 2 · (3 · |τ3| − 1)

(|τ3|+ 1)2

)

γ = L1 + L2 ·
(

1− 4
|τ3|+ 1

)
For the LH-moments method, the parameters have the following expressions:

α =
4− 12 · |τH3|
3 · |τH3|+ 4

β = 2 · LH2 ·
(

10 ·
(
33 · τ2

H3 − 32 · |τH3|+ 32
)

(3 · |τ3|+ 4)3 − 1

)

γ =
40 · LH1 · (|τ3H | − 2)

(3 · |τ3H |+ 4)2 − LH2 − 3 · LH1

3

Appendix A.5. Rayleigh (RY)

For the L-moments method, the parameters are:

α =
L2 · (3 · |τ3| − 1)

√
π ·
(√

6 +
√

2− 4
)

β = L2 −
α ·
√

π ·
(√

2− 1
)

2

γ = L1 −
α ·
√

2 · π
2

− 2 · β

For the LH-moments method, the parameters have the following expressions:

α =

√
π · (12 · LH3 − 4 · LH2)

π ·
(

15 ·
√

6− 5 ·
√

2− 30
)

β =
4 · LH2 ·

√
π + α · π ·

(
6− 3 ·

√
2−
√

6
)

4 ·
√

π

γ =

√
π · (2 · LH1 − 6 · β) + α · π ·

(
1− 2 ·

√
2
)

2 ·
√

π
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Appendix A.6. Log-Normal (LN3)

For the L- and LH-moments, the parameters are calculated using definite integrals
and the inverse function.

For the L-moments, β can be approximate using the next relations depending on
τ3 [34]:
if 0 < |τ3| ≤ 1

3 :

β = 0.0004379498 + 2.0295824 · |τ3|+ 0.23041762 · τ3
2−

0.92166328 · |τ3|3 + 3.8546644 · τ3
4 − 3.6560389 · |τ3|5

if 1
3 < |τ3| ≤ 2

3 :

β = 0.053943247 + 2.6732827 · |τ3| − 2.9211411 · τ3
2+

7.3388138 · |τ3|3 − 8.1997299 · τ3
4 + 4.3299046 · |τ3|5

if 2
3 < |τ3| < 1:

β =
0.81822527 + 7.818908 · τ4

3 − 8.1529453 · τ8
3 + 0.1554959 · τ12

3

1 + 2.5188862 · τ4
3 − 4.9742123 · τ8

3 + 1.592552 · τ12
3

The parameters α and γ are [6,7]:

α = ln
(

L2

er f (0.5)

)
− β2

2

γ = L1 − exp
(

α + 0.5 · β2
)

For the LH-moments method, the scale parameter β can be approximate using the
next relation depending on τH3:

β =
−0.299614774 + 3.042079635 · |τ3H | − 2.900801018 · τ2

3H

1− 0.933093562 · |τ3H | − 0.64009136 · τ2
3H + 0.51414951 · |τ3H |3

The parameters α and γ are:

α = ln
(

3
2
· LH2

z1

)
γ = LH1 − 2 · exp(α) · z2

where z1 =
1∫

0
exp(β · qnorm(p, 0, 1)) ·

(
3 · p2 − 2 · p

)
· dp, which can be approximated with:

z1 = exp

 −0.4607809 + 2.1250051 · ln(β) + 0.863935 · ln(β)2+

0.5441155 · ln(β)3 + 0.3300339 · ln(β)4 + 0.1507899 · ln(β)5+

0.0409295 · ln(β)6 + 0.0057164 · ln(β)7 + 0.0003153 · ln(β)8


and,

z2 =
1∫

0
exp(β · qnorm(p, 0, 1)) · p · dp, which can be approximated with:

z2 = exp

 0.2270454 + 1.2930085 · ln(β) + 1.0189764 · ln(β)2+

0.6029839 · ln(β)3 + 0.3173155 · ln(β)4 + 0.1468108 · ln(β)5+

0.049679 · ln(β)6 + 0.0104601 · ln(β)7 + 0.0011938 · ln(β)8 + 0.000056 · ln(β)9


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Appendix A.7. Log-Logistic (LL3)

For the L-moments method, the parameters are [6]:

α =
1
|τ3|

β =
L2 · sin(|τ3| · π)

π · τ2
3

γ = L1 −
β · π · τ3

sin(|τ3| · π)

For the LH-moments method, the parameters are:

α =
20

27 · τH3 − 4

β =
4 · LH2 · α · sin

(
π
α

)
3 · π · (α + 1)

γ = LH1 −
β · π · (α + 1)

α2 · sin
(

π
α

)
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