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Abstract: Effective stormwater management in urban areas requires enhancing the permeability of
underlying surfaces. However, the impact of storm characteristics on infiltration processes in sponge
cities remains insufficiently explored. This study uses the Horton method within the storm water
management model to investigate how uniform and Chicago storm parameters affect infiltration
rates. Our findings provide valuable insights: (1) Increasing porous pavement area proportionally
reduces subarea sizes within subcatchments, and infiltration rates of porous pavements are supply-
controlled. (2) Uniform storms result in consistent initial infiltration rates across pervious areas,
subcatchments, and the entire catchment. The duration of this stable state decreases with higher
return periods. Catchment infiltration volumes exhibit linear growth with greater storm intensities
(R-squared = 0.999). (3) Peak infiltration rates and moments for pervious areas, subcatchments, and
the overall catchment exhibit correlations with both the return period and the time-to-peak coefficient,
with correlation coefficients ranging from −0.9914 to 0.9986 and p-values ranging from 0.0334 to
0.6923. This study quantifies the influence of design storm parameters on infiltration, providing
valuable insights for stormwater infrastructure design and urban stormwater control.

Keywords: Chicago storm; Horton; porous pavement; return period; time-to-peak coefficient

1. Introduction

Infiltration, the process of water movement from the surface into the soil and subsur-
face driven by gravity and soil capillarity, plays a vital role in the redistribution of water
resources and significantly impacts various hydrologic processes (e.g., runoff generation [1],
groundwater recharge [2]) in urban catchments. Accurate simulation of infiltration is a
subject of interest in hydrological modeling, particularly in the context of rainfall–runoff
models. Understanding infiltration dynamics and mechanisms in sponge cities, where
low impact development facilities (LIDs) are employed, holds substantial potential to en-
hance urban stormwater modeling and management [3,4]. Sponge cities typically employ
infiltration-based and retention-based strategies. Therefore, gaining insight into infiltration
characteristics is pivotal for comprehending their hydrological responses and achieving
effective stormwater control.

Directly measuring infiltration at a large-scale field is time-consuming, costly, and
subject to significant spatial and temporal variability. Consequently, numerous theoret-
ical and empirical infiltration models have been developed for indirect estimation [5,6].
Infiltration models can be categorized into two types [7]: physically-based equations such
as Horton [8–10], Green–Ampt [11], Soil Conservation Service [12], Swartzendruber [13],
Kostiakov, Kostiakov–Lewis, and Philip; and empirical and data-driven methods including
artificial neural networks [14], support vector machines [15], random-forest models [16],
and Gene Expression Programming [17].

Theoretically, the process of soil infiltration is governed by the Richards equation. The
equation is a highly nonlinear partial differential equation and challenging to solve. So, the
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Storm Water Management Model (SWMM) [18] is used in this study, which employs various
basic algebraic infiltration models that represent the general dependency of infiltration
capacity on soil properties and the volume of water previously infiltrated during a storm
event. There is no consensus over the optimal algebraic infiltration model; that is, the
physically-based infiltration models show varying levels of effectiveness and applicability.
For example, the Horton and Green–Ampt methods underperform the modified Philip’s
model [19]. Therefore, SWMM allows the user to select from five of the most popular
models: the Horton method, the modified Horton method, the Green–Ampt method, the
modified Green–Ampt method, and the Curve Number method.

The Horton method in SWMM is chosen in this paper to synthetically produce infil-
tration data on urban permeable surfaces for three reasons. First, the Horton method, as
the default infiltration model in SWMM, is widely used and offers reliable predictability
for estimating rainwater infiltration into the upper soil zone [20]. For example, the Horton
model outperforms Kostiakov and Philip models in built-up surfaces [21] and in semiarid
regions; the Horton model outperforms the Curve Number method for grass soils [22].
Second, the Horton model often fits experiment data well [23] and has a few parameters
that can be obtained with easy monitoring [24]; in contrast, the fitting accuracy of other
models requires advanced field investigations [25]; for example, the performance of Green–
Ampt model is considerably affected by the monitoring area and hydraulic gradients [26].
Third, our study site is located in a semiarid region [27] where storms predominantly
result in infiltration-excess (or Hortonian) overland flow rather than saturation overland
flow [28].

Infiltration capacity and rate on urban permeable surfaces are influenced by soil
conditions and properties, such as moisture content [29–31] and structure [32]. Additionally,
storm characteristics play a significant role [33]. The Horton method is susceptible to rainfall
intensity [34] and temporal distribution [35,36] in semiarid regions. Our previous studies
have shown that the performance of LIDs generally declines with less frequent and more
intense storms [37], and the time-to-peak coefficient of rainfalls impacts runoffs in sponge
cities [38].

This study’s core focus and novelty reside in investigating how storm parameters
influence infiltration rates. We employ both the Horton and Green–Ampt methods within
SWMM [39]. Notably, the Horton method is applied for permeable surfaces, while the
Green–Ampt method is utilized for modeling LIDs (i.e., porous pavements) in sponge cities.
Our findings unveil the profound influence of storm characteristics on infiltration processes.
These results underscore the potential benefits of augmenting porous pavements and
gaining comprehensive insights into infiltration behavior under various storm scenarios,
ultimately enhancing urban stormwater management practices.

2. Study Area and Data

Our research focuses on the WR8 site (8.5 × 105 m2, Figure 1), an urban drainage basin
in the experimental sponge city of Fengxi, China, designated as a UNESCO Ecohydrology
demonstration site [40]. The climate of WR8 falls under the warm temperate semiarid
continental monsoon classification, characterized by pronounced seasonal variations in
temperature and humidity. Over a year, the region receives a total of 1983.4 sunshine
hours, with an average annual temperature of 13.6 ◦C. Notably, July exhibits the highest
temperatures, averaging 26.8 ◦C, while January is the coldest month, with an average
temperature of −0.5 ◦C. Precipitation displays substantial interannual fluctuations, with
values notably surpassing evaporation. This study area experiences an average annual
precipitation of 552.0 mm (averaged from 1981 to 2016, excluding 1986 and 2011), with a
notable concentration of 50–60% falling between July and September [41]. Additionally, the
average wind speed registers at 1.5 m/s.

WR8 features a prominent loess layer spanning elevations from 380.5 to 384.3 m above
sea level. The soil composition predominantly comprises loamy clay, characterized by a
compact structure with a yellowish-brown appearance, sparsely inhabited by plant roots,
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and punctuated by needle-shaped holes and insect burrows. The groundwater table depth
typically ranges from 10 to 20 m. The land use in the WR8 site encompasses diverse
categories, encompassing parks and green spaces, residential lands, transportation lands,
educational lands, industrial lands, and undeveloped areas. Stormwater finds its way to
the Fenghe River via a designated outfall.

The drainage system in WR8 was mainly designed to accommodate storms with 1- or
2-year return intervals before 2014, resulting in frequent waterlogging events due to inade-
quate drainage capacity. Since then, the region has implemented LID-based stormwater
management technology to mitigate storm-related problems. Numerous porous pave-
ments (PP or permeable pavements, Figure 2) [42,43] have been implemented, covering
134,522 m2, accounting for 15.8% of the total catchment area. PP has a stratified system
including surface, pavement, storage, and underdrain components. Stormwater permeates
each layer vertically. If the drainage rate exceeds the capacity of the underdrain, the water
level will rise until it reaches the ground’s surface, resulting in runoff. The water in PP can
leave the bottom via percolation and evapotranspiration and be routed to a sewer junction
or pervious area via the drain.

Crucial data, including precipitation data, land use, elevation information, details
about storm-related facilities, and surface and pipe flow data, were provided by the Fengxi
New City Management Committee [44]. For analytical purposes, the WR8 site was divided
into nine subcatchments, 21 nodes, and one outfall in SWMM.
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nxi Province, China; (b) Weihe River No. 8 system zone (WR8), Fengxi New City; (c) Infiltration 
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Figure 1. Study area (adapted with permission from Yang et al., 2023 [45]. 2023, Elsevier). (a) Shannxi
Province, China; (b) Weihe River No. 8 system zone (WR8), Fengxi New City; (c) Infiltration
editor in storm water management model (SWMM); (d) Aerial photograph of WR8 overlapped with
SWMM generations.
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3. Methods

To analyze the influence of storm parameters on infiltration dynamics, we have es-
tablished a framework utilizing the SWMM engine in Visual Studio 2022 for conducting
stormwater simulations (Figure 3). In this framework, MATLAB is employed for storm
design. The framework comprises four main components: (1) Designing uniform and
Chicago storms with various parameter values. (2) Executing SWMM simulations to com-
pute the time series of infiltration rates in each subcatchment and their corresponding
subareas. (3) Calculating infiltration statistics, including peak rate, peak time, and volume.
(4) Assessing the impact on the infiltration statistics.
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3.1. Design Storm

The uniform storms were designed according to the duration–intensity–frequency
approach:

q =
a(1 + clgT)
(d + b)n (1)

where q is the average intensity, mm/min; a is the storm coefficient; c is the coefficient
of variation; b is the duration correction factor; n is the attenuation index; T is the return
period, years; d is the duration, min.

The Chicago storms were designed as follows:

i(t) =


(1−n)(tp−t)

r +b( tp−t
r

)n+1 a(1 + clgT), if t ≤ tp

(1−n)(t−tp)
1−r +b( t−tp
1−r

)n+1 a(1 + clgT), if t > tp

(2)

where i(t) is the average intensity at the t-th time-step, mm/min; r is the time-to-peak
coefficient, which is the ratio of the peak time (tp, min) to the duration (d).

For this study, the values chosen are T = 1, 2, 5; r = 0.2, 0.4, or 0.6; d = 120; a = 16.715;
c = 1.1658; b = 16.813; n = 0.9302 [37]. Here are the reasons for each parameter setting:
(1) T = 1, 2, 5: Sponge cities typically design their LIDs to handle storms with short return
periods (usually less than 5 years), as more intense storms exceeding this threshold can lead
to overspending. (2) r = 0.2, 0.4, 0.6: These values are based on local rainfall observations,
where time-to-peak coefficients typically fall within the ranges of 0.1~0.2, 0.3~0.4, and
0.5~0.6. (3) d = 120 min: This duration aligns with urban drainage system standards, which
often focus on short-duration storms. Although a 180-min duration could be considered, we
chose 120 min to emphasize infiltration characteristics. (4) a = 16.715, c = 1.1658, b = 16.813,
n = 0.9302: These parameters are provided by the local weather bureau based on extensive,
long-term rainfall observations.

Storm intensity is the primary factor influencing available water for infiltration, namely
ponded surface water depth. Meanwhile, the temporal distribution of the Chicago storm
is determined by Equation (2). Therefore, our analysis centers on the return period and
time-to-peak coefficient.

3.2. Storm Water Management Model

SWMM stands out among urban stormwater models, rendering it the primary choice
for this study. It offers an extensive suite of capabilities. These encompass infiltration
simulation, surface runoff modeling, hydrological response assessment of LIDs, drainage
network flow calculations, pollutant tracking, treatment evaluation, and overflow predic-
tion [46]. SWMM is versatile, accommodating both single-event and long-term simulations,
and excels in accurately modeling water dynamics within stormwater management [47].
Furthermore, its open-source nature allows for code redevelopment. Within SWMM, di-
verse methods are integrated to facilitate infiltration simulation, including the default
Horton formula and the Green–Ampt method [48].

Table 1 provides an overview of the critical parameter values specifically adopted for
porous pavements in SWMM. These values were derived from experiments and on-site
observations and were provided by the Fengxi Management Committee [49]. These param-
eters are paramount in effectuating precise modeling and simulation of the infiltration and
runoff processes within the catchment [50].



Water 2023, 15, 3367 7 of 19

Table 1. Main parameter values of porous pavement in storm water management model.

Layer Parameter Value Layer Parameter Value

Surface

Berm height (mm) 100 Storage Thickness (mm) 500
Vegetation volume fraction 0 Void ratio (voids/solids) 0.75
Surface roughness 0.01 Seepage rate (mm/h) 1000
Surface slope (percent) 0.5 Clogging factor 0

Pavement

Thickness (mm) 60 Drain Flow coefficient 0.5
Void ratio (voids/solids) 0.15 Flow exponent 0.5
Impervious surface fraction 0 Offset (mm) 0
Permeability (mm/h) 1000 Open level (mm) 6
Clogging factor 0 Closed level (mm) 0
Regeneration interval (days) 0 Control curve 0
Regeneration fraction 0

In pursuit of the most theoretically accurate outcomes, the dynamic wave model
was deliberately chosen from among the routing models in SWMM. This model achieves
heightened precision by solving the one-dimensional Saint Venant equations and adeptly
replicates backwater flow effects by incorporating pipe storage, water return, import and
export losses, and due consideration of countercurrent and pressure flow [51].

In each subcatchment, we derived most parameters through measurements or es-
timations based on underlying surface data and field investigations. These parameters
encompass subcatchment area, imperviousness, slope, roughness, and facility sizes. Cal-
ibration of other SWMM parameters followed two criteria: first, minimizing errors in
simulated outflow time series using Nash–Sutcliffe efficiency (NSE) [52], and second, mini-
mizing errors in simulated peak flow rate using relative error. The parameters subjected to
calibration [53] included subcatchment width, infiltration parameters, depression storage,
and the percentage of runoff routed from impervious to pervious areas. It is important to
note that the values of these parameters were constrained within limits recommended in
the SWMM manual [39] and corroborated by relevant literature.

3.3. Horton Infiltration Method
3.3.1. Governing Equations

The Horton formula has held a pivotal position within SWMM since its first release.
Its classical form utilizes an exponential equation to calculate the reduction in infiltration
capacity over time during rainfall events [54]:

fp = f∞ + ( f0 − f∞)e−kdt (3)

where t is the elapsed time (from the storm onset), h; fp is the infiltration capacity into
the soil, mm/h; f∞ is the minimum (or equilibrium) value of fp at infinite time, mm/min;
f 0 is the maximum (or initial) value of fp at the start of the storm, mm/h; kd is the decay
coefficient, a constant reflecting how fast the infiltration rate decreases over time, 1/h. Soil
conditions primarily influence the values of these parameters. Consequently, the actual
infiltration rate (f ) is determined as the lesser value between the infiltration capacity and
actual storm intensity:

f (t) = min
[

fp(t), i(t)
]

(4)

SWMM uses the integrated form to determine the cumulative infiltration capacity:

F
(
tp
)
=

tp∫
0

fpdt = f∞tp +
( f0 − f∞)

kd
(1 − e−kdtp) (5)
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The actual cumulative infiltration (F) is calculated as follows:

F = f∞tp +
( f0 − f∞)

kd
(1 − e−kdtp) (6)

Estimating the values of f 0, f ∞, and kd for each subcatchment requires considering
the physical properties of the soil and fitting the equation to multiple field or laboratory
datasets from different sites. The value of f 0 is influenced by soil type, initial soil moisture
content, and vegetation conditions, while f ∞, the most sensitive parameter in the Horton
method, corresponds to saturated hydraulic conductivity. The kd value depends on the
soil’s initial moisture content. Additionally, the recovery rate is not considered here due to
the use of design storms with a duration of 120 min for the SWMM simulation.

3.3.2. Computational Scheme in Storm Water Management Model

The SWMM engine employs a computational scheme to calculate infiltration for the
Horton method, as depicted in Figure 3 of Parnas et al. (2021) [55]. The process for
determining the infiltration rate (f ) in a subcatchment during a time step (∆t) under a storm
is outlined as follows:

(1) Input the necessary variables, including rainfall rate (i(t)), ponded surface water depth
(d), equivalent time (tp) on the Horton curve, and constants f 0, f∞, and kd.

(2) Calculate the available storm rate (ia).
(3) If ia equals 0, update the current time (tp) on the infiltration curve and set f to 0.

Otherwise, compute the cumulative infiltration volume using Equations (5) and (6) at
times tp and tp + ∆t.

(4) Calculate the average infiltration rate over the time step.
(5) Update tp and update f using Equation (4).

Subsequently, the following steps are performed for the catchment infiltration calcula-
tion for each time step within the SWMM engine:

(1) Determine if the area is pervious. If it is, apply the Horton formula to calculate the
infiltration rate and volume for the time step. If it is not pervious, set the infiltration
rate and volume to 0.

(2) Check for the presence of LIDs. If one exists, use the Green–Ampt model (allowing
the consideration of surface ponding) to calculate the infiltration rate and volume for
each LID facility. The infiltration volume of the subcatchment is obtained by summing
the infiltration volumes of the pervious area and each LID facility.

(3) Compute the infiltration volume for the entire study area by summing up the infiltra-
tion volumes of each subcatchment.

(4) Determine the infiltration rate for the study area by dividing the infiltration volume
of the study area by the area and time steps.

3.4. Field Investigation

The performance of the Horton model exhibits site-dependent behavior, closely linked
to the soil textures prevalent in the monitoring sites. Soil infiltration monitoring was
conducted at three distinct sites within WR8 in 2017, utilizing a portable double-ring
infiltrometer to generate site infiltration curves [50]. The selected sites for monitoring
included a lawn near Qinhuang Avenue, a wooded area near Xingxian Road, and a barren
area near Tongxin Road, each representing distinct soil textures. Among the five infiltration
models available in SWMM, the Horton model demonstrated superior fitting performance,
as evidenced by its favorable performance across various evaluation metrics. This outcome
underscores the suitability of the Horton model for characterizing infiltration dynamics at
the WR8 site.
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4. Results and Discussion
4.1. Area Changes after Adding Porous Pavements

Table 2 provides an overview of the areas allocated for schemes without porous pave-
ments (no-PP scheme) and schemes with porous pavements (PP scheme). Our observations
revealed that for each subcatchment, an increase of n percent in the PP area resulted in
proportional decreases of np1 percent, np2 percent, and np3 percent in the impervious area
without depression storage, impervious area with depression storage, and pervious area,
respectively. p1, p2, and p3 denote the percentages of the three underlying surfaces in the
no-PP scheme.

Table 2. Areas (m2) of subareas in subcatchments for no porous pavements (no-PP) and porous
pavements (PP) schemes.

Subcatchment Area

No-PP Scheme PP Scheme

IA-NO 1 IA Pervious
Area IA-NO IA Pervious

Area
Porous Pavements

(% 2)

s1 162,329 30,843 92,528 38,958 26,117 78,352 32,990 24,870 (15.3%)
s2 40,384 7673 23,019 9692 6373 19,120 8050 6841 (16.9%)
s3 21,504 4086 12,257 5161 3384 10,153 4275 3692 (17.2%)
s4 27,903 5302 15,905 6696 4861 14,583 6140 2319 (8.3%)
s5 14,799 2812 8435 3552 2233 6700 2821 3045 (20.6%)
s6 118,273 22,472 67,416 28,385 17,157 51,472 21,672 27,972 (23.7%)
s7 202,587 38,492 115,475 48,620 32,579 97,738 41,153 31,117 (15.4%)
s8 153,206 29,109 87,327 36,770 25,750 77,250 32,526 17,680 (11.5%)
s9 104,350 19,827 59,480 25,043 16,599 49,796 20,967 16,988 (16.3%)

Notes: 1 IA-NO represents the impervious area with no depression storage; IA represents the impervious area
with depression storage. 2 Percentage share, namely, the area ratio of porous pavements to the subcatchment.

4.2. Calibration Results of Storm Water Management

The SWMM model underwent calibration using data from three recorded storm
events [38]. Table 3 lists the values of critical parameters for different subcatchments in
SWMM. For the outflow series, the NSE values were 0.63, 0.84, and 0.76, while the relative
errors for peak flow rates were 0.0038, 0.1552, and 0.0153 m3/s, respectively. These results
affirm the effectiveness of SWMM in accurately representing the hydrological processes
within the study area. For additional information concerning the calibration and validation
of SWMM, please refer to Section 3.3 of the study [38].

Table 3. Key parameters for different subcatchments in storm water management model.

Parameter Value

Width (m) 121.7~450.1
Slope (%) 0.5
Imperviousness (%) 0.76
Manning’s n for overland flow in impervious area
Manning’s n for overland flow in pervious area

0.013
0.15

Depression storage in impervious areas (mm) 1
Depression storage in pervious areas (mm) 3.2
Conduit roughness 0.013
Conduit diameter (m) 0.6~2.2
Conduit length (m) 105.0~641.0
Junction elevation (m) 380.6~384.3
Outfall elevation (m) 380.5

The measured minimum infiltration capabilities at the three monitoring sites were 38.5,
94.4, and 118.6 mm/h at 10 degrees Celsius and 45.1, 110.4, and 138.8 mm/h at 20 degrees
Celsius, respectively. These site-specific data were utilized for calibrating the SWMM model
in conjunction with other observed storm-related data, such as storm and outflow time
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series. Consequently, the catchment’s initial infiltration capacity (f 0), minimum infiltration
capacity (f ∞), and decay constant (kd) were estimated at 24.5 mm/h, 3.1 mm/h, and 5 h−1,
respectively.

The soils in WR8 predominantly consist of loamy clays, as mentioned in Section 2.
Following the SWMM manual [40], clay and loam soil exhibit initial capacities of 25.4 and
76.2 mm/h (1 in/h and 3 in/h), respectively. The derived values for the Horton model align
reasonably with those specified in the SWMM manual, thus providing further validation.

While this approach provides valuable information on local infiltration characteristics,
it may capture a fraction of the spatial heterogeneity within the catchment under actual
conditions. Therefore, future research should involve extensive investigations and moni-
toring at various locations, considering the diverse soil textures. Moreover, for improved
calibration of the Horton model in SWMM, minimizing the bias in simulating runoff re-
sponses at point, subcatchment, and catchment scales using measured storm–runoff data
at multiple sites requires further research to reduce uncertainty [36]. By adopting such a
comprehensive approach, we can better elucidate the intricate dynamics of infiltration and
enhance stormwater management strategies.

4.3. Uniform Storm Parameters Impact on Infiltration
4.3.1. Catchment Scale

Figure 4 presents the catchment’s infiltration capacities and intensities under uniform
storms with 120 min and 1-, 2-, or 5-year return periods for porous pavements scheme. The
three uniform storms (yellow bars) featured total depths of 20.7, 27.9, and 37.5 mm, respec-
tively, accompanied by corresponding intensities of 0.1722, 0.2327, and 0.3126 mm/min.
Notably, the depth and intensity of the 2-year (or 5-year) uniform storm were approximately
1.35 times (or 1.81 times) those of the 1-year uniform storm. Importantly, all three storm in-
tensities remained below the maximum infiltration capacity of 0.4083 mm/min (equivalent
to 24.5 mm/h).
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The catchment’s infiltration capacities during the three uniform storms (black dotted
lines in Figure 4) are theoretical values calculated using the Horton method, assuming
sufficient water for infiltration. According to the Horton infiltration theory, when water
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availability is limited, the actual infiltrability may be less than the infiltration capacity
at a given time and for a specific soil. In other words, the infiltration process is either
supply-controlled or profile-controlled. Remarkably, under each uniform storm, the process
initially follows a supply-controlled pattern, transitioning to a profile-controlled state before
returning to a supply-controlled mode.

The catchment’s infiltration rates (red solid lines in Figure 4) offer the following
insights: At the onset of each storm event, the infiltration rates remained constant (0.0622,
0.0840, and 0.1128 mm/min). However, the duration of this steady state was shorter under
more intense storms; knee points were observed on the infiltration rate curves at 21, 11,
and 4 min for the respective storms, indicating that the increased storm intensity led to a
faster filling of soil pores during the initial stages of the infiltration process.

The catchment infiltration volume, determined by applying the definite integral
method to the infiltration rate time series, is illustrated in Figure 5. A linear correlation
emerged between the infiltration volume and the uniform storm intensity. Furthermore, a
precise linear equation was derived to represent this relationship accurately. The observed
pattern can be attributed to higher storm intensities resulting in larger infiltration rate time
series, leading to greater infiltration volumes, as represented by the enclosed area under the
infiltration rate curve. This finding aligns with the observation that cumulative infiltration
exhibited significant variations [3].
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4.3.2. Subcatchment Scale

The infiltration rates within subcatchments, including pervious areas and porous
pavements, were analyzed under uniform storm conditions. Interestingly, the infiltra-
tion rates of pervious areas remained consistent within each subcatchment, regardless of
whether porous pavements were present. Additionally, similar patterns in infiltration rates
were observed across all subcatchments. To illustrate this, we present an example using
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subcatchment s7, depicting the infiltration rates of its subareas under uniform storms with
return periods of 1, 2, or 5 years for the porous pavements scheme, as shown in Figure 6.

Water 2023, 15, x FOR PEER REVIEW 14 of 20 
 

 

 
Figure 6. Infiltration rates (IRs) of pervious area, porous pavements, and subcatchment s7 under 
uniform storms with 120 min duration and 1-, 2-, or 5-year return period for porous pavements 
scheme. 

4.4. Chicago Storm Parameter Impact on Infiltration 
4.4.1. Catchment Scale 

Nine Chicago storms, each lasting 120 min and with return periods of 1, 2, or 5 years, 
and time-to-peak coefficients of 0.2, 0.4, or 0.6, were utilized to calculate the infiltration 
rates in SWMM. The catchment infiltrations are presented in Figure 7, revealing the fol-
lowing observations: 
(1) The infiltration rates (solid lines) peaked simultaneously with the Chicago storms. 

When the storm intensities exceeded the soil infiltrabilities, the infiltration rates 
equaled the infiltrabilities. However, at the onset of the storms, the soil infiltrability 
was not fully satisfied with low storm intensities, leading to gradual increases in the 
infiltration rates until they reached their maximum values during the storm peak. 

(2) The peak infiltration rate exhibits a weak positive correlation with the return period 
and a weak negative correlation with the time-to-peak coefficient. Specifically, under 
the Chicago storm with a time-to-peak coefficient of 0.2, 0.4, or 0.6, the correlation 
coefficients and p-values of the peak infiltration rate concerning the return period are 
0.9814, 0.9816, or 0.9810 and 0.1230, 0.1222, or 0.1224, respectively. Conversely, under 
the Chicago storm with a return period of 1 year, 2 years, or 5 years, the correlation 
coefficients and p-values of the peak infiltration rate regarding the time-to-peak coef-
ficient are −0.9550, −0.9384, or −0.9212 and 0.1918, 0.2247, or 0.2544, respectively. This 
can be attributed to storms peaking later, resulting in higher soil moisture content at 
the storm’s peak, leading to reduced infiltration rates at that specific moment. How-
ever, all p-values exceed 0.05 (i.e., confidence level of 95%), indicating that the ob-
served correlations lack statistical significance. Notably, the peak infiltration rates ex-
hibited only minor changes, consistent with the findings of Fu et al. (2023), who re-
ported that the maximum infiltration rate remained largely consistent [3]. 

(3) The infiltration volumes were calculated, revealing a weak positive correlation with 
the return period. Specifically, under the Chicago storm with a time-to-peak coeffi-
cient of 0.2, 0.4, or 0.6, the correlation coefficients and p-values of infiltration volume 
regarding the return period are 0.9753, 0.9751, or 0.9747, and 0.1418, 0.1423, or 0.1434, 
respectively. Under the Chicago storm with a return period of 1 year, 2 years, or 5 

Figure 6. Infiltration rates (IRs) of pervious area, porous pavements, and subcatchment s7 under uni-
form storms with 120 min duration and 1-, 2-, or 5-year return period for porous pavements scheme.

The analysis of infiltration rates of pervious areas in subcatchment s7 under uniform
storms (green dotted lines in Figure 6) revealed the following: (1) Initially, the infiltration
rate remained constant, then gradually decreased, reached a state of equilibrium (equivalent
to the minimum infiltration capacity), and eventually diminished to zero due to the absence
of available rainwater for infiltration. (2) As the return period increased, the initial values
of the infiltration rate rose and aligned with the corresponding storm intensities (0.1722,
0.2327, and 0.3126 mm/min). This behavior can be attributed to the Horton method, where
the storm intensities were less than the maximum infiltration capacity (0.4083 mm/min,
equivalent to 24.5 mm/h), resulting in infiltration rates equal to the storm intensities.
(3) Higher storm intensities led to faster filling of soil pores, resulting in shorter durations
(20, 11, or 4 min) of constant infiltration rates. (4) The actual infiltration rates may exceed
the infiltration capacities on the Horton curve, as indicated by the green line surpassing the
black line, as seen in Figure 6a, due to the initially inadequate amount of water available
for infiltration.

Turning to the infiltration rates of porous pavements in subcatchment s7 under uni-
form storms (red dotted lines in Figure 6), it was evident that these rates remained con-
stant throughout the storm and were equal to the storm intensities (0.1722, 0.2327, or
0.3126 mm/min). Subsequently, infiltration rates promptly dropped to zero upon the
storm’s cessation. This outcome can be attributed to porous pavements controlling the
stormwater that falls on their surfaces and having sufficient infiltrability to filtrate the
rainfall fully, thus aligning the infiltration rates with the storm intensities.

Moreover, the infiltration rates of subcatchment s7 (blue dotted lines in Figure 6) were
examined, demonstrating similar patterns across different return periods, with higher
return periods resulting in increased infiltration rates. Notably, the infiltration rates of s7
were significantly influenced by the infiltration rates of porous pavements compared with
those of the pervious area. This finding underscores the impact of porous pavements on
overall infiltration dynamics within the subcatchment.

Focusing on the infiltration rates of the catchment (red solid lines in Figure 4), pervious
area (green dotted lines in Figure 6), and s7 (blue dotted lines in Figure 6), we observed
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that the rate of descent in the infiltration rate curve increased with the higher storm return
period. This pattern is consistent with the findings of Mu et al. [27], who reported that the
infiltration rate curve became steeper with increasing rainfall intensity.

4.4. Chicago Storm Parameter Impact on Infiltration
4.4.1. Catchment Scale

Nine Chicago storms, each lasting 120 min and with return periods of 1, 2, or 5 years,
and time-to-peak coefficients of 0.2, 0.4, or 0.6, were utilized to calculate the infiltration
rates in SWMM. The catchment infiltrations are presented in Figure 7, revealing the follow-
ing observations:

(1) The infiltration rates (solid lines) peaked simultaneously with the Chicago storms.
When the storm intensities exceeded the soil infiltrabilities, the infiltration rates
equaled the infiltrabilities. However, at the onset of the storms, the soil infiltrability
was not fully satisfied with low storm intensities, leading to gradual increases in the
infiltration rates until they reached their maximum values during the storm peak.

(2) The peak infiltration rate exhibits a weak positive correlation with the return period
and a weak negative correlation with the time-to-peak coefficient. Specifically, under
the Chicago storm with a time-to-peak coefficient of 0.2, 0.4, or 0.6, the correlation
coefficients and p-values of the peak infiltration rate concerning the return period
are 0.9814, 0.9816, or 0.9810 and 0.1230, 0.1222, or 0.1224, respectively. Conversely,
under the Chicago storm with a return period of 1 year, 2 years, or 5 years, the
correlation coefficients and p-values of the peak infiltration rate regarding the time-
to-peak coefficient are −0.9550, −0.9384, or −0.9212 and 0.1918, 0.2247, or 0.2544,
respectively. This can be attributed to storms peaking later, resulting in higher soil
moisture content at the storm’s peak, leading to reduced infiltration rates at that
specific moment. However, all p-values exceed 0.05 (i.e., confidence level of 95%),
indicating that the observed correlations lack statistical significance. Notably, the
peak infiltration rates exhibited only minor changes, consistent with the findings of
Fu et al. (2023), who reported that the maximum infiltration rate remained largely
consistent [3].

(3) The infiltration volumes were calculated, revealing a weak positive correlation with
the return period. Specifically, under the Chicago storm with a time-to-peak coefficient
of 0.2, 0.4, or 0.6, the correlation coefficients and p-values of infiltration volume
regarding the return period are 0.9753, 0.9751, or 0.9747, and 0.1418, 0.1423, or 0.1434,
respectively. Under the Chicago storm with a return period of 1 year, 2 years, or
5 years, the correlation coefficients and p-values of infiltration volume concerning the
time-to-peak coefficient are −0.9350, −0.4647, or 0.7040, and 0.2307, 0.6923, or 0.5027,
respectively. Significantly, these p-values exceed 0.05, indicating a lack of statistical
significance in the observed correlations.

4.4.2. Subcatchment Scale

The infiltration rates of the pervious area under Chicago storms for the no-PP and PP
schemes were identical. Thus, the infiltration processes in subcatchment s7 under Chicago
storms with different return periods and peak-to-time coefficients were examined as an
illustrative example. Figure 8 presents the infiltration rates of the pervious area, porous
pavements, and subcatchment s7 under Chicago storms with 1-, 2-, or 5-year return periods
and a peak-to-time coefficient of 0.4 for the porous pavement scheme.

The infiltration rates of the pervious area in s7 (green dotted lines in Figure 8) demon-
strated that: (1) Initially, the infiltration rate increased and then decreased. During the early
stages of the storms, the soil infiltrabilities exceeded the storm intensities, resulting in the
infiltration rates being equal to the storm intensities. As the storm intensities increased and
the infiltrabilities decreased, the infiltration rates peaked when these two values became
equal. Subsequently, as the storm intensities continued to rise and surpass the infiltrabilities,
the infiltration rates became equal to the infiltrabilities. As the infiltrabilities decreased
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further, the infiltration rates equaled the minimum infiltration capacity until the water-
input rates reached zero, resulting in an infiltration rate of zero. (2) With increasing return
periods, the peak infiltration rates varied (0.2077, 0.1966, 0.1974 mm/min), and the timing
occurred earlier (38, 34, 30 min). These peak infiltration moments were earlier than the
peak storm (48 min). A non-significant negative correlation was observed between peak
infiltration rates and the return period (correlation coefficient = −0.6426, p-value = 0.5557).
Similarly, a weak negative correlation was identified between peak infiltration moments
and the return period (correlation coefficient = −0.9608, p-value = 0.1789).
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The infiltration rates of porous pavements in s7 (red dotted lines in Figure 8) provided
the following insights: The infiltration rates equaled the storm intensities at any given time
and immediately dropped to zero at the storm’s end.

In addition, the infiltration rates of subcatchment s7 (blue dotted lines) generally
followed the patterns of storm intensities, initially increasing and then decreasing. They
may exceeded those of the pervious area when the infiltration rates of porous pavements
were significant, resulting in larger catchment infiltration rates after area-weighted aver-
aging. As the return period increased, the peak infiltration rates varied (0.1794, 0.2303,
0.2998 mm/min). A weak positive correlation was identified between the peak infiltration
rates and the return period (correlation coefficient = 0.9817, p-value = 0.12).

Figure 9 illustrates the infiltration rates of the pervious area, porous pavements, and
subcatchment s7 under Chicago storms, with a duration of 120 min, a 5-year return period,
and time-to-peak coefficients of 0.2, 0.4, or 0.6 for the porous pavement scheme. The
5-year return period was chosen for analysis because it exhibited similar patterns to other
return periods.
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Chicago storm with 120 min duration, 5-year return period, and 0.2, 0.4, or 0.6 time-to-peak coefficient
(denote as r) for porous pavement scheme.

Our findings regarding the infiltrations of the pervious area (green dotted lines) reveal
that a larger time-to-peak coefficient (0.2, 0.4, 0.6) resulted in a smaller peak infiltration
rate (0.2593, 0.1974, 0.1585 mm/min) and a longer time to reach the peak infiltration
rate (18, 30, 40 min). This observation can be attributed to the fact that with a larger
time-to-peak coefficient, the cumulative precipitation at any given time before 72 min
(time-to-peak coefficient of 0.6) was smaller, leading to smaller soil water content. A weak
negative correlation was observed between the peak infiltration rates and the time-to-
peak coefficient (correlation coefficient = −0.9914, p-value = 0.08). Conversely, there is a
positive correlation between the peak infiltration moments and the time-to-peak coefficient
(correlation coefficient = 0.9986, p-value = 0.0334).

On the other hand, the infiltration rates of subcatchment s7 (blue dotted lines) reached
their peaks (0.3398, 0.3099, 0.3053 mm/min) at 25, 49, and 72 min, respectively. The peak
moments of infiltrations aligned with or were close to those of the storms. There is a
weak negative correlation between the peak infiltration rates and time-to-peak coefficient
(correlation coefficient = −0.9220 and p-value = 0.25).
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The Horton Model is sensitive to rainfall intensity throughout the simulation, and
storm intensity and temporal distribution are crucial for accurate runoff prediction [36].
Our findings show that parameters like the Chicago storm’s return periods and time-to-
peak coefficient significantly impact infiltration simulation results in SWMM for sponge
cities. These observations support previous research by [35].

5. Conclusions

This research examined storm parameters’ impact on infiltration within a sponge city,
particularly the return period and time-to-peak coefficient. Within the SWMM framework,
the Horton and Green–Ampt infiltration models were employed for the pervious areas of
subcatchments and porous pavements, respectively. We concluded that:

(1) Increasing the area of porous pavements results in proportional reductions in the
impervious area without depression storage, the impervious area with depression
storage, and the pervious area based on their initial area ratios. The infiltration rates
of porous pavements under uniform and Chicago storms were supply-controlled.

(2) The infiltration rates of the pervious areas, subcatchments, and catchment under
uniform storms exhibit a consistent initial stage, with the duration of this steady state
becoming shorter as the return period increases. The catchment infiltration volumes
demonstrate a linear growth trend with higher uniform storm intensities.

(3) The peak infiltration rate within pervious areas exhibits a non-significant negative
correlation with the return period, while those within subcatchments and the overall
catchment display non-significant positive correlations with the return period. The
peak infiltration rate for pervious areas, subcatchments, and the catchment demon-
strates non-significant negative correlations with the time-to-peak coefficient.

(4) The peak infiltration moments within pervious areas show non-significant negative
correlations with the return period and non-significant positive correlations with the
time-to-peak coefficient. Infiltration rates of porous pavements, subcatchments, and
the overall catchment peak simultaneously to Chicago storms.

Our findings significantly advance the understanding and prediction of soil infiltra-
tion rates within sponge cities. Notably, our results underscore the critical importance
of integrating considerations related to return periods and time-to-peak coefficients into
infiltration analyses and the planning of infiltration-based facilities. We strongly recom-
mend the implementation of porous pavements alongside impervious surfaces to facilitate
the infiltration of runoff. It is imperative to recognize the diverse infiltration patterns
that manifest under different storm scenarios, as they should inform the adaptive design,
planning, and management of porous pavements. The effectiveness of these systems is sub-
stantially influenced by the characteristics of the rainfall events they encounter. Therefore,
optimizing porous pavement locations and properties should be tailored to the local rainfall
characteristics. Furthermore, it is worth noting that porous pavements exhibit enhanced
performance when dealing with rainfall events characterized by larger time-to-peak coeffi-
cients. Consequently, retention-based solutions should be emphasized as an alternative
strategy to mitigate the impacts of such rainfall events.

Nonetheless, it is crucial to recognize the limitations of our study. Specifically, despite
its widespread application, the Horton model does not account for the effect of cumulative
water layer depth on infiltration intensity, a consideration addressed by the Green–Ampt
model. Additional advances are required for greater applicability, especially facilitating con-
tinuous simulations that include ponding and non-ponding conditions. Also, we advocate
examining the dynamic connections between soil properties, storm events, runoff dynamics,
and the effect of vegetation coverage in light of future research priorities. Furthermore,
invaluable would be an investigation of the Hortonian overland flow mechanism and
extensive field measurements to investigate the spatiotemporal heterogeneity of infiltration
capacity and intensity across the catchment. These future attempts are anticipated to yield
a thorough understanding of infiltration mechanisms, enabling the design of sustainable ur-
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ban infrastructure that effectively manages stormwater, reduces flood risks, and encourages
water conservation.
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