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Abstract: Groundwater is an essential resource for drinking water, but its contamination with poten-
tially toxic elements and arsenic (As) is a global issue. To evaluate As and its levels in the Coachella
Valley, the US Geological Survey (USGS) collected 17 groundwater samples. This study looked into
the arsenic distribution, enrichment, hydrogeochemical behavior, and health risks associated with the
samples. The comparative analysis between groundwater contamination in Greater Palm Springs and
similar regions, could provide valuable insights into regional differences and common challenges. The
hydrogeochemical facies showed the dominance of calcium and magnesium-bicarbonate-carbonate,
indicating permanent hardness and salt deposits of residual carbonate. The Gibbs plot demonstrated
that chemical weathering of rock-forming minerals and evaporation are the primary forces impact-
ing groundwater chemistry. Geochemical modeling revealed saturation for calcite and dolomite,
and under-saturation for halite. Principal component analysis identified the potential contributory
sources for contamination of groundwater. The carcinogenic and non-carcinogenic potentials of the
toxic elements arsenic, cadmium, chromium (VI), and lead were calculated using a human health
risk assessment model. For both adults and children, the highest non-carcinogenic mean value
was observed for arsenic (8.52 × 10−1), with the lowest for cadmium (1.32 × 10−3). Children had
the highest cumulative non-carcinogenic risk from potentially toxic elements. Our research offers
crucial baseline data for assessing arsenic in groundwater at the regional level, which is important for
health risk reduction and remediation programs. The data show that preventative action must be
taken to reduce the potential health risks in the study area from drinking groundwater, particularly
for children.

Keywords: groundwater; hydro-geochemistry; geochemical modeling; health risk

1. Introduction

Groundwater (GW) is a vital resource that is essential for sustaining life on Earth, but
chemical and microbial contamination are challenging issues in the protection of ground-
water [1]. Groundwater has received much attention due to its exposure to contamination,
including from potentially toxic elements (PTEs) that are persistent in the environment
worldwide. This is an extremely important issue, and to ensure clean drinking water
supplies assessment of groundwater is vitally important [2]. A recent study [3] utilized
several types of machine-learning software to visualize the spatial distribution of PTEs
for hazards to GW quality on a regional scale and suggested an extensive study for GW
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quality. Complete evaluation of groundwater for multiple purposes will be challenging.
However, several pieces of literature that consider limited purposes are available [4–6].
Comparing studies [7,8] concluded that water risk assessment is an effective tool for water
management, and global warming, and anthropogenic activities contribute to groundwater
contamination, which has a significant impact on human health and ecological services.

The occurrence of PTEs, such as As, Pb, Cd, and Cr, in groundwater of the top
most productive countries for research, including the USA, China, Pakistan, India, and
Germany [9], were recorded as 4.10, 0.47, 0.05, and 0.52 ppb [10], respectively. Whereas in
China, India, and Germany 2.0, 0.9, 5.0, and 4.0 ppb [11], As 8.61 ppb [12], Pb 196.15, Cd
10.11, and Cr 187.12 ppb [13] and the maximum concentrations as (µg L−1) of As, Pb, Cd
were 35, 10, 21 in Germany [14]. Arsenic is a toxic metalloid found in groundwater that
comes from natural sources as well as geogenic sources. There are about 150 million people
throughout the world who are at risk of being exposed to increased levels of pollution
in their drinking water. The carcinogenic effects can result in cancer of multiple organs,
kidney failure, lung infections, hair loss, and skin diseases. The ingestion of As, even in
trace amounts, has been associated with an elevated risk of cancer in humans according to
a number of studies. It has been established that groundwater in Argentina, Bangladesh,
Chile, China, Hungary, West Bengal (India), Mexico, Taiwan, Vietnam, and many portions
of the United States contains high elevated concentrations of polluted arsenic (more than
50 g L−1). The release of dissolved ionic species into groundwater is a vast and significant
source of concern in many different locations.

As is the most discussed potentially toxic element [15], which acts as the most potential
carcinogen [16]. Millions of people are exposed to high As doses via drinking water, while
successful implementation of As mitigation strategies requires public engagement [17].

Along with PTEs, contamination in GW may also be defined by elemental composition,
physicochemical parameters, and stable isotope measurements. Elemental composition,
including cations and anions, along with physicochemical variables, such as pH, total
dissolved solids (TDS), and electrical conductivity, have previously been reported by [18].
However, GW is probably rich in isotopes [19].

This study explores the groundwater used for drinking water supplies and domestic
purposes in Coachella Valley, California, which has one of the highest contamination
levels of PTEs namely As, Cd, Cr, and Pb. This study also explored the characteristics of
Coachella Valley groundwater based on a statistical analysis of physicochemical parameters,
including PTE contamination resulting in carcinogenic and non-carcinogenic risk through
the human health risk assessment model (HHRA model), to analyze the suitability of water
for drinking purposes [20]. Moreover, the results demonstrate the potential health effects on
humans in order to determine prevention and mitigation measures for a sufficient drinking
water supply.

The objectives of this study are of great importance for Coachella Valley, California,
given its geographic location and the nature of the water sources. First, the concentration
of arsenic, fluoride, and PTEs in the groundwater needs to be investigated in order to
properly identify the water quality status. Second, the origin of the groundwater should
be assessed to understand the enrichment mechanisms for water contamination. Finally,
the health risks of the water should be calculated for both children and adults living in the
area using the US Environmental Protection Agency (EPA) equation, as this is a key factor
in ensuring the safety of the local population. Ultimately, the findings of this study will
provide valuable insight into the groundwater management of Coachella Valley, California.

2. Materials and Methods
2.1. Study Area

Coachella Valley, which encompasses some of California’s fastest expanding towns,
stretches 72 km southeast of the San Bernardino Mountains to the Salton Sea, which is
24 km wide. The elevation of the valley floor ranges from 1600 feet (490 m) above sea
level at the northern end to 250 feet (76 m) below sea level around the community of
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Mecca. The rainwater serves as recharge sources for the aquifer. The population of the
valley varies between 500,000 in April, 200,000 in July, and 800,000 in January. The valley
is bounded on the west by the San Jacinto Mountains and the Santa Rosa Mountains, on
the north and east by the Little San Bernardino Mountains, and on the north by the Salton
Trough, which includes the Salton Sea. Because of its pleasant weather, palm trees, and
snowbirds, the valley is well-known as a winter resort destination. During the winter,
daytime temperatures vary from 20 ◦C to 31 ◦C, and night-time lows range from 8 ◦C to
18 ◦C, with the majority of the precipitation occurring in winter. In the summer, daytime
temperatures range from 40 ◦C to 44 ◦C, and night-time lows range from 24 ◦C to 30 ◦C.
Los Angeles and San Diego receive their drinking water from the valley. In addition, the
valley generates agricultural products, including fruits and vegetables, which were worth
over USD 600 million in 2010.

2.2. Collection and Analysis of Groundwater Samples

The standard data for 17 groundwater samples were collected from 17 wells by the
US Geological Survey (USGS) at different sites in 2021 (Figure 1) in the Indio sub-basin,
Coachella Valley, California [21]. The samples were analyzed for water quality parameters,
ionic species, PTEs, isotope ratios, and noble gases. Groundwater samples were character-
ized considering various sample times and dates, altitude of the land-surface datum (LSD)
(feet), depth to the top of the perforated or open interval (feet below LSD), depth to the
bottom of the perforated or open interval (feet below LSD), and the well depth (feet below
LSD) (Table S1).
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The pH, electrical conductivity (EC), total dissolved solids (TDS), total hardness (TH),
and turbidity were evaluated in the study area using the multi-parameter analyzer (Hanna
HI9829, Hanna Instruments, Smithfield, RI, USA). The samples were examined for signifi-
cant anions, such as NO3−, SO4

2−, and PO4
3−, using a UV-VIS spectrophotometer (EMC

Lab Instruments, Duisburg, Germany). The concentration of F− was determined using
“Mohr’s method and Fluoride Analyzer” ISE (ion-selective electrode). Bicarbonate (HCO3

−)
and chloride (Cl−) were determined using titration. Calcium (Ca2+) and magnesium (Mg2+)
concentrations were measured by volumetric titration with ethylenediaminetetra-acetic
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acid. A flame photometer was used to measure sodium (Na+) and potassium (K+) con-
centrations. Iodine (I) was measured by benchtop photometers and arsenic (As) was
determined in the samples using an atomic absorption spectrophotometer.

To check the accuracy of the results, the charge balance error (CBE) for each sample was
calculated using Equation (1) (ionic concentrations are measured in meq/L). Groundwater
samples containing ±5% CBE were chosen for further analysis.

%CBE =
[∑ cations − ∑ anions]
[∑ cations + ∑ anions]

× 100 (1)

2.3. Statistical Analysis

Statistical analysis of groundwater physicochemical parameters is shown as a range,
mean, and standard deviation is compared to the world health organization (WHO 2011)
standards [22]. To evaluate the factors influencing groundwater quality, statistical analyses,
such as Pearson correlations and principal component analysis (PCA), were performed
using XLSTAT 2019 (XLSTAT, Paris, France) and Origin version 2022 for Windows 10
(Microsoft, Redmond, WA, USA). For the prevalent groundwater chemistry, a Piper di-
agram [23] was drawn using Golden Software Grapher 18.3 (Golden Software, Golden,
CO, USA) for the dominant groundwater chemistry. The Origin version 19 Gibbs plot [24]
describes the effects of rock–water interaction, evaporation, and precipitation.

2.3.1. Geochemical Modeling

The mineral saturation levels were calculated using the PHREEQC version 2.0 software
program (USGS) [25]. The saturation index (SI) was used to show that the properties of the
representative mineral phases, such as calcite, dolomite, gypsum, and halite, are essential
in the region under study. Equation (2) was used to determine the SI, which describes the
thermodynamic tendency of minerals to precipitate or dissolve:

SI = log (IAP⁄Ksp) = logIAP − logKsp (2)

IAP denotes the ion activity product for dissociated species in solution, and Ksp
denotes the equilibrium solubility product for compounds involved at sample temperature.
When SI = 0, this indicates a hydrochemical equilibrium state, whereas negative and
positive values for SI indicate mineral undersaturation and oversaturation, respectively.

2.3.2. Human Health Risk Assessment Model (HHRAM)

The United State Environmental Protection Agency (US-EPA) proposed that public
health concerns quantify the potential health effects of drinking PTE contaminated ground-
water [26]. The HHRA model was used to evaluate the toxicity of PTE levels found in
contaminated Coachella Valley groundwater [27]. The calculated values for As, Cr, Pb, and
Cd are given in Supplementary Table S2. The ingestion rate for children and adults exposed
to PTEs from groundwater in terms of daily metal intake (DMI) was calculated according
to Equation (3). The hazard quotient (HQ) was used to calculate the non-carcinogenic
risk according to Equation (4). In contrast, the cancer risk assessment determined the
carcinogenic risk (CR) according to Equation (5) [28].

DMI_ingestion = C × (EF × ED × IngR)/(BW × AT) × 10−3 (3)

HQ = DMI/RfD (4)

Risk (CR) = DMI × CSF (5)

The DMI (in mg−1 kg−1 day−1) indicates the PTE levels in groundwater in Coachella Valley.
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3. Results
3.1. Characteristics of Coachella Valley Groundwater

Table 1 summarizes the basic parameters for Coachella Valley groundwater, such as
depth, pH, TDS, dissolved oxygen (DO), temperature, and specific conductance (SC). For
all the Coachella Valley groundwater samples, groundwater depth ranged from 215 to
1475 feet, and pH values ranged from 7.3 to 9.3, with a mean value of 8, indicating that the
groundwater in nature is neutral to alkaline [28]. The TDS levels in the samples ranged
from 163 to 11,800 mg L−1, with a mean value of 2634.1 mg L−1. Ions leaching into the
groundwater system could cause elevated values of TDS [29]. DO concentrations ranged
from 0.2 to 13.1 mg L−1 in all selected Coachella Valley groundwater samples, with a mean
value of 5.3 mg L−1. The temperature range was found to be 20–31 ◦C, with a mean value
of 24.8 ◦C, indicating an enhanced rate of pollutant uptake due to higher physiological
activity and decreased oxygen solubility [30]. The current investigation also observed high
and low values for SC of 18,800 µS cm−1 and 283 µS cm−1.

Table 1. Summary of statistics of measured field parameters in groundwater in the Indio Sub-basin
of the Coachella Valley, California (n = 17).

Field Parameters Range Mean ± SD WHO (2011)

Depth (feet) 215–1475 567.06 ± 358 -
pH 7.3–9.3 8 ± 0.6 6.5–9.2

TDS (mg L−1) 163–11,800 1250.1 ± 2634.1 1000
DO (mg L−1) 0.2–13.1 5.3 ± 4.1

Temperature (◦C) 10.6–31 24.8 ± 5.1 20–50
SC (µS cm−1) 283–18,800 1929.3 ± 4169.5 400,000

All the field parameters for the groundwater samples revealed that the pH and tem-
perature were within the WHO allowable limits [22], whereas 3 of the 17 wells had high
TDS values, suggesting a high concentration of dissolved ions [31]. This can cause gastroin-
testinal discomfort in humans by lowering palatability [32]. DO levels were found to be
low in nine of the wells and increased in three wells.

3.2. Concentration of Dissolved Components

Table 2 summarizes the concentrations of dissolved components in groundwater
from Coachella Valley. Anion concentrations for Br−, Cl−, F−, I−, SO4

2−, ClO4
−, HCO3

−,
CO3

2−, and NO3
− were in the ranges 0.02–8.5, 5.9–6840, 0.1–6.8, 0.001–1.3, 13.6–1570,

0.15–4.4 mg L−1, and 22.9–236, 0.1–8.1, and 0.4–16.8 mg L−1, respectively, with a mean
content of 0.6, 497.7, 1.3, 0.1, 268.6, 1 mg L−1, and 118.2, 1.5, and 4.14 mg L−1. The high
concentration of Br-, was previously reported by [33], suggests that salinity increases as the
Na+ and Cl− concentration increases. The range of SO4

2− surpassed WHO limits and can
result in laxative effects in humans, while the lower concentration of F−, in 10 out of the
17 wells, indicates fluoride deficiency, which can result in weak bones and teeth [34]. The
availability of anions was shown to occur in the following order: SO4

− > HCO3
− > NO3

−

> F− > CO3
2− > ClO4

− > Br− > I.
The concentration range of the major cations, namely, Ca2+, Mg2+, K+, and Na+, in

groundwater from Coachella Valley was 2.1–1350, 0.04–107, 0.5–21.9, and 28.1–2670 mg L−1,
with a mean concentration of 161.1, 16.5, 6.2, and 268.2 mg L−1, respectively. According
to WHO 2011, the permitted limits for Ca2+, Mg2+, K+, and Na+ are 100, 50, 12, and
200 mg L−1, respectively, thus the predominance of the cations in the groundwater samples
is in the following order: Ca2+ > Na+ > K+ > Mg2+, as previously reported for the Southern
Gangetic Plain by [35]. Because of the high concentration of Na+ found in the current
investigation, weathering of silicate rocks and processes of ion exchange with clay were also
confirmed. In contrast, the average Mg2+ and K+ concentrations are within the permitted
range. The general trend in the order of both types of ionic species was determined to be as
follows: Cl− > Ca2+ > Na+ > Br− > F− > HCO3

− > K+ > Mg2+ > CO3
2− > NO3

− > ClO4
− > I−.
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Table 2. Summary of concentrations of dissolved components measured in groundwater in the Indio
Sub-basin of the Coachella Valley, California (n = 17).

Parameter Range * Mean ± SD WHO (2011)

Ca2+ 2.1–1350 161.1 ± 319.2 100
Mg2+ 0.04–107 16.5 ± 24.7 50

K+ 0.5–21.9 6.2 ± 5.2 12
SiO2 12.1–25.6 18 ± 4.1 -
Na+ 28.1–2670 268.2 ± 631.8 200
Br− 0.02–8.5 0.6 ± 2 0.01
Cl− 5.9–6840 497.7 ± 1637.7 >250
F− 0.1–6.8 1.3 ± 1.7 1.5
I− 0.001–1.3 0.1 ± 0.3 1

SO4
2− 13.6–1570 268.6 ± 360 500

Al 9–45 9 ± 16.6 900
Sb 0.123–0.4 0.04 ± 0.1 0.02
Ba 1.6–248 65.3 ± 64.7 0.7
B 22–940 184.4 ± 251.1 2.4
Fe 5.1–334 29.9 ± 80.5 300

ClO4
− 0.15–4.4 1 ± 1.4 -

CaCO3 18.9–194 99.6 ± 47.2 40
HCO3

− 22.9–236 118.2 ± 58.2 -
CO3

2− 0.1–8.1 1.5 ± 2.6 -
NO3

− 0.4–16.8 4.14 ± 5.9 50

Note: * All units in mg L−1, except Al, Fe, and ClO4
− in µg L−1.

Elements such as SiO2, Al, Sb, Ba, B, Fe, and CaCO3 ranged in concentration from
12.1–25.6, 9–45, 0.123–0.4, 1.6–248, 22–940, 5.1–334 mg L−1, and 18.9–194 mg L−1 with
mean values of 18, 9, 0.04, 65.3, 184.4, 29.9 mg L−1, and 99.6 mg L−1, respectively (Table 2).
Antimony (Sb), Ba, B, and CaCO3 all exceeded the WHO limits. At the same time, Al and
Fe were found to be within the WHO limits [22]. The elements followed the trend of B > Ba
> CaCO3 > Sb > Fe > Al.

3.3. PTE Distribution in Coachella Valley Groundwater

The concentration ranges for the PTEs (As, Cd, Cr VI, and Pb) were 0.1–125, 0.033–0.32 mg L−1,
0.05–37.1, and 0.02–0.75 µg L−1, with mean concentrations of 21.3, 0.05 mg L−1, 5.40, and
0.12 µg L−1, respectively (Table 3). The concentration of PTEs increased according to the
following trend: As > Cd > Cr(VI) > Pb. Thus, 16 out of the 17 samples have an excess level
of As, and 7 samples have an excess level of Cd, according to the WHO criteria [22]. The
highest levels of As and Cd (125, 0.32 mg L−1) were found at a depth of 700 feet, while the
lowest levels of As (0.1 mg L−1) and Cd (0.033 mg L−1) were found at 500, 590, 600, 775,
1129, and 1475 feet. Both Cr and Pb were found to be within acceptable limits.

Table 3. Summary of concentrations of heavy metals measured in the groundwater in the Indio
Sub-basin of the Coachella Valley, California (n = 17).

Heavy Metal Range * Mean ± SD WHO (2011)

As 0.1–125 21.3 ± 39.4 0.01
Cd 0.033–0.32 0.05 ± 0.08 0.05

Cr(VI) 0.05–37.1 5.40 ± 9.05 50
Pb 0.02–0.75 0.12 ± 0.21 10

Note: * As and Cd units in mg L−1 while Cr and Pb are in µg L−1.

3.4. Geochemical Evolution of Groundwater
3.4.1. Geochemical Facies of Groundwater

Hydrogeochemical facies refer to the amounts of water that differ in their chemical
composition based on solution dynamics, rock–water interactions, geology, and pollution
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sources. Ref. [23] discovered a simple method for classifying and comparing groundwa-
ter chemistry by displaying the chemical data on a trilinear diagram (Figure 2). Based
on the ionic composition, six major varieties of water were identified. The majority of
groundwater samples were from the first zone (Ca2+ + Mg2+–HCO3

− + CO3
2−) and the

fifth zone (i.e., mixed-type Ca2+Mg2+Cl−), with only one sample from the second (Na+

+ K+–HCO3
− + CO3

2−) and fourth (Ca2+ + Mg2+–SO4
2− + Cl−) regions, indicating that

the groundwater possesses permanent hardness and salt deposits of residual carbonate,
which causes foaming. The left side of the Piper diagram reveals that most of the samples
are in the D and B zones, whereas the majority of the samples on the right side are in
series at the bottom in the E, D, and G zones, with no samples in the F zone. As a result,
groundwater is dominated by Ca2+, Mg2+, HCO3

−, and Cl−, indicating ion exchange and
silicate weathering [36,37]. A Gibbs plot was used to further investigate these findings.
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3.4.2. Hydrogeochemical Processes

To determine the effects of water–rock interaction, evaporation, and precipitation on
the groundwater chemistry, a Gibbs plot [24] of TDS versus the weight ratios of Na+/(Na+

+ Ca2+) Figure 3a and TDS versus the weight ratios Cl−/Cl− + HCO3
− were produced, as

shown in Figure 3b. The findings from this plot suggest that the main factors impacting
groundwater chemistry in the area examined are chemical weathering of rock-forming
minerals and, to a lesser degree, evaporation. Chemical weathering and human activities
enhance evaporation, which raises the TDS levels. As a result, samples tend to move from
the rock-dominant region to the evaporation zone [38–40].
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3.4.3. Mineral Saturation Index

Table S3 and Figure 4 show the saturation index values of the carbonate minerals,
such as calcite, dolomite, gypsum, and halite minerals. Carbonate concentrations result
from the presence of carbonate in the soil zone formed by weathering of geological min-
erals. Because the minerals calcite and dolomite are precipitated, the source of minerals
with unsaturation (SI < 0) are halite (NaCl), with an average value of −3.57322, and
dolomite [(CaMg(CO3)2], with an average −0.738. These mineral phases exhibiting neg-
ative SI values are unlikely to precipitate, but their dissolution may play an important
role in releasing primary contaminants into the aquifer. By contrast, the oversaturation
(SI > 0) with calcite (CaCO3), with an average of 0.164, and gypsum (CaSO4·2H2O), with
an average of 0.702, indicates that the mineral is supersaturated and tends to precipitate in
the groundwater [41].
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3.5. Principal Component Analysis and Pearson Correlation Analysis

To evaluate all the geochemical processes occurring in the groundwater samples, the
correlation coefficient values (r) in the groundwater for drinking were calculated using an
efficient Pearson’s formula [42]. Table 4 exhibits the PCA results for n = 17 groundwater
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samples. PCA multilinear regression (PCA-MLR) was used in this study to extract five
principal components (factors) based on eigenvalues (eigenvalue > 1) and total variance.
The PCA results yielded three factors (F1, F2, and F3). With an eigenvalue of 26.69, these
three rotating principal component factors explained 77.80% of the variance (Figure 5a,b).

Table 4. Factor loading for groundwater physicochemical parameters in the study area. Bold values
in the table represent higher loading values.

Parameters F1 F2 F3

pH −0.065 0.934 −0.046
TDS 0.994 −0.073 −0.070
DO −0.391 −0.722 −0.071

Temperature 0.453 0.796 0.115
SC 0.991 −0.079 −0.105

Ca2+ 0.982 −0.138 −0.085
Mg2+ 0.911 −0.299 −0.187

K+ 0.804 −0.409 0.125
SiO2 −0.133 −0.564 −0.392
Na+ 0.993 −0.025 −0.096
Br− 0.963 −0.085 −0.229
Cl− 0.970 −0.077 −0.214
F− 0.142 0.790 −0.021
I− 0.989 0.014 −0.131

SO4
2− 0.351 0.063 0.776

Al −0.188 0.884 −0.377
Sb −0.141 0.755 −0.377
As 0.059 0.875 −0.445
Ba 0.639 −0.537 −0.361
B 0.915 0.171 0.237

Cd 0.082 0.523 0.592
Cr −0.113 −0.159 0.454
Fe 0.992 −0.012 −0.102
Pb −0.200 −0.248 −0.123

ClO4
− −0.222 −0.386 0.073

HCO3
− −0.560 −0.505 −0.428

CO3
2− −0.191 0.871 −0.397

CaCO3 −0.585 −0.427 −0.470
NO3

− −0.247 −0.466 −0.091
Eigenvalue 12.905 7.634 2.802

Variability (%) 43.017 25.446 9.339
Cumulative (%) 43.017 68.463 77.802
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F1 variability was 43.02%, with eigenvalues of 12.905. TDS (0.994), SC (0.991), Ca
(0.982), Mg (0.911), K (0.804), Na (0.993), Br (0.963), Cl (0.970), I (0.989), B (0.915), Fe (0.992),
and Li (0.994) all had high positive loading. Factor F1 was dominated by groundwater
variables, revealing their genesis from geogenic sources, weathering of acidic, mafic, and
sulfide rocks, water–rock interaction, and ion exchange processes [43].

F2 explained 25.45% of the variance, with eigenvalues of 7.634, and a strong positive
loading for pH (0.934), temperature (0.796), F (0.790), Al (0.884), Sb (0.755), As (0.875), Cd
(0.523), and CO3

2− (0.871). The high loading of pH and temperature in the study area
influences the As, F, and other parameters. Factor F2 originates from anthropogenic sources.
namely effluent from steel industry and wood industries [44].

F3 explained 9.34% of the variance, with eigenvalues of 2.802. This indicates that there
is no factor with a high load. Except for SO4

2− (0.776) and Cd (0.592), almost all factors were
in the negative or very low factor loading range, indicating that anthropogenic activities,
such as sewage, landfill, metal industry, and mining may contaminate the groundwater [45].
F1 and F2 are the main high-loading factors; thus, these factors were built in a biplot and
demonstrated 68.46% variability (Figure 5a).

Extraction method: principal component analysis. Rotation method: Kaiser normal-
ization of Varimax. Bold values show higher loading value.

3.6. Arsenic Mechanism in Groundwater

Arsenic in groundwater is typically found in two forms: arsenite (As(III)) and arse-
nate (As(V)) [46]. Arsenite is more toxic than arsenate and is more mobile in groundwa-
ter [47]. Arsenic enters groundwater through natural processes, such as weathering of
rocks and minerals, or through human activities, such as mining, smelting, and use of
arsenic-containing pesticides, as shown in Figure 6. Once in the groundwater, arsenic can
be transported and transformed by chemical and biological processes; another possibility
is that microbes themselves harbor that capacity to directly dissolute metal-bearing min-
erals and release metals [48]. Organic matter is important for metal mobilization in the
aquifer [49]. Biological processes include microbial reduction of arsenate to arsenite [50]
and microbial oxidation of arsenite to arsenate [51], which influence the mobility and toxic-
ity of arsenic in groundwater [52]. Furthermore, minerals such as FeCO3 react with natural
calcium carbonate, potentially triggering aquifer disintegration and releasing As into the
groundwater. The presence of natural organic chemicals and microbial activity potentially
contribute to groundwater contamination. Sulfur is also released by anthropogenic sources,
such as coal mining.
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3.7. Health Risk Assessment

Health risk assessment was calculated for the 17 wells to analyze carcinogenic and
non-carcinogenic risk, including DMI, HQ, and risk of exposure through ingestion, for
children and adults. Table 5 shows all the RfD values for ingestion [53]. DMI values
for As, Cd, Cr, and Pb were higher in children than in adults due to the differences in
body weight [54]. The highest HQ non-carcinogenic mean value was observed for As,
while the lowest HQ mean value for Cd was observed in children as mentioned in Table 5.
However, HQ values for all PTEs were lower than the standard limit (HQ < 1), indicating a
non-carcinogenic risk to both adults and children. The HQ ingestion of PTEs in children
was higher than in adults. In both children and adults, the trend in risk in descending order
is as follows: As > Cd > Cr > Pb.

Table 5. Carcinogenic and non-carcinogenic risks posed by each PTE through the ingestion
exposure pathway.

Ingestion RfD CSF
Non-Carcinogenic Risk Carcinogenic Risk

HQ (Child) HQ (Adult) HI (Child) HI (Adult) Risk (Child) Risk (Adult)

As-cancer 3.00 × 10−4 1.50 × 100 - - - - 8.00 × 10−7 9.55 × 10−7

As-non - - 1.78 × 10−3 2.12 × 10−3 3.02 × 10−2 3.61 × 10−2 - -
Cd-cancer 5.00 × 10−4 1.00 × 10−3 - - - - 1.37 × 10−12 1.64 × 10−12

Cd-non - - 2.75 × 10−6 3.28 × 10−6 4.67 × 10−5 5.58 × 10−5 - -
Cr-cancer 1.50 × 100 5.00 × 10−1 - - - - 6.75 × 10−8 8.06 × 10−8

Cr-non - - 9.01 × 10−8 1.08 × 10−7 1.53 × 10−6 1.83 × 10−6 - -
Pb-cancer 3.60 × 10−2 8.50 × 10−3 - - - - 2.72 × 10−11 3.25 × 10−11

Pb-non - - 8.88 × 10−8 1.06 × 10−7 1.51 × 10−6 1.80 × 10−6 - -

Notes: As-non: As non-carcinogenic, Cd-non: Cd non-carcinogenic, Cr-non: Cr non-carcinogenic, Pb-non: Pb
non-carcinogenic.

The CR values for PTEs were found to be lower than the US EPA (2001) [55] standard
limits (Table 5). At the same time, the mean HI values for all PTEs in children and adults
were lower than the US EPA guideline values and followed the same increasing trend (As <
Cr < Pb < Cd). Compared to adults, children had the highest cumulative non-carcinogenic
risk from PTEs. Thus, maximum control and prevention of potential health risks in the
groundwater in the Indio Sub-basin of the Coachella Valley, California, are required, as
well as immediate attention to PTE exposure, particularly in children [56].

4. Conclusions

This research examined the predominance of potentially toxic elements and arsenic
contamination in the groundwater of Greater Palm Springs, Coachella Valley, California,
and assessed its health risks. The results from a Piper plot indicate the dominance of
Ca2+ + Mg2+–HCO3

− + CO3
2− and mixed-type Ca2+Mg2+Cl−, which are representative of

groundwater with permanent hardness and salt deposits from residual carbonate. A Gibbs
plot indicated that chemical weathering of rock-forming minerals and evaporation were the
primary variables affecting the groundwater chemistry. The geochemical modeling showed
that the minerals with unsaturated SI values (SI < 0) were halite (NaCl) and dolomite
[(CaMg(CO3)2], and were unlikely to precipitate. On the other hand, the oversaturation
(SI > 0) with calcite (CaCO3) and gypsum (CaSO4·2H2O) indicated that these minerals are
supersaturated and precipitate in the groundwater. Evidence from multivariate analysis,
such as principal component analysis, also suggested the critical roles of these minerals and
their sources in the aquifer. The human health risk assessment model included carcinogenic
and non-carcinogenic measures, which showed a trend in effect, in descending order, of As
> Cd > Cr > Pb in children and adults. The highest non-carcinogenic hazard quotient was
observed for arsenic, and the lowest hazard quotient was observed for cadmium in children.
The carcinogenic risk indicated that children had the highest cumulative non-carcinogenic
risk from potentially toxic elements. Our study makes it clear that decision-makers in the
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study area should adopt immediate management actions and develop long-term strategies
to safeguard groundwater resources and prevent pollution.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/w15173099/s1, Table S1: Characterization of groundwater samples;
Table S2: Parameters used for estimation of groundwater health risk; Table S3: Saturation index
values of various mineral phases in the study area.
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