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Abstract: A substantial portion of the water supply and sanitation (WatSan) infrastructure in the
rural areas of developing countries is currently not operating. This failure is due to the inappropriate
implementation of WatSan technologies and the lack of decision-making resources. This study
explores the application of several machine learning classification algorithms to predict the optimal
WatSan system effectively. The proposed classification methods are Logistic Regression, Random
Forest, Support Vector Machine, CatBoost, and Neural Network. The practicality of these classification
methods was tested using a dataset comprising 774 water technology options. Several experiments
were conducted to obtain the highest possible classification accuracy of the capacity requirement level
(CRL) in terms of accuracy and F1 score classification metrics. Our findings suggest that CatBoost,
with the addition of the synthetic minority oversampling technique (SMOTE), outperforms the other
algorithms in classifying WatSan technology options.

Keywords: classification; decision support system; Logistic Regression; machine learning; Random
Forest; Support Vector Machine

1. Introduction

Despite the fact that the United Nations has recognized access to water and sanitation
as fundamental human rights, a large number of people around the world lack these basic
services. Access to water and sanitation services continues to be a serious challenge in
developing countries [1–3]. People living in extreme poverty in developing nations are most
negatively affected by the lack of access to water and sanitation facilities [4]. Approximately
2.2 billion people do not have access to clean drinking water globally [5], and 3.6 billion
people have no access to safely managed sanitation [6]. Consequently, the health of millions
of individuals throughout the world is jeopardized.

Worldwide, 2.4 million deaths could be prevented each year if individuals had access
to clean drinking water, adequate sanitation, and proper hygiene [7]. This decline also
has a detrimental impact on the environment, society, economy, and business. A lack of
service infrastructure and poor management, in conjunction with inappropriate selection
and implementation of WatSan technologies, may ultimately lead to failure [8]. It should
be noted that 15% to 30% of WatSan infrastructures installed in rural areas in developing
countries do not operate after the first 2–3 years [8].

In addition, it has been estimated more than 1.3 billion people use basic water services,
206 million people have limited services, 422 million are obtaining water from exposed
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wells, and 159 million are using untreated surface water from lakes [9]. Furthermore,
climate change contributes to disturbing weather patterns and thus makes water scarcity
worse, in addition to causing droughts and floods that impact the water quality of water
resources [10–12]. Population growth inevitably leads to increased water demand [13]. By
2050, the global human population will increase by 32% to reach 9.1 billion. This growth is
expected to happen mainly in low-income countries such as Pakistan, Nigeria, Kenya, and
Bangladesh [14].

In order to address these problems, along with the problem of poverty, which is
inextricably related to inadequate sanitation [15,16], numerous foreign agencies, as well
as non-government organizations, are committed to supporting developing countries
in building their water and sanitation infrastructure [17], in addition to the support for
healthcare [18] and education [19]. However, the selection of appropriate infrastructure
has always been a challenge that many international and local development and aid
organizations have experienced [20]. This is due to missing elements in the existing
decision tools for appropriate technology selection.

This paper aims to provide a classification tool for water and sanitation technologies
using machine learning methods. The results of the classification will then be integrated
into a decision support system (DSS), which will be used for the selection of the most
appropriate WatSan technology option. To the best of our knowledge, such work has not
been published previously in the literature.

2. Existing Decision Support Systems

A DSS is a computer-based program that assists users in making decisions and taking
actions in an organization or a business [21]. It collects and analyzes data before incorpo-
rating them into useful information. A DSS mainly consists of three components, namely,
(1) the database, (2) the software system, and (3) the user interface [22]. The database is
a collection of tabulated data [23]. The data stored can range from records, information,
and files to contacts and scores. The software system is a set of algorithms and models
(statistical, optimization, classification, forecasting techniques) that analyze and process the
data. User interfaces are the places of interaction between users and designs. Therefore,
they are access points with which the user interacts in order to obtain the desired software
system output.

There are many decision support systems for water and sanitation technologies avail-
able in the market. Some typical examples are:

1. An article entitled “A decision support system for water resources management: The
case study of Mubuku irrigation scheme, Uganda” provided insights on developing
a decision support system based on the Mapping System and Services for Canal
Operation Techniques (MASSCOTE) approach and the MIKE Hydro Basin model.
The model intends to improve water service, increase irrigation efficiency, and meet
the country’s economic goals [24].

2. A document entitled “Tools to apply a gender approach: The Asian experience” was
presented by project managers from rural projects in Asia. It brings together the
perspectives of fifteen workshop participants from nine Asian nations. The document
aims to share different experiences so that sector staff and organizations can help
people in underdeveloped nations in obtaining better access to water and sanitation
services [25]. It shows the stages that need to be followed and the work that needs to
be carried out before choosing or implementing a water or sanitation technology.

3. A general design guideline for building a water DSS has been presented in a docu-
ment entitled “Decision support system for water distribution management”. The
document focuses on needs assessment, generic design for DSS development, and
field installation for water technologies. It emphasizes the role of data management,
data analysis, simulation, and optimization in the development of DSS [26].

4. A guideline was developed by the WHO entitled “Linking technology choice with
operation and maintenance in the context of community water supply and sanitation”
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to help decision-makers to choose technology for water supply and sanitation that
can be maintained long enough in developing countries. For many years, while
selecting such technologies, technical criteria and initial investments were prioritized,
but the operation and maintenance (OM) effect was simply neglected. In this manual,
the OM component is added to the selection process because it considers economic,
administrative, and environmental factors as critical factors for sustainability [27].

5. A document entitled “Choosing an appropriate sanitation system” offers a thorough
framework for evaluating and selecting acceptable sanitation technologies based on a
set of important criteria. The major goal of the document is to ensure that sanitation
systems deployed in low-income nations match the region’s unique demands and
problems. Affordability, acceptability, constructability, usefulness, dependability,
durability, maintainability, and upgradability are among the factors mentioned in the
document [28].

6. A document prepared by a group of researchers in Africa entitled “Participatory
Decision Making for Sanitation Improvements in Unplanned Urban Settlements
in East Africa” offers a multicriterion decision analysis methodology called Proact
2.0. The tool allows scientists, professionals, and policymakers to integrate their
knowledge, experiences, and preferences with those of end users, as they do not
necessarily favor the most optimal sanitation solution when selecting sanitation
technology [29].

7. A procedure entitled “Procedure for the Pre-Selection of Sanitation Systems” pro-
vides a multicriterion analysis that is based on weighted summing and the notion
of sanitation system templates described in the Compendium of Sanitation Systems
and Technologies (a database of a diverse spectrum of sanitation technologies). The
goal of this procedure is to stimulate conversation about various choices in order to
systematically, objectively, and transparently determine feasible sanitation solutions
in a common agreement between stakeholders. The procedure also seeks to anticipate
how well each solution fulfills relevant features [30].

8. A document entitled “Constructing and selecting optimal sustainable sanitation sys-
tem based on expanded structured decision-making for global sanitation and resources
crisis” offers a great technique for selecting the optimal sustainable sanitation system
to improve the environment in Beijing’s rural human settlements. The proposed
method combines macro-environmental content analysis, compatibility assessment,
and multicriterion decision analysis into structured decision making. The method can
also be applied to other complicated infrastructure decision-making situations [31].

9. A program that gives a thorough list of potential technologies and system config-
urations, analyzes their local applicability, and assesses their potential for resource
recovery and loss is presented in the paper entitled “Closing Water and Nutrient
Cycles in Urban Wastewater Management: How to Make an Academic Software
Available to General Practice”. The program offers a manageable but varied set of
decision possibilities along with the data necessary to rank the alternatives and choose
the preferred one in a structured decision-making process [32].

10. A software named “SANTIAGO”, which stands for Sanitation System Alternative
Generator, was created by Eawag, which is one of the world’s leading aquatic research
institutes in Switzerland, to aid engineers and improve the transparency of the se-
lection process. The software suggests a wide variety of locally suitable sanitation
system solutions while taking into account a wide array of technology and system
options [33].

11. A factsheet entitled “Selecting Sustainable Sanitation System” offers an executive
overview detailing the important factors to take into account while putting in place
a sustainable sanitation system. The sheet affirms that the long-term success of a
sanitation system relies on factors such as social acceptance, political support, and
suitable financing models. It also highlights the need for holistic and city-wide
planning that encompasses the entire area’s sanitation needs [34].
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12. A report entitled “Sanitation Technology Options” created by the Susana Organiza-
tion provides a guideline that outlines technical and economic characteristics of the
numerous technological options that have shown to be workable for widespread use
in the South African environment. The document describes several technical solu-
tions for meeting the requirements for basic sanitation, as well as the operating and
maintenance requirements for each of these options. Some of the sustainability needs
are also addressed, such as affordability, operation and maintenance, and institutional
duties. A basic technological selection guide is also offered; however, each situation
should be subject to the local assessment of sustainability and acceptability [35].

As mentioned earlier, there are a lot of decision support systems for water and sani-
tation technologies. Gleick et al. [36] reviewed 120 decision support tools and illustrated
that most of the available decision tools lack the effective user interface, cost, and mon-
etary data; information on funding approaches; information on scalability; community
implications and regionally specific matters; and available technologies [36]. Among the
120 reviewed decision support tools, 18 of them represent the best water supply and
sanitation decision-making systems.

It was suggested that the most essential features for a comprehensive decision-making
tool were (1) sector, (2) locale, (3) topics, and (4) user. The feature sector indicates the type
of support service, which can be water supply, sanitation, or waste treatment services.
The locale feature specifies the support service for the locals, based on the region and the
type of community, whether it was rural, peri-urban, or urban. The feature topics include
information on operation and maintenance, community engagement, service establishment,
price, expandability and replicability, and case studies. Finally, the user feature refers to the
support resource that allows one to input data related to a specific community in order to
provide a suggestion on appropriate service to be implemented [36].

3. Proposed Decision Support System

To fill the missing elements identified by Gleick et al. [36] in their review of existing
decision tools for water and sanitation technology selection and to ensure service sustain-
ability, the use of a decision model with a framework that borrows the same pedagogy as
the risk analysis, namely assessment, evaluation, and management, was proposed.

The decision support system, called WatSanE, was proposed by Bouabid [37] to ad-
dress the problem of selecting appropriate water and sanitation technology for a developing
country. It consists of three main modules: Module #1 (assessment module) provides de-
cision tools for the selection of appropriate WatSan alternatives. Module #2 (evaluation
module) is used for the evaluation and ranking of the set of WatSan alternatives selected
in decision Module #1. Finally, Module #3 (management module) provides guidance to
implement the chosen WatSan technology and its integration within municipal sanitation
services. The proposed decision model uses a systems approach in addressing the problem
of access to water supply and sanitation services. Indeed, it assists communities in the
selection of WatSan technologies by examining not only the specifics of the problem under
consideration but also investigating the relevant factors in the surrounding environment
where WatSan technologies will be operating.

This research focuses mainly on the decision portion of Module #1, which is the DSS.
Note that Module #1 includes a database of WatSan technologies, with proven sustain-
ability in developing communities, classified by their Capacity Requirement Level (CRL)
metric. The CRL metric defines the capacity level a community must have to operate and
sustainably maintain a WatSan technology. This classification uses a four-level scoring scale
(very low, low, moderate, high).

There is a connection between Component 1 of Module #1, which was the focus of an
earlier study conducted by Bouabid and Louis [8], and Component 2 of Module #1, which
is the focus of this research. Indeed, the results of the community capacity assessment
(Capacity Factor Analysis—Module #1) are used as inputs in the DSS for the selection of
appropriate technologies. The technology options in Component 2 will be classified using



Water 2023, 15, 2829 5 of 18

machine learning algorithms. Furthermore, the classified technology options, which are
the result of this research, will be integrated into the WatSanE DSS database.

4. Methodology

To be able to classify WatSan technology options using machine learning, different
steps, including dataset selection, data procession, classifier selection, hyperparameter
tuning, application of oversampling technique, and model evaluation, were conducted
before obtaining the results. Figure 1 illustrates the methodology followed in this study.
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4.1. Dataset Selection

The dataset used in this study was obtained from the work of Bouabid and Louis [8],
who developed the dataset in collaboration with WatSan partners and international or-
ganizations, including Engineers Without Borders. The data are publicly available and
consist of 774 technologies [38]. Each technology is divided into five components, acting
as the input variables. The input variables consist of the source (10 levels of categorical
variables), device (12 levels of categorical variables), treatment (6 levels of categorical
variables), storage (6 levels of categorical variables), and distribution (2 levels of categorical
variables). The output parameter is the capacity requirement level (CRL), which has four
classes (1 (very low), 2 (low), 3 (moderate) and 4 (high)), that represents the level of each
technology option. The dataset is imbalanced with two majority and minority classes.
Around 95% of the dataset consisted of technology options with a CRL value of 2 or 3.
Class 1 consists of 16 technologies, Class 2 consists of 194 technologies, Class 3 includes
541 technologies, and Class 4 contains 23 technologies.

4.2. Data Preprocessing

The categorical dataset was transformed into a numerical format to facilitate proper
integration with machine learning models. One-hot encoding, a widely employed tech-
nique, was utilized to convert categorical data into binary vector representations, wherein
each category is denoted by a binary vector containing a 1 in the position corresponding to
the specific category and 0 elsewhere. Following the transformation of categorical data, the
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dataset was partitioned into a training set (80%) and a testing set (20%). The training set was
employed to develop the model, while the testing set was used to assess the performance
of the resulting trained model.

4.3. Classifier Selection

As mentioned, the proposed classification method for the WatSan technologies is
based on machine learning algorithms. The initial machine learning algorithms chosen to
be implemented in this research include Random Forest, Support Vector Machine (SVM),
Logistic Regression (LR), CatBoost, and Artificial Neural Network (ANN).

4.3.1. Random Forests (RF)

Random Forest, an ensemble machine learning algorithm, constructs multiple decision
trees during the training phase and outputs the mode of the classes of the individual trees.
It introduces a layer of randomness in the formation of the decision trees with the objective
of creating uncorrelated trees. This randomness helps in reducing the variance without
inflating the bias when the predictions from these trees are averaged or combined [39].

This algorithm forms numerous decision trees using varying subsets of the training
data and variables. When the algorithm needs to predict, each tree gives its predicted
class, and the class with the highest frequency is selected as the final prediction. For a
Random Forest with B trees, the predicted class ĉ for a given instance x can be defined
mathematically as

ĉ(x) = arg max
c∈C

B

∑
b=1

I(hb(x) = c) (1)

where hb(x) represents the prediction of the b-th decision tree for the instance x. I(hb(x) = c)
is an indicator function, with output 1 if the b-th tree’s prediction equals the c-th class, and
0 otherwise. arg max

c∈C
signifies the selection of class c that maximizes the sum, i.e., the class

that receives the most “votes” from the decision trees.

4.3.2. Support Vector Machine (SVM)

The Support Vector Machine (SVM) works by determining the best separation line,
known as “hyperplane” to precisely isolate two classes or more in a classification prob-
lem [40]. The objective is to obtain the ideal hyperplane separation by training the divisible
data [41]. The optimal hyperplane is determined by finding the closest points to a line from
both classes. These points are known as support vectors. Then, the distance between the
line and the support vectors, which is called the margin, is calculated. The line for which
the margin is maximized is the optimal hyperplane [42].

Given a set of training data of size n, {(x1, y1), ..., (xn, yn)}, where each xi in Rn de-
notes a sample in the input space with a corresponding output yi ∈ {1, 0}, for
i = 1, 2, . . . , n, the SVM optimization problem is described mathematically as follows:

Minimize :
1
2
‖ β‖ 2 + C

n

∑
i=1

ξi (2)

Subject to : yi(〈 xi, βi〉+ β0 ) ≥ 1− ξi, ξi ≥ 0,

where C is a constant penalizing the error, and ξi is a slack variable representing the errors,
such that if the instance is misclassified, then ξi > 1. Figure 2 illustrates the concept of SVM
for classification.
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For nonlinear problems, the SVM algorithm utilizes the kernel function, which takes
a low-dimensional input space and transforms it into a higher-dimensional space in
order to turn a nonlinear problem into a linear problem using a set of mathematical
functions [43,44]. In other words, the kernel function is used to map the original dataset
(usually non-separable) into a higher-dimensional space in order to transform it into
a separable dataset [45]. Common kernel functions are linear, polynomial, and radial-
basis functions.

4.3.3. Logistic Regression (LR)

The Logistic Regression (LR) method is a predictive analysis method that is used for
classification problems [46]. It produces a logistic curve, which is limited to values between
0 and 1 [47,48]. The logistic function is defined mathematically as

E[yi = 1|xi, β] = pi =
1

1 + exiβ
(3)

where yi is a positive instance, xi is a row in the data matrix X, β is the coefficient vector,
and pi is the probability of the positive response [49]. The logistic transformation is the log
of odds and is expressed mathematically as

ηi = log
(

pi
1− pi

)
= xiβ (4)

4.3.4. Categorical Boosting (CatBoost)

The CatBoost method is a recently developed algorithm that uses gradient boosting on
decision trees and is very effective for classification problems, especially when the indepen-
dent variables are also categorical [44,50]. Researchers have utilized CatBoost successfully
for machine learning experiments utilizing Big Data since its release in late 2018 [51]. The
CatBoost method belongs to the Gradient Boosted Decision Trees (GBDT) machine learning
ensemble approach [52]. It is built on symmetric decision trees as primary learners with
fewer parameters, supports class variables, and has good accuracy. It also resolves gradient
bias and prediction shift issues, which lessens the probability of overfitting [53].

The operation of CatBoost can be described as follows. Given yi as the target for the ith

instance and Fm−1(xi) as the ensemble model built at the (m− 1)− th stage, the algorithm
computes the gradient of the loss function L at the point Fm−1(xi) as follows:

∂L(yi, Fm−1(xi))

∂Fm−1(xi)
(5)
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Iteratively, CatBoost refines its decision boundary by minimizing the loss function at
each step and enhancing its predictive accuracy.

4.3.5. Artificial Neural Networks (ANN)

A Neural Network is made up of layers of units (neurons). The network consists of an
input layer, a hidden layer, which can be one or multiple layers, and an output layer. The
units are connected with different connection weights. Each unit takes an input, applies
an activation function to it, which is often nonlinear, and then transmits the output to the
following layer [54]. Examples of activation functions are the Logistic Activation Function
(Sigmoid), Hyperbolic Tangent Activation Function, etc. A nonlinear activation function
is often used in this kind of classification algorithm, which yields to a nonlinear Artificial
Neural Network problem. Figure 3 illustrates the ANN used in this study, which can be
expressed as

yi = ϕ
n

∑
i=1

(
wj,ixi + θj

)
(6)

where θ is external threshold, w is the feature weight, xi is the input, and yi is the output,
which can be represented mathematically as follows:
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4.4. Multi-Classes Handling

The classification problem under investigation is a multi-class classification problem,
where a model is tasked with predicting one of more than two classes. This contrasts with
binary classification problems, where a model predicts one of two classes. In this study,
five different models were employed:

1. Logistic Regression: This model uses a one-vs.-rest approach with the multinomial
logistic loss function. In this approach, a separate model is trained for each class to
predict whether an instance belongs to that class or not. The class that obtains the
highest probability from its respective model is predicted as the output.

2. Support Vector Machine (SVM): Like Logistic Regression, SVM also uses a one-vs.-rest
approach. In this method, one class is chosen as the positive class, and rest of the
classes are grouped together as the negative class. A model is trained for each class
following this approach, and the class with the highest decision function output is
chosen as the output class.

3. Random Forest: Random Forest does not use the one-vs.-rest or one-vs.-one strategy.
Instead, it is an ensemble of decision trees that independently vote for the class of an
instance. The class with the most votes is chosen as the output.

4. CatBoost: This model automatically handles multi-class classification by using a
variant of the one-vs.-all scheme. It does so by setting the loss function parameter
to MultiClass.
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5. Neural Network: Neural networks employ a different approach altogether. They make
use of the softmax activation function in the output layer to provide the probability of
each class. The class with the highest probability is chosen as the output class.

6. To evaluate the performance of these models and to obtain a more generalized result,
the stratified k-fold cross-validation was used. This method preserves the proportion
of each class in every fold, which helps ensure that the cross-validation process used
was fair and the results were reliable. The models were evaluated based on their
accuracy scores.

4.5. Model Performance Metrics

Upon fine-tuning the hyperparameters for the three selected classifiers (Neural Net-
work, CatBoost, and SVM), each model was trained on the entire training set. Subsequently,
their performance was assessed on the independent testing set to evaluate their general-
ization capabilities. As this research focuses on the classification of WatSan technologies,
classification-based evaluation methods are used. The evaluation metrics employed the
confusion matrix, accuracy, recall, and F1-score. In addition, the ROC curve and the feature
importance metrics were computed for comprehensive analysis.

The confusion matrix, which is also called the contingency table, is a tabular represen-
tation that illustrates true positives (TP), or equivalently the number of instances predicted
as class A and classified in class A; false negative (FN), or equivalently the number of
instances predicted as class A and classified in class B; false positives (FP), or equivalently
the number of instances predicted as class B and classified in class A; and true negatives
(TN), or equivalently the number of instances predicted as class B and classified in class B.
Table 1 shows the confusion matrix where P is the total answers for class A and N the total
answers for class B.

Table 1. Confusion matrix for Evaluation of Classifier.

Predicted As Class A Class B Total

Class A (P) True Positive (TP) False Negative (FN) P
Class B (N) False Positive (FP) True Negative (TN) N

Accuracy is the proportion of all correctly predicted instances over the total number
of instances [55]. The accuracy can be expressed mathematically as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
, (7)

The F1 score is the harmonic mean between precision and recall [56]. The precision
is defined as the percentage of predicted positive instances that are actually positive, or
TP/(TP + FN) [57]. The recall is defined as the true positive rate, which is the percentage of
positive instances that are predicted as positive, or TP/(TP + FN). It should be noted that
F1 is typically more useful, especially when the class distribution is imbalanced [58], and it
is given by the following equation:

F1 = 2× Precision× Recall
Precision + Recall

(8)

These evaluation metrics facilitated a comprehensive understanding of each classifier’s
performance, allowing for the identification of the most suitable model for the classification
of water sanitation technologies.

The receiver operating characteristic (ROC) curve is a graph that displays how well a
classification model performs across all categorization levels. Two parameters are plotted
by this curve, namely the False Positive Rate and the True Positive Rate [59]. The area under
the ROC curve (AUC) evaluates the entire two-dimensional region beneath the complete
ROC curve, from (0, 0) to (1, 1) [60].
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In order to understand the importance of different features in the predictive model, a
technique known as permutation feature importance was employed. Permutation feature
importance is defined as the decrease in a model’s score when a single feature value is
randomly shuffled [39]. This procedure breaks the relationship between the feature and the
target; thus, the drop in the model’s score is indicative of how much the model depends on
the feature. This technique benefits from being model-agnostic and can be calculated many
times with different permutations of the feature.

The permutation feature importance of feature i is defined as follows:

importance (i) =
1
N

N

∑
n=1

score(model, X, y)− score(model, Xn
i , y) (9)

where X is the original test data, y is the target, Xn
i is the data for the n-th permutation of

feature i, the score is the function that returns the score of the model (such as accuracy for
classification problems), and N is the number of times the permutation is carried out. The
result of this is a list of importance scores for each feature, showing how much each feature
contributes to the prediction capability of the model.

In addition to these measures, we incorporate two forms of uncertainty quantification
to better understand the predictive behavior of our machine learning models: epistemic and
Aleatoric Uncertainty. These uncertainties, inherent in machine learning applications, can
provide valuable insights into the confidence and reliability of model predictions, assisting
in informed decision making [61–63]:

Epistemic Uncertainty: This type of uncertainty, also known as model uncertainty,
arises from the lack of knowledge about the model that best represents the system under
study [61–63].

Aleatoric Uncertainty: This represents the uncertainty that is intrinsic to the data them-
selves, often resulting from the inherent noise or variability in the
observations [61–64]. Unlike Epistemic Uncertainty, Aleatoric Uncertainty cannot be re-
duced with additional data. To measure Aleatoric Uncertainty, we use the concept of
entropy as a measure of the unpredictability or randomness of the information being
processed [61–63].

5. Results and Discussion

The computational analyses in this study were executed using the Scikit-Learn library
in Python on a system equipped with a 12th Generation Intel Core i7-1255U processor
running at 2.60 GHz and supported by 16.0 GB of RAM. Three modeling schemes were con-
ducted for comprehensive analysis: (i) Model 1 used the original dataset, where two classes
(class 2 and class 3) represented the majority of the dataset (194/774 and 541/774, respec-
tively), and two classes (class 1 and class 4) were the minority of the dataset (16/774 and
23/774, respectively); (ii) Model 2 used a binary classification approach, focusing only on
the majority classes (classes 2 and 3); (iii) Model 3 used a balanced dataset, generated by
the synthetic minority oversampling technique (SMOTE) [65], which is implemented on
the training set (only) to artificially augment the minority class instances.

A range of classifiers was evaluated, and their performance was assessed using 10-fold
stratified cross-validation with grid search. The distribution of accuracy scores for each
classifier during cross-validation can be seen in Figure 4. The mean cross-validation scores
and their standard deviations for all classifiers are presented in Table 2.

From Table 2, it can be seen that the highest performance is achieved by the Artificial
Neural Networks (ANN), closely followed by CatBoost, while the Support Vector Machine
(SVM) has the lowest CV score. It is worth noting that all these models have CV scores
close to each other, ranging from 0.845 (LR) to 0.893 (ANN), indicating that they all have
relatively similar performance on the dataset. By looking at the standard deviation, we can
see that ANN has the smallest value, suggesting it is the most stable model, i.e., that its
performance does not fluctuate much across different splits of the data. Meanwhile, the
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CatBoost model, despite achieving a high mean CV score, shows a relatively high standard
deviation, indicating varying performance across different splits. Table 2 also indicates
that this LR and SVM had an Epistemic Uncertainty of zero, indicating that these models
produced identical predictions across different runs. On the other hand, RF, CatBoost, and
ANN exhibited higher Epistemic Uncertainty due to the inherent randomness in these
models. Interestingly, the model with the highest Epistemic Uncertainty, ANN, also had
the lowest Aleatoric Uncertainty, suggesting that it may be more capable of handling the
inherent noise in the data. Upon thorough analysis of the model performance metrics,
which include both accuracy and the measures of uncertainties, we have identified the top
three classifiers: Artificial Neural Networks (ANN), CatBoost, and Support Vector Machine
(SVM). These models have been chosen for further refinement through hyperparameter
tuning. Subsequently, their performance is evaluated and compared on the test set to
present a comprehensive report of their capabilities.
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Table 2. Mean cross-validation scores and standard deviations for classifiers.

Classifier Mean CV Score Standard
Deviation

Epistemic
Uncertainty

Aleatoric
Uncertainty

LR 0.845 0.050 0.0 0.0
SVM 0.853 0.046 0.0 0.515
RF 0.850 0.036 0.042 0.562

CatBoost 0.887 0.053 0.017 0.344
ANN 0.893 0.032 0.069 0.192

Following this comprehensive evaluation of model performance, we further explored
the mechanisms driving the highest-performing model—the Artificial Neural Networks
(ANNs)—through a feature importance analysis. This analysis reveals the different influ-
ences each variable has on the prediction capability of the artificial neural network model.
The “Source” feature shows the highest importance score of approximately 0.14, suggesting
that it has the most significant influence on the prediction. On the other hand, the “Distri-
bution” and “Storage” features exhibit lower importance scores of around 0.018 and 0.034,
respectively, indicating that these features have a lesser impact on the model’s prediction.
Despite their lower impact, they still contribute to the overall predictive capability of
the model.
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5.1. Model 1: Original Dataset

Based on the initial evaluation, the top three classifiers (Neural Network, CatBoost,
and SVM) were selected for further optimization through hyperparameter tuning. The
tuned hyperparameters of each classifier were then used to train the models on the entire
training set, and their performance was evaluated on the unseen test set. Table 3 shows
the tuned hyperparameters for each of the top three classifiers and their corresponding
cross-validation accuracy. The performance of each of the classifiers is provided in Table 4.

Table 3. Tuned hyperparameters and cross-validation accuracy.

Classifier Tuned Hyperparameters CV Accuracy

ANN

Activation: tanh, Sigmoid

0.893

Batch size: 32
Dropout rate: 0.099

Epochs: 50
Layers: 3

Neurons: (128, 64, 32)
Optimizer: Adam

CatBoost

Depth: 5

0.895
Iterations: 150

L2 leaf regularization: 1
Learning rate: 0.1

SVM

Regularization parameter (C):
10

0.897Kernel coefficient (gamma):
0.1

Kernel type: rbf

Table 4. Classifier performance metrics on the imbalanced original dataset (Model 1).

Algorithm Class Precision Recall F1 Score Accuracy

CatBoost

1 1.00 1.00 1.00

0.93
2 0.97 0.79 0.87
3 0.92 0.99 0.95
4 1.00 0.50 0.67

SVM

1 0.75 1.00 0.86

0.92
2 0.97 0.79 0.87
3 0.92 0.97 0.95
4 0.50 0.50 0.50

ANN

1 0.75 1.00 0.86

0.94
2 0.97 0.84 0.90
3 0.95 0.97 0.96
4 0.60 0.75 0.67

The CatBoost model demonstrated impressive precision across all classes, achieving
a perfect score of 1.00 for Class 1 and Class 4, indicating that CatBoost’s predictions for
these classes are consistently accurate. However, the recall score for Class 2 and Class 4 was
lower, suggesting that the model did not perfectly identify all actual instances of these
classes. Notwithstanding, the overall accuracy was high at 0.93, implying that CatBoost
correctly classified 93% of the instances in the test dataset.

The SVM model displayed robust performance with high precision in all classes
and perfect recall for Class 1. Like CatBoost, its recall for Class 2 and Class 4 was lower,
indicating some difficulty in correctly identifying all actual instances of these classes. The
overall accuracy for SVM was 0.92, implying that it accurately predicted the class for 92%
of the instances.
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The ANN model exhibited slightly lower precision for Class 1 compared to the other
two models but showed impressive precision for Class 2 and Class 3. Despite the lower
recall for Class 1 and Class 4, it had the highest overall accuracy of 0.941, suggesting that
the ANN model accurately predicted the class for 94.1% of the instances, probably due to
its superior performance for Class 3, the majority class in the test dataset. These results
highlight that each model has its unique strengths and trade-offs.

While CatBoost and SVM excel in making accurate predictions for Class 1 and Class 4,
the Neural Network provides a more balanced performance across all classes, resulting in
the highest overall accuracy. Figure 5 provides a more detailed view of the performance
of each model, presenting the instances of correct and incorrect predictions made by each
model, broken down by class.
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5.2. Model 2: Binary Dataset

To address the class imbalance issue, a binary model that considers only the major-
ity classes is studied. This enables a more comprehensive understanding of the model
performance under different scenarios. The binary model focused on the two majority
classes—Class 2 and Class 3. The performance metrics for the binary model are detailed in
Table 5.

Table 5. Classifier performance metrics on the imbalanced original dataset (Model 2).

Algorithm Class Precision Recall F1 Score Accuracy

CatBoost
2 0.91 0.75 0.82

0.913 0.92 0.99 0.94

SVM
2 0.97 0.79 0.88

0.933 0.92 0.97 0.88

ANN
2 0.97 0.84 0.90

0.953 0.95 0.97 0.96

The CatBoost model displayed a precision of 0.91 for both classes. The recall score
was 0.75 for Class 2 and 0.97 for Class 3, indicating that the model identified the majority
of actual instances of Class 3 effectively but struggled slightly with Class 2. The overall
accuracy was 0.91, demonstrating that CatBoost correctly classified 91% of the instances.

The SVM model showed a balanced performance, with both precision and recall being
0.88 for Class 2 and 0.95 for Class 3. This indicates robustness in correctly identifying and
predicting instances of both classes. The overall accuracy for SVM was 0.93, higher than for
CatBoost, indicating accurate predictions in 93% of the instances.

The ANN model exhibited a precision of 0.92 for Class 2 and 0.95 for Class 3, demon-
strating impressive precision for both classes. The recall scores were also high for Class
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2 and 0.97 for Class 3. The overall accuracy was the highest among the models at 0.95,
demonstrating that the ANN model correctly predicted the class for 95% of the instances.

The performance of each model is presented in Figure 6, which shows the correct and
incorrect predictions made by each model, classified by each class.

Water 2023, 15, x FOR PEER REVIEW 14 of 19 
 

 

of actual instances of Class 3 effectively but struggled slightly with Class 2. The overall 
accuracy was 0.91, demonstrating that CatBoost correctly classified 91% of the instances. 

The SVM model showed a balanced performance, with both precision and recall be-
ing 0.88 for Class 2 and 0.95 for Class 3. This indicates robustness in correctly identifying 
and predicting instances of both classes. The overall accuracy for SVM was 0.93, higher 
than for CatBoost, indicating accurate predictions in 93% of the instances. 

The ANN model exhibited a precision of 0.92 for Class 2 and 0.95 for Class 3, demon-
strating impressive precision for both classes. The recall scores were also high for Class 2 
and 0.97 for Class 3. The overall accuracy was the highest among the models at 0.95, 
demonstrating that the ANN model correctly predicted the class for 95% of the instances. 

The performance of each model is presented in Figure 6, which shows the correct and 
incorrect predictions made by each model, classified by each class. 

Comparing these results with the original model in experiment 1, which incorporated 
all four classes, it is evident that the binary model has improved the performance. This is 
likely due to the reduced complexity of distinguishing between two classes rather than 
four. While the CatBoost and SVM models continue to perform well, the Neural Network 
model stands out with the highest overall accuracy in the binary model scenario. Despite 
the trade-offs in terms of class coverage, the binary model can be a beneficial approach 
when the focus is on the majority classes. 

   
(a) (b) (c) 

Figure 6. Confusion matrix for the best classifiers—binary models: (a) CatBoost, (b) SVM, and (c) 
ANN. 

The Receiver Operating Characteristic (ROC) curve and the Area Under the Curve 
(AUC) are significant indicators of the performance of our binary classifier. As shown in 
Figure 7, the Neural Network model achieved an outstanding AUC score of 0.98. This high 
score signifies that the model correctly distinguishes the positive and negative classes 98% 
of the time, indicating strong robustness against overfitting and good generalization on 
unseen data. This evidence strongly supports the effectiveness of our Neural Network 
model for this binary classification task. 

Figure 6. Confusion matrix for the best classifiers—binary models: (a) CatBoost, (b) SVM, and
(c) ANN.

Comparing these results with the original model in experiment 1, which incorporated
all four classes, it is evident that the binary model has improved the performance. This is
likely due to the reduced complexity of distinguishing between two classes rather than
four. While the CatBoost and SVM models continue to perform well, the Neural Network
model stands out with the highest overall accuracy in the binary model scenario. Despite
the trade-offs in terms of class coverage, the binary model can be a beneficial approach
when the focus is on the majority classes.

The Receiver Operating Characteristic (ROC) curve and the Area Under the Curve
(AUC) are significant indicators of the performance of our binary classifier. As shown in
Figure 7, the Neural Network model achieved an outstanding AUC score of 0.98. This high
score signifies that the model correctly distinguishes the positive and negative classes 98%
of the time, indicating strong robustness against overfitting and good generalization on
unseen data. This evidence strongly supports the effectiveness of our Neural Network
model for this binary classification task.
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5.3. Model 3: Dataset with SMOTE

In pursuit of addressing the class imbalance issue inherent in our data, the SMOTE
method was used. The performances of the classifiers with SMOTE are presented in Table 6.
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Table 6. Classifier performance metrics with SMOTE (Model 3).

Algorithm Class Precision Recall F1 Score Accuracy

CatBoost

1 1.00 1.00 1.00

0.95
2 0.97 0.84 0.90
3 0.94 0.99 0.96
4 1.00 0.75 0.86

SVM

1 0.75 1.00 0.86

0.90
2 0.96 0.71 0.82
3 0.89 0.99 0.94
4 1.00 0.25 0.40

ANN

1 0.75 1.00 0.86

0.93
2 0.97 0.82 0.89
3 0.94 0.97 0.96
4 0.60 0.75 0.67

With the SMOTE method, the CatBoost model achieved a perfect score in both preci-
sion and recall for Class 1 and Class 4. The model maintained a high performance for Class
2 and Class 3, yielding the highest overall accuracy of 0.95 across all experiments.

A comparative analysis of the oversampled models with the original model and the
binary model further strengthens our observation. It can be observed that the SMOTE
model outperforms both models in performance metrics, especially in the context of the
minority classes such as Class 4. This performance of the oversampled models can be at-
tributed to the successful implementation of oversampling methods, which have effectively
amplified the prediction accuracy for minority classes. Consequently, this has contributed
to the enhanced overall performance of the model.

The approach used in this study is adaptable to any dataset, making it usable in a wide
range of situations and not case-specific. The same methodology may be used to analyze
and offer insightful information for other circumstances by enlarging the dataset or using
another one. This has particular resonance for developing countries, which often grapple
with the selection of water technology due to inadequate procedures, leading to high failure
rates, resource wastage, and sustained water scarcity. In a practical application, the trained
classifier developed in this study could be employed to determine the most suitable WatSan
technologies for unexplored areas, such as a newly developed city or small community.
This would require the collection of location-specific data, aligning with the features used
in the initial training dataset. Once the new data are collected, they are then fed into
our trained classifier to generate data-driven recommendations for WatSan technology
deployment. This results in a higher number of failures and ineffective implementation,
leading to resource wastage and continued water scarcity [8]. Therefore, by applying
the recommended approach to enhance the understanding of water technology selection
and implementation, developing countries can greatly benefit from the insights gained.
These findings can contribute to improving decision-making processes, optimizing resource
allocation, and ultimately addressing the high failure rates observed in several regions.

6. Conclusions

Appropriate WatSan technologies selection is crucial for ensuring the sustainability of
water and sanitation services in developing countries. In this study, five machine learning
algorithms were employed for the prediction of the WatSan technology through the capacity
requirement level (CRL), with artificial neural networks (ANNs), CatBoost, and Support
Vector Machine (SVM) demonstrating superior outperforming both Logistic Regression
and Random Forest. Specifically, the CatBoost algorithm, when applied to the augmented
data using the synthetic oversampling technique (SMOTE), stands out with an overall
accuracy of 0.95. Therefore, the results indicate that these tools could be integrated in a
decision support system (DSS) to expedite the selection of the most suitable technology
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options for community water supply services, tailored to meeting the specific community
needs and environmental circumstances.
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Abbreviations

ANN Artificial Neural Network
CART Classification and regression trees
CRL Capacity Requirement Level
DSS Decision support system
DWS Drinking water supply
FN False negative
FP False positive
GBDT Gradient Boosted Decision Trees
LR Logistic Regression
N Total answers for class B
MASSCOTE Mapping System and Services for Canal Operation Techniques
OM Operation and maintenance
P Total answers for class A
RBF Radial Basis Function
RF Random Forests
SMOTE Synthetic Minority Over-sampling Technique
SVM Support Vector Machine
TN True negative
TP True positive
WatSan Water supply and sanitation
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