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Abstract: Sandspits are important natural defences against the effects of storm events in estuarine
regions, and their temporal and spatial dynamics are related to river flow, wave energy, and wind
action. Understanding the impact of extreme wave events on the morphodynamics of these structures
for current conditions and future projections is of paramount importance to promote coastal and
navigation safety. In this work, a numerical analysis of the impact of a storm on the sandspit of the
Douro estuary (NW Portugal) was carried out considering several mean sea level conditions induced
by climate change. The selected numerical models were SWAN, for hydrodynamics, and XBeach,
for hydrodynamic and morphodynamic assessments. The extreme event selected for this study was
based on the meteo-oceanic conditions recorded during Hurricane Christina (January 2014), which
caused significant damage on the western Portuguese coast. The analysis focused on the short-term
(two days) impact of the storm on the morphodynamics of the sandspit in terms of its erosion and
accretion patterns. The obtained results demonstrate that the mean sea level rise will induce some
increase in the erosion/accretion volumes on the seaward side of the sandspit. Overtopping of the
detached breakwater and the possibility of wave overtopping of the sandspit crest were observed for
the highest simulated mean sea levels.

Keywords: sandspit; hydro-morphodynamics; extreme event; sea level rise; SWAN; XBeach; Douro
estuary

1. Introduction

Sandspits are long, narrow landforms that usually form in shallow water on sandy
coasts with littoral drift. These structures are highly dynamic in position and shape, being
shaped over short- and long-term periods by the action of currents, waves, wind, tides,
river flow, sediment transport, and anthropogenic activities [1–3]. Short-term events in
particular, such as river floods and extreme storms, can have a strong impact on their
structure [4–6].

Sandspits play an important role in the protection of estuarine and coastal environ-
ments. They consequently receive particular attention when located in areas of higher
population density, as there is an interest in stabilising their natural dynamics to avoid
changes that may increase the risk of flooding and erosion in the coastal strip. These
concerns often lead to the need for human intervention. The sandspit at the mouth of the
river Douro is such a case.

The Douro flows into the Atlantic Ocean and its simple funnel-shaped estuary lies in a
densely populated area between the city of Porto on the right (northern) bank and the city
of Vila Nova de Gaia on the left (southern) bank. On the left bank, there is a sandspit that
protects the estuary from ocean flooding, storm wave damage, and erosion. However, like
most spits, this landform was not stable, showing a highly dynamic behaviour forced by
the sea and river currents and influenced by meteorological phenomena [1]. Since the 18th
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century, several structures have been built to stabilise the sandspit (cf. Figure 1), prevent the
sandspit from migrating into the estuary and the navigation channel, facilitate navigation
in the estuary, reduce the dredging required to maintain the channel and protect the São
Paio Bay Natural Reserve [1,7]. These structures are the Touro and Felgueiras jetties, built
in 1790 and 1886, respectively; the southern groin, built in the 1820s; and a new breakwater
(built on top of the Touro jetty) north of the estuarine mouth, a detached breakwater in
front of the sandspit, and the extension and reinforcement of the southern groin, made
between 2005 and 2008 [8]. The northern breakwater protects the access channel and the
estuary from wave action, mostly coming from the northwest quadrant [9]. The structures
on the south bank reinforce the sandspit and prevent channel siltation by stopping the
transport of sediment from the sandspit into the channel. The monitoring carried out so
far shows that the intended effects are being achieved [10]. However, an increase in the
area and volume of the sandspit has been observed in recent years [1], which may affect
the water level inside the estuary during flood events [11] but also during extreme wave
conditions, such as those recorded during Storm Christina.
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The frontal system reached northern and central Portugal on the same day and reached 
southern Portugal on 7 January [12]. The storm generated very long-period waves (mete-
otsunamis), with a major impact on the western coast of Portugal [13]. During this two-
day period (6–7 January), the Leixões wave buoy recorded WNW waves with a significant 
height (𝐻 ) of 8.3 m and a peak period (𝑇 ) of 18.2 s. The maximum wave height (𝐻max) 
reached 13.5 m with an associated period (𝑇 max) of 22.7 s. However, around 08h00 UTC 
on 6 January, the maximum wave periods (𝑇max) were longer than 20 s, reaching 27.3 s at 
about 12h00 UTC (Figure 2) [14]. Because of the N–S orientation of the western Portuguese 
coast, the reduction in spatial energy density due to wave refraction is minimised for 
WNW incoming waves. Under these conditions, the waves generated by Storm Christina 
had a high potential to cause morphological changes and destruction in coastal areas. Fol-
lowing the passage of the storm, almost all beaches along the Portuguese mainland coast-
line experienced significant sediment loss. In beach-dune systems, there were significant 
retreats in the frontal dune cord with the formation of pronounced scarps due to erosion. 
Erosion, overtopping, and flooding phenomena were particularly pronounced on the low 

Figure 1. Aerial view of the Douro mouth (adapted from Google Earth, earth.google.com/web/,
accessed on 27 June 2023).

Storm Christina formed as a hurricane in the NW Atlantic near the US East Coast on 1
January 2014. Five days later, on 6 January, the centre of the storm was west of Ireland. The
frontal system reached northern and central Portugal on the same day and reached southern
Portugal on 7 January [12]. The storm generated very long-period waves (meteotsunamis),
with a major impact on the western coast of Portugal [13]. During this two-day period
(6–7 January), the Leixões wave buoy recorded WNW waves with a significant height (H S)
of 8.3 m and a peak period (TPK) of 18.2 s. The maximum wave height (Hmax) reached
13.5 m with an associated period (THmax) of 22.7 s. However, around 08h00 UTC on 6
January, the maximum wave periods (Tmax) were longer than 20 s, reaching 27.3 s at about
12h00 UTC (Figure 2) [14]. Because of the N–S orientation of the western Portuguese coast,
the reduction in spatial energy density due to wave refraction is minimised for WNW
incoming waves. Under these conditions, the waves generated by Storm Christina had a
high potential to cause morphological changes and destruction in coastal areas. Following
the passage of the storm, almost all beaches along the Portuguese mainland coastline
experienced significant sediment loss. In beach-dune systems, there were significant
retreats in the frontal dune cord with the formation of pronounced scarps due to erosion.
Erosion, overtopping, and flooding phenomena were particularly pronounced on the low
and sandy coast in beach-dune systems with a sediment deficit and with a previously

earth.google.com/web/
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established erosive trend. Erosive phenomena also occurred on the cliff coasts bordered by
narrow beaches or artificial structures, and, in the associated low areas, there were episodes
of oceanic overtopping, sometimes accompanied by flooding. Along the coast, beach
bars and waterfront restaurants were damaged. Dozens of boats were sunk or damaged
in marinas and harbours. Beach access paths and dune protection systems were either
damaged or destroyed. There was no loss of life, but dozens of people were injured or had
to be rescued from the sea. In the Porto area and around the mouth of the Douro estuary, a
beach bar was destroyed, four people were injured and many more were swept away by a
wave, and 20 cars (including a tourist bus) were swept inland [13,15].
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wave periods recorded at the Leixões wave buoy (time referred to 00h00 UTC 6 January 2014).

There is empirical evidence that the mean annual temperature and mean sea level are
rising [16]. Studies by Gulev et al. [17] and Geng and Sugi [18] have found an increase in
the number of extreme cyclones. Due to global warming, atmospheric circulation patterns
are changing, leading to changes in wind patterns and, hence, in wave direction, and in
the intensity and frequency of extreme wave events [19,20]. Given the projected mean
sea level rise, the impact of storms like Christina on coastal regions may become even
more damaging, so further research is needed to increase confidence in forecasts and to
provide accurate information to policy makers to support objective adaptation measures
to protect the population and their socio-economic activities. Numerical modelling is an
important tool that can overcome the lack of data and predict the evolution of sandspits
under current conditions as well as for future projections. Several works assessing sandspit
evolution using numerical modelling exist. Duc Anh et al. [21] studied the long-term
evolution of two sandspits in Vietnam using remote sensing and the numerical model
Delft3D. Lisboa and Fernandes [22] analysed the effect of the construction of a port on
the sandspit at the Patos lagoon (Brazil) using remote sensing and the numerical model
openTELEMAC-MASCARET. Bugajny et al. [23] focused on the analysis of the beach and
dune evolution of the Dziwnow Spit (Baltic Sea, Poland) using XBeach. Allard et al. [24]
studied the evolution of the Arçay Spit (France) with different wave climates on seasonal to
interannual time scales using SWAN and several empirical longshore transport formulas.
Finally, Gruwez et al. [25] performed hindcasts with the XBeach model for a sandspit and
coastal region in Ada, Ghana. However, there are few works that have considered the
impact of extreme events on sandspits using numerical models. Previous works that have
addressed this issue are the study by Bugajny et al. [23] and the work by Boudet et al. [26],
which presents the evolution of the Rhone River delta (France) using Delft3D and considers
different wave and river flow events, including storms and floods.
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The objective of this work is to assess the short-term effects of a Christina-like storm on
the sandspit of the Douro estuary for current and future conditions, considering the mean
sea level rise projected by the IPCC scenarios [27]. For this purpose, the SWAN and XBeach
models were applied to the region, calibrated, validated, and run for several scenarios.

2. Materials and Methods
2.1. Numerical Models

The computational framework consists of three nested models in grids of increasing
resolution for dynamic downscaling: model M1, an Ibero-Atlantic regional model; model
M2, a coastal model for the Espinho-Lavra coastal stretch; and model M3, a local model for
the Foz do Douro (mouth of the river Douro).

Model M1 is a hydrodynamic model based on the 3rd generation spectral wave
model SWAN [28,29]. It covers the entire western coast of the Iberian Peninsula, the coast
of the Algarve (Portugal), and the northern coast of Galicia (Spain). The geographical
grid has a resolution of 0.05◦ × 0.05◦ (Figure 3a). This model simulates the large-scale
propagation of sea waves from deep water to the coast. Bathymetric information was
obtained from GEBCO 2021 [30] at a resolution of 15′′ × 15′′. Depths are referred to as
mean sea level (MSL) in the year 2021. Bathymetric data were interpolated in space to
match the computational grid and smoothed to avoid gradients that could cause model
instability. Neither astronomical tides nor storm surges were considered in this model.
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M2 is a coastal implementation of the SWAN model. It simulates the propagation of
sea waves in the coastal area at the higher spatial resolution of 30′′ × 30′′. Its grid covers the
coastal area adjacent to the Douro estuary, between the towns of Espinho in the south and
Lavra in the north, over a length of about 28 km in the south-north direction and extends
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to about 15 km off the coast (Figure 3b). Its resolution is close to 930 m in latitude and
700 m in longitude. The bathymetric data for the grid were obtained from GEBCO 2021 [30],
interpolated to match the computational grid, and smoothed. Temporal variations in sea
level due to tides and storm surges were included but assumed to be uniformly distributed
in space. As the M2 model is nested within the domain of the M1 model, the boundary
conditions of the M2 model are those provided by the M1 model runs.

Finally, M3 is a local hydro-morphodynamic model of the mouth of the Douro estuary.
It is based on the XBeach model [31,32], and it simulates the wave–current–sediment inter-
action in the coastal zone. Its spatial grid has a variable resolution: maximum resolution
in the region of the sandspit (6 m × 6 m) and minimum resolution (22 m × 22 m) near
the boundaries. The western, offshore boundary is oriented parallel to the contours of the
local bathymetry and is located about 3 km from the coast. The eastern fluvial boundary
is located about 3 km upstream of the sandspit (Figure 3c). Bathymetric information was
obtained from several sources: EMODnet 2020 DTM [33] at a resolution of 3.75′′ × 3.75′′,
resampled and filtered for the oceanic area; a 2019 bathymetric survey (supplied by the
Instituto Hidrográfico of the Portuguese Navy) for the estuarine area; a DTM of the 2011
national survey with LIDAR for the coastal topobathymetry (excluding the sandspit) pro-
vided by Direcção-Geral do Território (DGT); a CIIMAR/FCUP high-resolution topographic
survey of July 2011 for the sandspit elevation model; a 2014 coastal DTM provided by DGT,
for the topography of the estuary margins; and topographic surveys of the municipalities
of Porto (date unknown) and Vila Nova de Gaia (dated 2012) for the estuary margins in
the most upstream zone not covered by the coastal DTM of DGT. Data were aggregated
prioritizing higher-resolution data in overlapping areas. For bathymetry, the estuarine
survey was completed with LIDAR data and afterward with EMODNET ocean data. The
time evolution of the sea level at both the offshore and inshore boundaries was assumed
to be the same as in model M2. Difficulties in setting up the XBeach model forced us to
consider a zero river discharge. On the western boundary, the two-dimensional SWAN
energy spectra obtained from model M2 were imposed at the north and south corners and
at a third point in the middle of the offshore boundary with a time discretisation of 30 min.

The numerical experiments were forced with wind velocity fields at 10 m above sea
level from the ECMWF ERA5 climate reanalysis project [34], with a spatial resolution of
0.25◦ × 0.25◦ and a time resolution of 1 h. Recent research has shown that ERA5 reanalysis
winds are accurate for both wave modelling at the oceanic scale [35–38] and in enclosed
seas [39,40]. The same data have also been used to validate historical wind climate data in
the analysis of climate change projections [41].

The offshore boundary conditions consist of two different sets of hindcast wave
parameters, one from the ECMWF ERA5 climate reanalysis project, and the other from
the IBI (Iberian-Biscay-Irish) ocean wave reanalysis [42]. The ERA5 sea wave surface data
include significant wave height, HS, mean period, T01, mean wave direction, θM, and the
standard deviation of the directional dispersion from the peak direction, σθ , at a spatial
resolution of 0.5◦ × 0.5◦ and a time resolution of 1 h. The IBI data include significant wave
height, HS, peak period, TPK, and the direction associated with the peak period, θPK, at a
spatial resolution of 0.05◦ × 0.05◦ and a time resolution of 1 h.

In the nested models M2 and M3, the time variation of sea level due to astronomical
tides and atmospheric pressure was considered. The time series due to astronomical tides
was generated by the global tide model TPXO 7.2 [43] for a point off the coast of Porto
(at 41.1 ◦N, 8.7 ◦W). The TXPO 7.2 model includes eight primary harmonic constituents
(M2, S2, N2, K2, K1, O1, P1, Q1), two long-period harmonic constituents (MF, MM), three
non-linear constituents (M4, MS4, MN4), the second-order constituent 2N2, and the S1
constituent, which includes quasi-periodic meteorological effects [44].
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The storm surge due to pressure variations was calculated from the time series of sea
surface atmospheric pressure retrieved from the nearest ECMWF ERA5 climate reanalysis
project point at 41.25 ◦N, 8.75 ◦W, as

∆η = − 1
ρg

(pa − patm) , (1)

where pa is the local atmospheric pressure at the sea surface, patm = 101, 325 Pa is the
standard atmospheric pressure, ρ = 1025 kg/m3 is the seawater density, and g = 9.81 m/s2

is the acceleration due to gravity.
The water level time series obtained by summing these two contributions was com-

pared with the data at the tidal gauge of Viana do Castelo (41◦41′06′′ N, 8◦50′23′′ W), which
refers to the adopted mean sea level (NMM) (datum Cascais 1938). To avoid the effect
of wave setup on the observational data, the comparison was performed for a summer
month, August 2014. A mean sea level rise of 22.1 cm from 1938 to 2014 was verified. After
correction, the two water level series, observed and calculated (TPXO 7.2), were compared
(see Figure 4). There are no noticeable differences between the two series.
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Figure 4. Comparison of the observed (o) and synthetic (—) water level time series at Viana do Castelo
(time referred to 00h00 UTC on 1 August 2014). For clarity, only the first two weeks are shown.

2.2. Calibration of SWAN

Six configurations (from T01 to T06) were proposed for the calibration of the M1
SWAN model. Simulation results were compared with data from the Alfredo Ramalho
wave buoy (41◦08.910′ N, 09◦34.906′ W) [45]. The simulations were run for the period from
00h00 UTC on 1 January 2018 to 23h00 UTC on 31 January 2018, with hourly extractions
of the results. Only the results from 3 January 2018 to 31 January 2018 were considered to
compute the metrics used in the calibration and validation of results.

All configurations were set up with the JONSWAP formulation for bottom friction
with C f = 0.038 m2/s3. The power spectrum at the boundary was defined as a JONSWAP
spectrum with the standard peak factor γ = 3.3. The frequency space was discretised into
37 frequency bands with fmin = 0.03 Hz and fmax = 1.02 Hz (The frequency bandwidth
distribution in SWAN is logarithmic). The space of propagation directions was discretized
into 72 bins with ∆θ = 5◦. Time integration was performed with time-step ∆t = 10 min. In
addition, the linear growth of waves was activated in all configurations.

The six configurations differ in the reanalysis dataset used to parameterise the energy
spectrum (for the boundary conditions) in the formulations for the wind drag, the expo-
nential growth formulation, and the formulation used for energy dissipation of the swell
due to whitecapping. Details are provided in Table 1.
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Table 1. Boundary conditions and physical processes for the calibration of model M1.

Boundary Conditions Physical Processes

ECMWF CMEMS-IBI Friction Linear Growth Exponential Growth Whitecapping Wind Drag

T01
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To quantify the quality of each configuration, four metrics were used: the root mean
square error, L2, the normalised root mean square error L2

N ; the bias, b; the symmetric
slope rsym; and Pearson’s correlation coefficient, r, defined as follows [46]:
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In the above expressions, y(o)i and y(c)i are the observed and calculated time series,
respectively, of the variable y at time ti; n is the total number of observations; cov (·, ·) is
the covariance between the two series; and var(·) is the variance.

The metrics were applied to the following variables: significant wave height HS, mean
period of the significant wave, Tm01, mean period of ascending zeros, Tm02, and peak
direction, θPK. The results obtained for the six configurations T01 to T06 are shown in
Table 2. All configurations underestimate the significant wave height and, consequently, the
wave energy density. The analysis of the respective time series shows that all configurations
underestimate the highest significant wave heights (HS > 6 m). The configuration that
presents the best result for HS is T06, closely followed by T05. For the mean period, Tm01,
the best result is achieved by T04, but for the mean period of ascending zeros, it is T01
that gets the best result, and T04 achieves the worst result. For the peak direction, all the
configurations present accuracy errors and low correlation coefficients with a bias that
show a consistent turn of the numerical waves of about 8◦ in the southern direction. This is
somehow expected as the parameterised spectral shapes are symmetrical with equal peak
and mean directions. Analysis of the ERA5 reanalysis data clearly showed that this was
not the case.
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Table 2. Spectral parameter metrics for SWAN configurations.

T01 T02 T03 T04 T05 T06

HS

L2 (m) 0.580 0.625 0.567 0.492 0.456 0.440

L2
N (—) 0.147 0.159 0.144 0.125 0.116 0.112

b (m) −0.336 −0.392 −0.315 −0.182 0.031 −0.020

rsym (—) 0.894 0.880 0.899 0.937 0.990 0.989

r (—) 0.960 0.957 0.959 0.956 0.955 0.957

Tm01

L2 (s) 0.999 0.958 0.931 0.593 1.950 1.594

L2
N (—) 0.113 0.108 0.105 0.067 0.221 0.180

b (s) 0.692 0.609 0.600 −0.038 1.769 1.451

rsym (—) 1.084 1.075 1.073 0.996 1.207 1.165

r (—) 0.933 0.933 0.936 0.936 0.936 0.930

Tm02

L2 (s) 0.765 0.789 0.779 1.348 1.281 0.711

L2
N (—) 0.087 0.089 0.088 0.153 0.145 0.080

b (s) 0.009 −0.114 −0.129 −1.203 0.626 −0.291

rsym (—) 1.009 0.995 0.993 0.861 1.085 0.967

r (—) 0.926 0.922 0.924 0.932 0.891 0.920

θPK (1)

L2 (◦N) 21.31 21.53 20.52 20.60 21.75 22.00

b (◦N) 7.64 6.93 7.44 7.47 9.05 8.99

r (—) 0.661 0.672 0.698 0.693 0.603 0.586

Note(s): 1 Nautical convention.

Considering that the objective of this work is the simulation of the hydro-morphodynamic
effects of a storm event, with considerable effects on the wave energy density, for significant
wave heights between 5 m and 12 m, we conclude that T06 is the best configuration for this
specific case.

2.3. Model Set-Up and Validation

To characterise some of the effects of climate change on the sediment dynamics of the
Douro sandspit, several scenarios of the occurrence of a Christina-like storm were analysed,
considering the overlapping effects of sea level rise projected in the SSP2-4.5 and SSP5-8.5
medium confidence IPCC scenarios for the year 2100, in addition to the historical scenario
of 2021. The sea level rise values for the percentiles 5, 50, and 95 were considered (Table 3).
Since the mean sea level variations of the IPCC scenarios refer to 2014, a correction of the
sea level change was performed with respect to the mean sea level used in the regional and
coastal models, which corresponds to the year 2021 (MSL).

The simulations were carried out successively in the nested models M1, M2, and M3.
In the regional (M1) and coastal (M2) models, the simulation time span was from 00h00
UTC on 25 December 2013 to 23h00 UTC on 15 January 2014. In the local (M3) model, the
simulation time span was from 00h00 UTC on 6 January 2014 to 00h00 UTC on 8 January
2014, to cover the time when the most energetic waves reached the coast.

The tidal forcing for the period between 1 December 2013 and 21 January 2014 was
extracted from the TPXO 7.2 database, while the meteorological forcing was based on
atmospheric pressure data extracted from ECMWF ERA5. Wind velocity fields at 10 m
were also extracted from the ERA5 database for the same period.

Bottom friction was considered in models M1 and M2 using the JONSWAP formulation
with C f = 0.038 m2/s3. In the local model, M3, the Manning formulation, was used with a
coefficient n = 0.02 m−1/3·s.
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Table 3. Sea level rise simulation scenarios.

Scenario Year
p ∆

¯
η ∆

¯
η

(%) (m MSL) (m NMM)

S1 Historical 2021 0.000 0.221

S2 SSP2-4.5 2100 5 0.253 0.480

S3 SSP2-4.5 2100 50 0.473 0.753

S4 SSP2-4.5 2100 95 0.867 1.206

S5 SSP5-8.5 2100 5 0.424 0.651

S6 SSP5-8.5 2100 50 0.784 0.949

S7 SSP5-8.5 2100 95 1.391 1.502

Following the calibration results, the T06 configuration was used for models M1 and
M2. The M1 model used the sea wave spectral parameters from the CMEMS-IBI database
as boundary conditions, supplemented with data from the ECMWF database for directional
wave dispersion.

In model M3, and for the wave conditions at the western offshore boundary, the
space of propagation directions was discretised into 10◦ bins, between 170.6◦ N and 350.6◦

N. Neumann boundary conditions (zero gradient) were considered at the northern and
southern boundaries. The XBeach surfbeat hydrodynamic formulation was used.

For the morphodynamics, it was assumed that the bottom in the erodible zones is
composed of sands with characteristic diameters D50 = 1.7 mm and D90 = 3.7 mm, and
density ρ = 2650 kg/m3 [47]. The Van Thield–Van Rijn formulation [48–50] for total
sediment transport was chosen and a morphological acceleration factor of 10 was used (for
each hour of simulation, the model only runs for 6 min, during which bottom changes are
multiplied by a factor of 10).

2.4. Storm Christina Coastal Model Validation

The hydrodynamic model was validated through a nested M1-M2 simulation, by
comparison with the data recorded at the Leixões buoy for the period from 1–15 January
2014. The metrics (see Table 4) revealed better results than the ones obtained during the
model calibration (cf. Table 2). However, the model still underestimates the significant
wave height when it exceeds 7 m.

Table 4. Model metrics for the Leixões buoy data for the period 1–15 January 2014.

L2 L2
N b rsym r

(m, s, ◦) (—) (m, s, ◦) (—) (—)

HS 0.447 0.093 −0.171 0.958 0.957

TPK 1.319 0.094 0.593 1.006 0.764

Tm02 0.667 0.074 0.149 0.997 0.911

θPK 8.744 −0.182 0.937 0.613

3. Results and Discussion
Storm Christina Simulation Scenarios

The results for model M3 will focus on the morphological evolution (erosion and/or
accretion) and overtopping of the sandspit over the period 6–7 January 2014, within the
region and over transects 1–4 in Figure 5.
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transects 1–4 (details about the data sources used are given in Section 2.1).

Notice that the XBeach program only produces results for the root mean square wave
height, Hrms. The results presented here for the significant wave height, HS, are based on
the assumption that the wave height has a Rayleigh distribution, in which case one has [51]:

HS =
√

2 Hrms. (7)

Maximum storm energy occurred between 14h00 UTC and 18h00 UTC on 6 January
2014. However, the influence of the high tide, which occurred at 19h00 UTC on that day,
meant that the highest waves on the seaward slope of the sandspit did not occur until that
time. The spatial distribution of the time-averaged significant wave height between 18h00
UTC and 21h00 UTC on 6 January 2014 showed that there is an increase of the wave height
near the coast and towards the sandspit when considering scenarios of increasing mean
sea level rise (see Figure 6). In all scenarios, the north and south breakwaters perfectly
fulfil the function of protecting the estuary by preventing sea waves with HS > 1 m from
propagating inside the estuary.
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A more detailed analysis using the transects 1–4 showed that, for the current sce-
nario (S1), the wave run-up does not reach the top of the seaward slope of the sandspit
(Figure 7a–c), which is at a level of about +7 m NMM. The southern end of the of detached
breakwater is vulnerable to overtopping by the highest waves as the maximum wave
run-up reaches +4 m NMM, the same height as the crest of the breakwater (Figure 7d).
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Overtopping and wave breaking over the detached breakwater are often observed under
storm conditions.
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Higher extreme sea levels were obtained for climate change scenarios S2 to S7. For S2,
the maximum run-up reaches an elevation slightly above +6 m NMM for transects 1 and 2,
around +5 m NMM for transect 3, and around +4 m NMM for transect 4, where overtopping
of the detached breakwater is likely to occur. For scenario S3, the maximum run-up reaches
a height of +7 m NMM for transect 1, while for transects 2 and 3, the maximum height
is +6 and +5 m NMM, respectively, and +4 m NMM for transect 4. Scenario S4 showed a
maximum run-up reaching an elevation of +7 m NMM in transects 1 and 2, +6 m NMM in
transect 3, and +4 m NMM in transect 4. For S5, the maximum run-up reaches a maximum
height of +6 m NMM in transect 1, while it is slightly higher in transects 2 and 3. In transect
4, the run-up reaches +4.2 m NMM. For scenario S6, the wave run-up reaches +7 m NMM
in transects 1 and 2, +5 m NMM in transect 3, and +4 m NMM in transect 4. Finally, for
S7, the most extreme scenario, the run-up reaches +7.5 m NMM over the sandspit seaward
slope in transect 1, and overtopping occurs (Figure 8). In transect 2, the run-up reaches a
height of +7 m NMM, while in transect 3 it reaches +6 m NMM. In transect 4, the water
level on the leeward side of the detached breakwater reaches +4 m NMM, allowing an
easier overtopping of this structure (Figure 8).
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The short-term morphodynamic evolution due to the storm was analysed, plotting
the differences between the initial bathymetry at 00h00 UTC 6 January 2014 (Figure 5) and
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the final bathymetry at 00h00 UTC 8 January 2014 to identify the occurrence of erosion or
accretion on the seaward side of the sandspit (see Figure 9). The accretion/erosion volumes
and areas were also computed and are shown in Table 5 for the same region. In addition,
the changes in the seaward slope of the sandspit over time were computed and plotted
along transects 1–4 (see Figures 10 and 11).
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Table 5. Erosion/accretion in the sandspit (for the area represented in Figure 9).

Scenario
p ∆

¯
η

Volume Area

Accretion Erosion Budget Accretion Erosion

(%) (m NMM) (m3) (m3) (m3) (%) (%)

S1 Historical 0.221 187,862 193,761 −5899 44 35

S2 SSP2-4.5 5 0.480 196,804 201,908 −5104 45 35

S3 SSP2-4.5 50 0.753 198,131 196,242 +1889 48 34

S4 SSP2-4.5 95 1.206 217,982 211,624 +6358 51 33

S5 SSP5-8.5 5 0.651 208,310 214,428 −6117 45 36

S6 SSP5-8.5 50 0.949 216,886 209,653 +7233 48 33

S7 SSP5-8.5 95 1.502 239,407 239,354 +53 54 34
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In all scenarios, there is an eastward retreat of the dune between the 0 m NMM and
the +4 m NMM contour lines, while down −4 m NMM, the sandspit moves westward.
This corresponds to erosion in the wave run-up zone and accretion below the shoreline.
Analysis of the transects shows that the retreat of the sandspit to the east actually affects
its entire seaward side from the shoreline up to the slope crest at about +7 m NMM.
The slope becomes gentler between −2 m NMM and +2 m NMM on transects 1 and 3,
where a bar is formed, and between −4 m NMM and +2 m NMM on transect 2, where no
berm appears. From the erosion/accretion maps (Figure 9) and the plots of transects 1–3
(Figures 10a–c and 11a–c), it is evident that there is an erosion zone on the seaward side of
the emersed part of the sandspit and an accretion zone in the immersed part. On the other
hand, on the eastern side of the detached breakwater, north of the southern groin, there is
an accretion zone.

Table 5 shows an irregular pattern of increasing volumes of erosion and accretion with
mean sea level rise. This pattern is only broken by Scenarios S3 and S5. The sediment
budget is negative and almost constant for the scenarios with a mean sea level below +0.7 m
NMM, positive for those above, but almost zero for the highest mean sea level scenario, S7.
On the other hand, the total area of erosion shows only small variations between scenarios,
while the variation in the accretion area follows a similar pattern to the accretion volume.
The evolution of the sediment budget may be due to a changing local wave refraction
pattern with an increasing mean sea level and deserves further investigation.

4. Conclusions

In January 2014, Portugal was hit by Storm Christina, which produced extreme wave
regimes and significant impacts on the western Portuguese coast. In this work, the SWAN
and XBeach models were selected to analyse the impact of this storm on the sandspit
protecting the entrance of the Douro estuary, for current and future scenarios, in a 48 h
time window (6–7 January 2014). Seven scenarios were defined considering the projections
of mean sea level rise for the year 2100: a current scenario, S1; three scenarios, S2 to
S4, corresponding to the 5th, 50th, and 95th percentiles, respectively, of the SSP2-4.5
scenario; and three scenarios, S5 to S7, corresponding to the 5th, 50th, and 95th percentiles,
respectively, of the SSP5-8.5 scenario. Offshore wave conditions, wind speed fields, tidal
conditions, and meteorological surges were assumed to be the same for all scenarios.

It was concluded that, although the storm energy peaked between 14h00 UTC and
18h00 UTC on 6 January 2014, the occurrence of the high tide at 19h00 UTC caused the
highest significant wave heights over the seaward slope of the sandspit.

The mean sea level rise was found to correspond to an increase in the significant wave
height in front of the sandspit, facilitating the occurrence of overtopping of the detached
breakwater, which was observed in all scenarios.
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Regarding the wave run-up on the seaward slope of the sandspit, there was a slight
increase in the maximum run-up when higher mean sea level scenarios were considered
with some exceptions due to the local direction of wave propagation. The wave run-up
only reached the top of the slope (+7 m NMM) for the lower probability scenarios with the
highest mean sea level (S4 and S7), and the maximum wave run-up obtained was +7.5 m
NMM for scenario S7, but this run-up is not homogeneous for the entire sandspit, as the
detached breakwater provides some protection to the sandspit head.

From the bottom evolution analysis, it can be concluded that the volume of displaced
sediment increases as higher mean sea level scenarios are considered. Furthermore, the
sediment budget in the sandspit area is negative for the lowest mean sea level scenarios and
positive for the highest ones but becomes almost zero for the highest simulated mean sea
level rise scenario, Scenario S7 for SSP5-8.5. The reason for this variation in the sediment
budget might be associated with the local wave refraction pattern and deserves further
investigation.

It was concluded that, during the simulated 48 h storm period, erosion occurred in
the uppermost zone of the seaward slope of the sandspit, with an eastward retreat of the
+4 m NMM contour line, and accretion occurred in the submerged zone of the slope, with
a westward advance of the −4 m NMM contour line. Therefore, erosion occurred in the
wave run-up zone and accretion below the shoreline. The eastward retreat of the sandspit,
caused by erosion, affected the entire seaward slope up to its crest at about +7 m NMM.
This movement of sediments from the emersed to the submerged zone leads to a reduction
in the slope gradient. In the breakwater area, the transects for profile 4 showed an area of
erosion on the seaward side (south) and accretion on the riverward side (north). Future
analyses are needed to assess whether or how the sandspit configuration would change or
recover after a storm.
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23. Bugajny, N.; Furmańczyk, K.; Dudzińska-Nowak, J.; Paplińska-Swerpel, B. Modelling Morphological Changes of Beach and Dune
Induced by Storm on the Southern Baltic Coast Using XBeach (Case Study: Dziwnow Spit). Coas 2013, 65, 672–677. [CrossRef]

24. Allard, J.; Bertin, X.; Chaumillon, E.; Pouget, F. Sand Spit Rhythmic Development: A Potential Record of Wave Climate Variations?
Arçay Spit, Western Coast of France. Mar. Geol. 2008, 253, 107–131. [CrossRef]

25. Gruwez, V.; Verheyen, B.; Wauters, P.; Bolle, A. Hindcasting Sand Spit Morphodynamics after Groyne Construction in Ghana. J.
Appl. Water Eng. Res. 2017, 5, 167–176. [CrossRef]

26. Boudet, L.; Sabatier, F.; Radakovitch, O. Modelling of Sediment Transport Pattern in the Mouth of the Rhone Delta: Role of Storm
and Flood Events. Estuar. Coast. Shelf Sci. 2017, 198, 568–582. [CrossRef]

27. Fox-Kemper, B.; Hewitt, H.T.; Xiao, C.; Aðalgeirsdóttir, G.; Drijfhout, S.S.; Edwards, T.L.; Golledge, N.R.; Hemer, M.; Kopp, R.E.;
Krinner, G.; et al. Ocean, Cryosphere and Sea Level Change. In Climate Change 2021: The Physical Science Basis. Contribution of
Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani,
A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press:
Cambridge, UK; New York, NY, USA, 2021; pp. 1211–1362.

28. Booij, N.; Ris, R.C.; Holthuijsen, L.H. A Third-Generation Wave Model for Coastal Regions: 1. Model Description and Validation.
J. Geophys. Res. Ocean. 1999, 104, 7649–7666. [CrossRef]

29. Ris, R.C.; Holthuijsen, L.H.; Booij, N. A Third-Generation Wave Model for Coastal Regions: 2. Verification. J. Geophys. Res. Ocean.
1999, 104, 7667–7681. [CrossRef]

30. GEBCO Compilation Group. GEBCO 2021 Grid. 2021. [CrossRef]
31. Roelvink, D.; Reniers, A.; van Dongeren, A.; van Thiel de Vries, J.; McCall, R.; Lescinski, J. Modelling Storm Impacts on Beaches,

Dunes and Barrier Islands. Coast. Eng. 2009, 56, 1133–1152. [CrossRef]
32. Roelvink, D.; Reniers, A.; van Dongeren, A.; van Thiel de Vries, J.; Lescinski, J.; McCall, R. XBeach Model Description and Manual;

Unesco-IHE Institute for Water Education, Deltares and Delft University of Technology: Delft, The Netherlands, 2010; p. 108.

https://doi.org/10.1016/j.ecss.2008.07.007
https://doi.org/10.9753/icce.v32.sediment.87
https://doi.org/10.1080/1755876X.2020.1738121
https://doi.org/10.1007/s12237-018-0477-5
https://page.met.fu-berlin.de/wetterpate/static/lebensgeschichten/Tief_CHRISTINA_03_01_14.htm
https://page.met.fu-berlin.de/wetterpate/static/lebensgeschichten/Tief_CHRISTINA_03_01_14.htm
https://doi.org/10.18055/Finis6468
https://www.ipma.pt/pt/media/noticias/news.detail.jsp?f=/pt/media/noticias/arquivo/2014/temporal-atlantico-norte-3-6-jan-2014.html
https://www.ipma.pt/pt/media/noticias/news.detail.jsp?f=/pt/media/noticias/arquivo/2014/temporal-atlantico-norte-3-6-jan-2014.html
https://doi.org/10.1007/s003820000145
https://doi.org/10.1175/1520-0442(2001)014&lt;3863:VOTNAC&gt;2.0.CO;2
https://doi.org/10.1175/1520-0442(2004)017&lt;2368:NAOWCC&gt;2.0.CO;2
https://doi.org/10.1093/icesjms/fsp132
https://doi.org/10.3390/jmse8090722
https://doi.org/10.5894/rgci541
https://doi.org/10.2112/SI65-114.1
https://doi.org/10.1016/j.margeo.2008.05.009
https://doi.org/10.1080/23249676.2016.1184597
https://doi.org/10.1016/j.ecss.2016.10.004
https://doi.org/10.1029/98JC02622
https://doi.org/10.1029/1998JC900123
https://doi.org/10.5285/c6612cbe-50b3-0cff-e053-6c86abc09f8f
https://doi.org/10.1016/j.coastaleng.2009.08.006


Water 2023, 15, 2841 16 of 16

33. EMODnet Bathymetry Consortium. EMODnet Digital Bathymetry (DTM). 2020. Available online: https://sextant.ifremer.fr/
record/bb6a87dd-e579-4036-abe1-e649cea9881a/ (accessed on 28 July 2023). [CrossRef]

34. Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.;
et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [CrossRef]

35. Dullaart, J.C.M.; Muis, S.; Bloemendaal, N.; Aerts, J.C.J.H. Advancing Global Storm Surge Modelling Using the New ERA5
Climate Reanalysis. Clim. Dyn. 2020, 54, 1007–1021. [CrossRef]

36. Baordo, F.; Clementi, E.; Iovino, D.; Masina, S. Intercomparison and Assessement of Wave Models at Global Scale; Centro Euro-
Mediterraneo sui Cambiamenti Climatici: Lecce, Italy, 2020; p. 49.

37. Sharmar, V.; Markina, M. Validation of Global Wind Wave Hindcasts Using ERA5, MERRA2, ERA-Interim and CFSRv2 Reanalyzes.
IOP Conf. Ser. Earth Environ. Sci. 2020, 606, 012056. [CrossRef]

38. Monteiro, N.M.R.; Oliveira, T.C.A.; Silva, P.A.; Abdolali, A. Wind–Wave Characterization and Modeling in the Azores Archipelago.
Ocean Eng. 2022, 263, 112395. [CrossRef]

39. Beyramzadeh, M.; Siadatmousavi, S.M.; Derkani, M.H. Calibration and Skill Assessment of Two Input and Dissipation Parame-
terizations in WAVEWATCH-III Model Forced with ERA5 Winds with Application to Persian Gulf and Gulf of Oman. Ocean Eng.
2021, 219, 108445. [CrossRef]
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