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Abstract: Since ferric tetroxide (Fe3O4) has strong magnetic properties, coating amorphous silica
(SiO2) with Fe3O4 nanoparticles can protect the magnetic Fe3O4 particles and form a new mag-
netic adsorbent with a core–shell structure and small pore size, the strong magnetic properties of
which can efficiently solve the problem of the difficult separation and recovery of heavy metals
from wastewater affecting present-day adsorption techniques. In this paper, SiO2-coated nanoscale
Fe3O4 particles were prepared using a modified sol–gel method for the adsorption and removal of
Cr(VI) at lower pollution concentrations. The adsorbent was characterized using Fourier transform
infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray
photoelectron spectroscopy (XPS), and a magnetic vibration sample magnetometer (VSM), and its
adsorption performance was systematically investigated in terms of initial concentration, pH, and
temperature. The experiments showed that the adsorption effect was optimal when the initial solu-
tion Cr(VI) was 40 mg/L. The adsorption capacity increased with a decrease in the initial solution’s
pH and decreased with an increase in temperature. Furthermore, the adsorption capacity of Cr(VI)
at low concentrations was much higher than that of other conventional adsorbents, the calculated
unit adsorption capacity reached 13.609 mg·g−1, and the removal rate reached 64.8%. In addition,
the strong magnetic nanocomposite (MS) had excellent recoverability, could achieve desorption via
alkaline washing, and retained about 75% of the initial adsorption capacity after six cycles.

Keywords: hexavalent chromium removal; Fe3O4 particles; SiO2 coating; core–shell structure;
strong magnetic

1. Introduction

In recent years, the amount of heavy metals in the environment has been increasing
annually despite their well-known toxicity and tendency to accumulate in living organ-
isms [1]. Hexavalent chromium (Cr(VI)) is a highly toxic and carcinogenic important
pollutant, the main source of which is the large amount of chromium-containing wastewa-
ter generated during industrial processes associated with leather tanning [2], electroplating
production [3], etc. Cr(VI) can cause serious damage to ecosystems, and it is imperative
to control chromium in drinking water and inland surface water discharges and develop
effective methods for Cr(VI) removal [4,5].

Many studies have attempted to remove Cr(VI) from water using methods such as
electrochemical treatment [6], reverse osmosis [7], and chemical reduction precipitation [8].
Although these purification methods exhibit high Cr(VI) removal efficiencies, they have
several limitations [9]. For example, electrochemical methods are expensive; reverse osmo-
sis requires a high-pressure environment as the membrane is prone to clogging, making the
operation cumbersome; and chemical reduction precipitation causes the secondary pollu-
tion of the environment, and the treated wastewater still fails to meet safety standards and
needs further purification. In contrast, adsorption methods have the advantages of a low
cost [10], simple operation, and high efficiency. Various materials, including multi-walled
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carbon nanotubes, polymers, and zeolites, have been trialed as adsorbents in past studies,
but some problems, such as the high cost, poor dispersion in water, poor removal efficiency,
and difficulty in the recovery of these materials [11], remain, hindering the widespread
industrial application of water purification.

As an emerging material, functionalized magnetic nanocomposites have been tested
as a novel adsorbent in the field of heavy metal removal. For example, magnetic nanopar-
ticles modified with MoS2 (MoS2@Fe3O4NPs) were synthesized and used as an effective
adsorbent for the removal of Cr(VI)/Cr(III) from an aqueous solution by Kumar et al. [12].
MoS2@Fe3O4NPs exhibited uniform size and shape, excellent water dispersion, and su-
perior magnetism for enhanced adsorption. Using an in situ growth mechanism, Kumar
et al. [13] prepared g-C3N4-Fe3O4 nanocomposites that could be magnetically recovered
and showed good recyclability. Ye et al. [14] prepared Cu/Fe bimetallic nanoparticles for
the removal of hexavalent Cr(VI) from wastewater using a liquid-phase chemical reduction
method. These studies functionalized magnetic nanocomposites with the advantages of
a large specific surface area, a tunable pore size structure, high magnetic responsiveness,
and good reusability, showing excellent potential for the adsorption and removal of heavy
metals from water. However, the factor that hinders the application of functionalized
magnetic nanocomposites in real life is that their adsorption capacity does not yet provide
outstanding advantages.

Therefore, to improve the adsorption performance of magnetic nanomaterials, we
aimed to prepare a novel nano-sorbent material (MS) with a magnetic ferric tetroxide
(Fe3O4) core and an outer coating of amorphous silica (SiO2) to enrich the specific surface
area, forming a core–shell structure that takes into account both magnetic properties
and an excellent pore structure. In addition, dual surfactants (polyethylene glycol 4000
and ethyl orthosilicate) were used to increase the size and dispersion of particles during
the preparation process, and the cost of adsorbent production was reduced by using
magnetite Fe3O4 as the raw material. Then, the application of this MS to heavy metal
Cr(VI) removal was explored. Specifically, we used a chemical precipitation method [15]
to prepare nanoscale Fe3O4 cores and surface modification via a sol–gel method to attach
SiO2 inorganic shells on the outside. This design makes the new nano-adsorbent material
have good magnetic responsiveness, allowing for the easy separation and recovery of
the adsorbed material from water using an applied magnetic field [16], thus solving the
main challenge associated with adsorption methods for wastewater treatment [17]. In
addition, most existing studies on heavy metal removal using adsorbents are limited to
very high heavy metal concentrations (500–1000 mg/L), while the removal efficiency at
lower concentrations remains insufficient [18,19]. In reality, such high concentrations are
rarely seen, even after concentrating wastewater. Therefore, this study aimed to explore the
adsorption performance of the new adsorbent materials at lower concentrations to increase
their suitability for real-life application.

In addition, this study included an in-depth investigation of the adsorption mechanism
of the MS to reveal the interactions and surface chemistry during the adsorption process.
Analytical methods [20], including Fourier transform infrared spectroscopy (FT-IR), scan-
ning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy
(XPS), and a magnetic vibration sample magnetometer (VSM), were used to characterize
the adsorbent and evaluate its adsorption performance on Cr(VI) in batch adsorption exper-
iments [21]. Lastly, the new magnetic adsorbent MS was compared with traditional heavy
metal adsorbent materials, namely coconut shell activated carbon (CAC) and bentonite
(BTT), to explore its potential and advantages for Cr(VI) adsorption in water [22].

2. Materials and Experiments
2.1. Reagent Selection

The materials required for the synthesis include deionized water (H2O), concentrated
hydrochloric acid (HCl), ferric chloride hexahydrate (FeCl3·6H2O), concentrated ammonia
water (25%), methanol (CH3OH), tetraethyl orthosilicate (TEOS), polyethylene glycol 4000
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(PEG4000), and powdered ferric oxide (Fe3O4), all purchased from the China National
Pharmaceutical Group Chemical Reagent Corporation. The Cr (VI) standard reserve liquid
used in the experiment was a “Standard Solution of Cr (VI) in Water” provided by the
National Center for Standard Materials, and this provided all the Cr (VI) required for the
experiment. Deionized water from the Laboratory Center of the Northeast Agricultural
University supply system was used for the experiments.

2.2. Synthesis of SiO2-Coated Fe3O4 Particles

In this study, SiO2-coated Fe3O4 nanoparticles were synthesized using an improved
sol–gel method [23] based on the study by Souza et al. [24]. We used PEG4000 as a surfac-
tant because it has better heat resistance, hydrophilicity, and biocompatibility than other
surfactants such as sodium dodecyl sulfate (SDS) and octylbenzene sulfonic acid sodium
(SOS) [25]. Its long-chain structure can stabilize and disperse nanoparticles to a certain ex-
tent while also improving biodegradability and reducing the toxicity of nanoparticles [26],
effectively controlling the dispersibility and stability of particles. After preparation, we
used an HCl solution to soak and remove the excess surface silicon layer coating to further
improve the magnetic and stability properties of the particles. The specific preparation
process is as follows: 8 g of FeCl3·6H2O and 3.24 g of Fe3O4 (the molar ratio of iron ions to
ferrous ions in the solution is 4.51) were dissolved in 100 mL of deionized water. Nitrogen
(N2) was introduced to remove air from the reaction container. After that, 25 mL of 6 mol/L
ammonia water (excess alkali as a precipitant) and 25 mL of 0.1 mol/L PEG4000 solution
(surfactant) were added to the solution. The mixture was stirred continuously with a
polytetrafluoroethylene stirring rod at 60 ◦C for 1 h in a constant temperature water bath
and then heated to 80 ◦C for 30 min of maturation with N2 protection during the reaction.
Using a magnet to separate the above product, it was then washed several times with
deionized water and methanol and subjected to freeze-drying, resulting in the production
of uncoated Fe3O4 nanoscale cores [27].

Weigh 2.0 g of the Fe3O4 nanoscale core to be coated and ultrasonically dispersed
in 40 mL of deionized water. Meanwhile, 1.76 mL of TEOS was ultrasonically dispersed
in 80 mL of CH3OH. After mixing the two solutions and stirring for 15 min, 4 mL of
6 mol/L aqueous ammonia was added, and the reaction was continued with stirring for
4 h. The color of the solution changed from black to dark green. Finally, the excess surface
silicon layer coating was removed by washing several times with methanol and soaking in
0.1 mol/L HCl for 24 h. The product was then washed with deionized water until neutral
and dried under a vacuum [28]. The final product was SiO2-coated Fe3O4 particles, the MS
used in the study. The preparation process is illustrated in Figure 1.

2.3. Structure and Characterization Methods

Scanning electron microscopy (SEM) (Hitachi SU8010 field-emission scanning electron
microscope (Tokyo, Japan)) was used at a voltage of 3 kV. X-ray diffraction (XRD) (Malvern
Panalytical Empyrean X-ray diffractometer (Malvern Hills, Worcestershire, UK)) was used
with a Cu target Kα radiation source; α was set to 0.15418 nm, scanning speed was set to
2◦α min−1, and scanning range was set to 5–90◦. Brunauer–Emmett–Teller (BET) Surface
Area and Porosity Analysis was performed using a Quantachrome Auto IQ surface area and
porosity analyzer (Jacksonville, FL, USA). Fourier transform infrared (FTIR) spectroscopy
was performed using a Thermo Fisher Nicolet iS50 Fourier transform infrared spectrometer
(Worcester, MA, USA). Zeta potential and particle size analysis was performed using
a Malvern Nano S90 particle size and zeta potential analyzer (Malvern, UK). Vibrating
sample magnetometry (VSM) was performed at 25 ◦C with a magnetic field range of ±2 T
using a Lakeshore 7404 vibrating sample magnetometer (Columbus, OH, USA).
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2.4. Experimental Method Analysis and Optimization

We performed a simple pilot experiment to evaluate the methods used to measure
hexavalent chromium throughout the experiment to minimize possible errors in hexavalent
chromium concentration measurements [29]. Specifically, we compared atomic absorption
spectrometry with methyl isobutyl ketone (MIBK) as the extractant and diphenylcarbazide
spectrophotometry [30]. According to the results, the adsorption of the new magnetic ad-
sorbent material at low concentrations of hexavalent chromium reached equilibrium within
10 min. The determination of hexavalent chromium using atomic absorption spectrometry
required a longer experimental procedure and preparation time, while the spectrophoto-
metric method could monitor the hexavalent chromium content in a shorter time interval,
which is necessary to analyze adsorption rate changes during short time periods [31]. No-
tably, all hexavalent chromium sources in this experiment were the hexavalent chromium
standard stock solutions provided by the National Center for Reference Materials of China,
which did not contain other interfering ions [32,33]. Therefore, diphenylcarbazide spec-
trophotometry was used to determine hexavalent chromium concentrations throughout
the experiment. This method involves the reaction of hexavalent chromium ions with
dibenzoyl dihydrazide (DPCI, C13H14N4O) under an acidic solution to form a purple-red
complex (Figure 2), which is measured using UV-visible spectroscopy at a wavelength of
540 nm (Figure 3) [34].
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2.5. Magnetic Removal of Cr (VI) from Water

Batch adsorption experiments were conducted to investigate the adsorption perfor-
mance of the synthesized magnetic adsorbent material. In the adsorption equilibrium
experiment, 25 mg of solid MS was added to 50 mL of a Cr (VI) solution with different
initial concentrations (10, 20, 30, 40, 50, 60, 70, 80, 90, 100, and 200 mg/L) in sealed tri-
angular flasks. The mixtures were agitated on a constant temperature water bath shaker
(n = 200 rpm; t = 25 ◦C) for a sufficient time, and samples were taken out at different
time points. The samples were filtered through a microporous membrane (0.45 µm) and
analyzed immediately to track the change in Cr (VI) concentration over time. A control
group consisting of Cr (VI) solutions was subjected to similar experimental conditions.
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In order to investigate the effects of solution pH and temperature on the adsorption
performance of MS, comparative adsorption experiments were designed with different
initial solution pH values (2, 4, 6, 8, 10, and 12) and solution temperature gradients (25 ◦C,
40 ◦C, 60 ◦C, and 80 ◦C) to determine the optimal pH value and suitable environmental
temperature for MS adsorption by measuring the remaining Cr (VI) concentration in the
solution at adsorption equilibrium.

The maximum adsorption capacity of MS was explored under optimal reaction condi-
tions. A total of 100 mg each of MS, coconut shell activated carbon (CAC), bentonite (BTT),
and MCM-48 were added to 50 mL of Cr (VI) solution (c = 40 mg/L; pH = 2; t = 25 ◦C)
for sufficient adsorption. The remaining Cr (VI) concentration in the solution was mea-
sured after adsorption, and the adsorption capacities of MS, CAC, BTT, and MCM-48 were
calculated.

3. Results and Discussion
3.1. Characterization of Magnet MS
3.1.1. SEM Analysis and Particle Size Analysis

A scanning electron microscope (SEM) image of the MS is shown in Figure 4. The
magnetic nanoparticles were uniformly distributed in spherical structures with an average
diameter of approximately 35 nm. Particle size analysis of the MS was conducted, and
the results are shown in Figure 5. The particle size distribution curve showed a single
peak at approximately 35 nm. This indicates that, under the experimental conditions of
this study, the particle size of the magnetic nanoparticles was controlled at approximately
35 nm. The ratio of the precipitant to TEOS in the reaction mixture determined the thickness
of the Fe3O4 particle coating layer [35]. Studies have also shown that the particle size of
nano-adsorbents makes them more selective and that metal oxide adsorbents with particle
sizes smaller than 100 nm exhibit better selectivity for Cr (VI). The magnetic nanoparticles
synthesized in this study have the advantages of a small particle size, high uniformity, and
good selectivity. As shown in Figure 4, the MS particles agglomerated. This phenomenon
is due to the magnetic nanoparticles’ high surface area and energy state, which resulted in
more significant surface adsorption forces [36]. When the attractive force between atoms or
molecules on a surface is greater than the repulsive force caused by the thermal motion [37],
they agglomerate to form clusters. Compared with the tubular structure of CAC and the
layered structure of BTT, the pore structure of the MS was more obvious, with a more
regular shape and a smaller microscale. In addition, the surface chemistry of the MS was
conducive to the adsorption of Cr (VI) on its surface.

Comparing the SEM images before and after the adsorption of hexavalent chromium
in water by the MS, it can be seen that the adsorbed material retained a spherical structure
while the particles were further from each other; clumps of material can be clearly seen
attached to the surface of the material. The reason for this phenomenon could be the
successful adsorption of heavy metal ions by the MS and the interaction between the
chemical groups on the adsorbent particle surface and the heavy metal ions, forming
a new cladding layer. In turn, this led to an increase in the gaps between adsorbent
particles, which resulted in a looser appearance of the adsorbent particles. Notably, a
combination of specific surface area and XPS analyses is needed to verify this hypothesis.
Furthermore, the surface charge distribution may change after the adsorption of Cr(VI),
leading to weaker electrostatic interactions between adsorbent particles and the alleviation
of particle agglomeration [38]. To verify this, the zeta potential of the material before and
after adsorption was analyzed, and the results are shown in Table 1.
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Table 1. Change in zeta point position before and after adsorption of hexavalent chromium by MS
(under the condition of initial pH = 2).

Experiment Serial Number Pre-Adsorption Zeta
Potential (mV)

Zeta Potential after
Adsorption (mV)

1 14.06 15.84
2 14.09 16.02
3 14.17 15.76

From Table 1, it can be observed that the surface charge of the adsorbent changes,
and the zeta potential becomes more positive after the adsorption process. The reason is
that, during the adsorption process, the silicate groups on the surface of magnetic particles
complex with hexavalent chromium ions to form compounds that consume the negative
charge on the surface and increase the surface potential. It is preliminarily judged that the
interaction between the magnetic adsorbent groups and heavy metal ions is the reason for
the relief of agglomeration [39]. This also confirms the actual adsorption of Cr (VI) ions by
magnetic nano-adsorbents.

3.1.2. XRD Analysis

XRD analysis was carried out on the MS to determine the particle size and phase
composition of the Fe3O4 nanoparticles coated with silica. The XRD pattern is shown in
Figure 6. It shows the seven characteristic diffraction peaks at 2θ values of 30◦, 35.5◦, 43◦,
53.5◦, 57◦, 62.5◦, and 74.4◦ that were observed, which were indexed as (220), (311), (400),
(422), (511), (440), and (731), respectively, corresponding to the face-centered cubic Fe3O4
structure with a lattice constant of a = 0.838 nm, according to the magnetic mineral database
in the JCPDS card. Typically, the diffraction peaks at the (113), (210), (123), and (210) planes
are characteristic of magnetite and hematite. However, these peaks did not appear in the
XRD pattern, indicating the absence of other iron compounds in the synthesized magnetite.
This is because N2 is passed throughout the preparation process for protection against the
oxidation of Fe3O4. Furthermore, the obtained lattice constant of the sample was 0.839 nm,
and the average grain size of the MS was calculated to be 33.954 nm based on the full width
at the half maximum (FWHM) of the (311) Fe3O4 peak, consistently with the observation in
SEM imaging, which confirmed the nano-mesoporous structure of the MS. These results
also indicated that the surface coating did not significantly affect the crystal structure of the
Fe3O4 nanoparticles [40], and nitrogen gas flow was continuously introduced during the
preparation process to protect Fe3O4 from oxidation by air, which is crucial for studying
the physical and chemical properties of the MS.

3.1.3. BET Analysis

According to the results of the BET characterization (Table 2; Figures 7 and 8), the
specific surface area of the MS was 16.468 m2/g, and the average pore size was 3.554 nm.
Moreover, the specific surface area of the adsorbent (referred to as MS-Cr) increased after
the adsorption of hexavalent chromium, which confirmed the generation of new cladding
layers and pore structures on the MS surface during the adsorption process. The specific
surface area and average pore size of the MS are smaller than those of CAC and BTT. In
general, the larger the specific surface area of a material, the more favorable it is for the
adsorption of pollutants, while the small average pore size will limit the movement of
adsorbed molecules and increase their contact time with the surface of the porous material,
which can improve the adsorption capacity. The adsorption capacity of the MS is greater
than that of CAC and BTT because the MS has a spherical porous structure with a higher
open pore structure, which can provide more adsorption sites. The pore size distribution of
the MS in Figure 8 shows that the average diameter of mesopores, on the other hand, is
in the range of 3–5 nm. Mesopores and macropores are reported to promote the transfer
of heavy metal ions (Cr, Pb, Cd, etc.) [41]. Apparently, the unique porous structure of
the MS is advantageous for the efficient and rapid removal of Cr(VI), which can improve



Water 2023, 15, 2827 9 of 26

the adsorption capacity of the adsorbent and has a wide range of applications for the
environment and in water treatment.

Water 2023, 15, x FOR PEER REVIEW 9 of 27 
 

 

 
Figure 6. XRD pattern of the MS. 

3.1.3. BET Analysis 
According to the results of the BET characterization (Table 2; Figures 7 and 8), the 

specific surface area of the MS was 16.468 m2/g, and the average pore size was 3.554 nm. 
Moreover, the specific surface area of the adsorbent (referred to as MS-Cr) increased after 
the adsorption of hexavalent chromium, which confirmed the generation of new cladding 
layers and pore structures on the MS surface during the adsorption process. The specific 
surface area and average pore size of the MS are smaller than those of CAC and BTT. In 
general, the larger the specific surface area of a material, the more favorable it is for the 
adsorption of pollutants, while the small average pore size will limit the movement of 
adsorbed molecules and increase their contact time with the surface of the porous 
material, which can improve the adsorption capacity. The adsorption capacity of the MS 
is greater than that of CAC and BTT because the MS has a spherical porous structure with 
a higher open pore structure, which can provide more adsorption sites. The pore size 
distribution of the MS in Figure 8 shows that the average diameter of mesopores, on the 
other hand, is in the range of 3–5 nm. Mesopores and macropores are reported to promote 
the transfer of heavy metal ions (Cr, Pb, Cd, etc.) [41]. Apparently, the unique porous 
structure of the MS is advantageous for the efficient and rapid removal of Cr(VI), which 
can improve the adsorption capacity of the adsorbent and has a wide range of applications 
for the environment and in water treatment. 

Figure 6. XRD pattern of the MS.

Table 2. Specific surface area, average pore size, and average pore volume of MS, MS-Cr, CAC, and
BTT.

Adsorbent Specific Surface
Area (m2/g) Mean Pore Size (nm) Average Pore

Volume (cc/g)

MS 16.468 3.554 0.067
MS-Cr 17.719 6.738 0.033
CAC 162.175 4.133 0.168
BTT 65.176 9.024 0.147
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The N2 adsorption–desorption isotherms of the MS are shown in Figure 7. According
to the IUPAC classification, the isotherm exhibited a type IV adsorption isotherm shape,
and the adsorption–desorption curves were almost completely reversible [42]. The isotherm
exhibited three stages. The first stage (P/P0 < 0.13) is due to the single-layer adsorption
of N2 on the pore walls at low relative pressures, which resulted in a continuous increase
in the adsorption amount and a concave-up curve. This part of the curve shows an
obvious bending trend and an inflection point, B, at P/P0 = 0.13, indicating that single-layer
adsorption mainly occurs at this stage, and the monolayer coverage and the starting amount
of multi-layer adsorption overlap at this point. The second stage (0.13 < P/P0 < 0.8) was
characterized by a steady increase in adsorption, indicating that multi-layer adsorption
gradually occurred as the pressure continued to increase [43]. In the third stage (P/P0 > 0.8),
a hysteresis loop appears due to the capillary coalescence that causes N2 molecules to
condense into liquid molecules below atmospheric pressure filling the mesopore channels,
while the gas molecules become slower and slower inside the pores, eventually leading
to an increase in the number of molecules adsorbed on the pore walls. The molecular
concentration inside the pore reaches equilibrium when the saturation vapor pressure is
reached, but the molecules on the pore wall continue increasing. This results in a non-
uniform concentration of molecules on the pore wall and molecules inside the pore, thus
forming a hysteresis loop [44]. In addition, the molecules on the pore wall can also diffuse
into the pore, but due to the limitation of the pore size, the molecules inside the pore
cannot be replaced immediately, which is also one of the reasons for the hysteresis ring.
The adsorption termination plateau occurs when the saturation vapor pressure is reached,
at which time the adsorbent reaches saturation. In the third stage, the adsorption shows
a sharp increase, and at P/P0 = 1, the molecules have filled the smaller pore channels,
while the larger pore channels may still have a higher adsorption capacity [45], so what
happens here is adsorption on the larger pores, which further indicates that the MS is a
small-pore-size mesoporous adsorbent.

3.1.4. FT-IR Analysis

The results of Fourier-transform infrared spectroscopy (FT-IR) analysis of the MS,
the MS after the adsorption of Cr (VI) (referred to as MS-Cr), and the uncoated Fe3O4
nanoscale cores is shown in Figure 9. Compared with the Fe3O4 core, the MS and MS-Cr
have distinctive characteristic absorption peaks at 460 cm−1, and these peaks are due to
the bending vibration of the Si-O-Si bond [46]. The strong absorption peaks of MS, MS-Cr,
and Fe3O4 at 570 cm−1 correspond to the Fe-O stretching and bending absorption peaks in
pure magnetite. However, the peak intensity of MS and MS-Cr was significantly lower than
that of magnetite under the same conditions, indicating a lower Fe-O bond content in MS.
During the preparation process, the Fe-O bonds were destroyed, and new chemical bonds
were formed [47]. In the MS spectrum, there was a broad absorption peak at 1109 cm−1, the
characteristic absorption peak of the Si-O bond, this proves that the prepared MS contains
Si-O bonds. The narrower and sharper peaks corresponding to the Si-O bond in MS-Cr
compared to the MS may be attributed to the interaction between hexavalent chromium and
Si-O groups resulting in a change in the vibrational properties of the Si-O bond. The intense
absorption band of MS-Cr at 1649–1805 cm−1 corresponds to the Cr=O functional group
stretching [48,49]. In the MS spectrum, many disorganized absorption bands appeared in
the range of 1400–1570 cm−1 due to the slight destruction of the internal structure and the
decrease in the order caused by the destruction and recombination of Fe-O bonds. These
spectral bands indicate that Fe3O4-SiO2 was successfully synthesized while retaining most
of the structural features of Fe3O4. Although the spectral bands indicate that the MS has a
highly similar structure to Fe3O4, the VSM analysis of the material is needed to investigate
whether it has strong magnetic properties similar to those of Fe3O4.
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3.1.5. Magnetic Analysis

Magnetic measurements were performed on the samples at 293 K, and the magneti-
zation curves of the samples are shown in Figure 10. The saturation magnetization (MS)
intensity was 73.26 emu/g, and hysteresis and remanence were observed. The coercivity
(HC), remanence (MR), and saturation magnetization (MS) values obtained from the hystere-
sis loops are presented in Table 3. The relative residual magnetization intensity was very
small, indicating that the silica-coated magnetite particles exhibited super paramagnetic.
This is because the surface effect in commonly used nanomagnetic materials becomes
significant owing to their small size and large surface area. In silica-coated nanomagnetic
materials, the polar groups on the surface of the silica can interact with the free electrons on
the surface of the magnetic particles, forming a stable oxide shell. The presence of this oxide
shell can inhibit the exchange interaction between magnetic particles, causing a random
distribution of magnetic moments. Because it was difficult for the sample to form a long-
range-ordered magnetic structure, the coercivity and remanence were small; in contrast,
the Ms intensity was high, indicating super paramagnetic [50]. The magnetization curve
and sample magnetic attraction diagram of the preparation process also demonstrated
the material’s strong magnetism, making it an excellent adsorbent for removing Cr (VI)
ions from water. By using a strong magnet to attract and recover the adsorbed sample
particles, the adsorbate can be concentrated and recovered, thereby achieving efficient
water treatment. This strong magnetic property makes the material potentially valuable in
other fields [51].
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Table 3. Magnetic parameters of MS.

Sample MS (emu·g−1) MR (emu·g−1) HC (Oe) MR/MS

Fe3O4/SiO2 73.26 10.33 110.91 0.14

3.2. Analysis of the Removal Rate of Cr (VI)

Excess magnetic adsorbent was added to 1, 5, and 10 mg/L Cr (VI) solutions and
stirred to ensure adequate contact. The solution’s residual Cr (VI) concentration was
recorded at different contact times during the experiment while maintaining a constant
stirring speed of 200 rpm. We obtained the t-Ct curve of the residual hexavalent chromium
content in the solution with time (Figure 11). The results showed that the magnetic MS
adsorbent was able to remove hexavalent chromium rapidly. Under this condition, the MS
adsorbent reduced the hexavalent chromium concentration from 1.273 mg/L to 0.449 mg/L
with a removal rate of 64.8%, which indicates that this new magnetic adsorbent has a high
removal rate even at a lower contamination concentration. This means that new magnetic
adsorbents can more completely remove trace heavy metal contaminants, reducing their
residual and accumulation in the environment. This is critical for protecting ecosystems
and maintaining human health [52].

3.3. Adsorption Isotherm Analysis

In Figure 12, the adsorption isotherm plots obtained after fitting Langmuir, Freundlich,
Temkin, and D-R adsorption models are shown. The values of the fitted regression coef-
ficients for each model after correction are listed in Table 4, showing that the adsorption
isotherms of the MS were generally consistent with the Langmuir adsorption model with a
fitted regression coefficient (R2) of 0.971. The Langmuir isotherm model assumes that the
adsorption of the adsorbent on the adsorbate is primarily monolayer adsorption [43], where
the parameter Q0 is the estimated value of the adsorption capacity, and the fitted value
is 14.756 mg·g−1. The results of the Langmuir model indicate that monolayer adsorption
occurs during the adsorption of the MS, further supporting the previous conclusion inferred
from the N2 adsorption–desorption curves. In addition, the inhomogeneity coefficient n
was 3.03 as per the Freundlich model fit, which satisfied n = 2–10 and 1/n < 0.5, indicating
that the adsorption force was moderately attenuated and could allow the adsorption sites
on the adsorbent surface to be fully utilized, thus indicating that the adsorption of Cr(VI)
by the MS was favorable.
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3.4. Adsorption Kinetic Analysis

Adsorption kinetics is an important parameter for studying the adsorption removal
rate. Pseudo-first-order and pseudo-second-order kinetic models are two classic adsorption
kinetic models widely used to study the rate control mechanism and adsorption capacity
parameters of the adsorption process. This study investigated the MS adsorption of Cr (VI)
at different solution concentrations. The experimental data were fitted with pseudo-first-
order and pseudo-second-order kinetic models to determine the adsorption reaction rate
constant and related kinetic parameters to understand the dynamic characteristics of the
adsorption process. The pseudo-first-order kinetic model assumes that the reaction rate
is only related to the concentration; in contrast, the pseudo-second-order kinetic model
assumes that the adsorption rate is affected by chemical adsorption. The results are shown
in Figure 13. Table 5 lists the correlation coefficients obtained by fitting the pseudo-first-
and pseudo-second-order kinetic models. The pseudo-second-order kinetic model of the
MS generally had a better fit, with a correlation coefficient (R2) closer to 1. Therefore,
the adsorption of Cr (VI) by the MS can be predicted using the pseudo-second-order
kinetic model, which assumes that the adsorption rate is proportional to the square of
the concentration of Cr (VI) within a certain concentration range. During the adsorption
process, the initial adsorption rate was fast and then gradually slowed until equilibrium
was reached at approximately 10 min. The faster adsorption rate was mainly due to the
ordered porous structure of the MS, which had a faster mass transfer rate and allowed Cr
(VI) to enter the pores of the adsorbent more quickly.



Water 2023, 15, 2827 15 of 26

Water 2023, 15, x FOR PEER REVIEW 15 of 27 
 

 

Table 4. Fitting data of the adsorption isotherm models of MS. 

R2 Langmuir Freundlich Temkin D-R 
MS 0.97096 0.93031 0.95636 0.94986 

 
Figure 12. Adsorption isotherm of Cr (VI) adsorption by MS (the reaction temperature was 25 °C, 
the amount of adsorbent was 25 mg, the pH of the solution was 2, and the reaction time was 600 s). 

3.4. Adsorption Kinetic Analysis 
Adsorption kinetics is an important parameter for studying the adsorption removal 

rate. Pseudo-first-order and pseudo-second-order kinetic models are two classic 
adsorption kinetic models widely used to study the rate control mechanism and 
adsorption capacity parameters of the adsorption process. This study investigated the MS 
adsorption of Cr (VI) at different solution concentrations. The experimental data were 
fitted with pseudo-first-order and pseudo-second-order kinetic models to determine the 
adsorption reaction rate constant and related kinetic parameters to understand the 
dynamic characteristics of the adsorption process. The pseudo-first-order kinetic model 
assumes that the reaction rate is only related to the concentration; in contrast, the pseudo-
second-order kinetic model assumes that the adsorption rate is affected by chemical 
adsorption. The results are shown in Figure 13. Table 5 lists the correlation coefficients 
obtained by fitting the pseudo-first- and pseudo-second-order kinetic models. The 
pseudo-second-order kinetic model of the MS generally had a better fit, with a correlation 
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Table 4. Fitting data of the adsorption isotherm models of MS.

R2 Langmuir Freundlich Temkin D-R

MS 0.97096 0.93031 0.95636 0.94986
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Table 5. Fitting data of MS adsorption kinetics at different concentrations.

R2 Pseudo-First-Order Dynamics Pseudo-Second-Order Dynamics

10 0.96969 0.99025
20 0.96028 0.98002
30 0.92784 0.98033
40 0.95878 0.98712
60 0.93523 0.97583
80 0.91605 0.97839

When the initial Cr (VI) concentration was 40 mg/L, the maximum equilibrium
adsorption capacity was reached, and the maximum equilibrium adsorption capacity
of the MS for Cr (VI) was 13.609 mg/g. The experimental results show that the initial
concentration of Cr (VI) affects the adsorption rate of MCM-48-SH, and the adsorption rate
is positively correlated with the initial concentration of the solution until the maximum
adsorption equilibrium amount (40 mg/L) is reached. Subsequently, it gradually stabilized,
but the initial concentration of Cr (VI) had little effect on the final removal rate, consistently
with other research results. This is because, during the adsorption process, the ordered
mesoporous structure and the Si-O bonds in the pores of the MS cause Cr (VI) to quickly
adsorb onto the surface and pores of the MS. As the adsorption sites are gradually occupied
by Cr (VI), the adsorption rate of the MS for Cr (VI) decreases. Even when Cr (VI) exceeded
the limit concentration, the adsorption rate did not increase significantly until adsorption
equilibrium was reached. During adsorption, the saturation of active sites at higher
concentrations reduces the adsorption rate.

3.5. Effect of pH on Cr(VI) Adsorption

The pH is also an important factor affecting the adsorption of Cr (VI). The pH value
affects not only the state of Cr (VI) in the solution but also the charge and chemical
properties of the adsorbent MS surface. The point of zero charge (PZC) of the MS was
3.41. The effect of pH on Cr (VI) adsorption by the MS is shown in Figure 14; the pH of
the solution decreased as adsorption occurred. This is because when the MS adsorbs Cr
(VI) ions, the Cr (VI) ions interact with the active sites on the MS surface. Under normal
circumstances, there are many negatively charged functional groups (such as silicate groups)
on the active sites of the MS surface, and Cr (VI) ions are strong oxidants that can oxidize
these functional groups, releasing H+ ions and lowering the pH of the solution.

As the initial pH increased, unit adsorption gradually decreased. The changes in the
unit adsorption over time at different pH values are shown in Figure 15. At an initial pH of
2, the MS exhibited the best adsorption effect on Cr (VI), with a maximum removal rate
of 64.8%. The adsorption of Cr(VI) on the MS depends on the pH because it affects the
surface charge of the adsorbent. When the initial pH of the solution is lower than the PZC
of the MS, the surface of the MS carries a positive charge and adsorbs anions, promoting
adsorption. Cr (VI) existed as HCrO4

−; Compared to other forms of chromium ions present,
the adsorption of HCrO4

− requires fewer adsorption sites, so the adsorption effect is best
at this time. When the initial pH value was between 2.0 and 6.0, the adsorption capacity
of the MS for Cr (VI) decreased as the pH value increased. The main Cr (VI) forms are
HCrO4

− and Cr2O7
2−. As the pH increased, HCrO4

− gradually transformed into Cr2O7
2−,

and the adsorption effect began to deteriorate. When the pH was >6 (greater than the
PZC), the solution changed from acidic to alkaline, and the main form of Cr (VI) changed
from Cr2O7

2− to CrO4
2−. The MS surface became negatively charged and attracted cations,

resulting in a significant decrease in adsorption. This indicates that the adsorption of Cr(VI)
by the MS was mainly based on HCrO4

− and that the adsorption effect of Cr2O7
2− and

Cr2O4
2− was not obvious. Further, under alkaline conditions the adsorption of Cr(VI)

ions became more difficult. Therefore, when adsorbing Cr(VI) ions, the pH of the solution
should be kept under 3.5, which can improve adsorption efficiency.
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3.6. Effect of Temperature on the Adsorption of Cr(VI)

As the environmental temperature increases, the unit adsorption capacity decreases.
The experimental results showed that when the temperature exceeded 60 ◦C, the adsorption
capacity dropped sharply; when the temperature exceeded 80 ◦C, the magnetic material’s
adsorption ability almost disappeared. The magnetic material exhibited optimal adsorption
performance at room temperature (25 ◦C). This is because, as the environmental tempera-
ture increased, the activation energy of the adsorption sites on the surface of the magnetic
material decreased, which led to the deformation of the adsorption sites and a weakening of
the interaction between the sites and the adsorbate, ultimately resulting in a decreased ad-
sorption capacity. This conclusion is of great significance for understanding the adsorption
characteristics of magnetic materials and designing better adsorbents.

3.7. Comparison with Other Adsorbents

By performing the experiments of the simulated adsorption of Cr(VI) by the MS, we
can reach the conclusion that the maximum adsorption amount of Cr(VI) by the MS was
13.609 mg/g, and the removal rate of Cr(VI) in water was up to 64.8% at a low initial
concentration (e.g., 1 mg/L). The adsorption performance was seriously affected by the
initial concentration and pH. The optimum adsorption initial concentration was 40 mg/L,
and the adsorption efficiency decreased with the increase in pH. The adsorption effect was
optimum when pH = 2, and the adsorption amount decreased sharply when pH > 6.

To demonstrate the feasibility of the prepared MS as an effective adsorbent for the
removal of Cr(VI), the adsorption capacity of MS on Cr(VI) was compared with two con-
ventional adsorbents, activated carbon (CAC), and bentonite (BTT). As shown in Figure 16,
comparing the adsorption effects of CAC, BTT, and MS on Cr (VI) after 1 day of adsorption
indicates significant differences in the removal rates of the three adsorbents. The maximum
adsorption capacity for Cr (VI) was observed for the MS (13.609 mg/g), followed by CAC
(5.512 mg/g) and BTT (1.895 mg/g). The study explored the effect of pH on the adsorption
of Cr (VI) by CAC and BTT. As shown in Figure 16, the results indicate that, unlike the
significant effect of pH on the MS, the adsorption of Cr (VI) by CAC and BTT has almost
no effect, with CAC decreasing significantly only at pH values above 12, while BTT always
maintains a relatively low adsorption capacity. This is because the Si-O on the surface of
the MS combines with water to form Si-OH groups, which show different charge states at
different pH values, thus affecting the adsorption between the magnetic adsorbent and the
adsorbed material. For example, when the pH is low, the Si-OH group has a positive charge
and can be attracted to the negatively charged Cr(VI). Activated carbon, on the other hand,
is a porous material with no fixed state of charge on its surface. Its adsorption is mainly re-
alized by the physical and chemical interaction between the pores and chemical functional
groups on the surface of the adsorbent and the adsorbed material. Since there is no fixed
state of charge, the effect of pH on the adsorption of activated carbon is relatively small.

By combining SEM and FTIR imaging analyses, we found that the MS had a stronger
adsorption capacity for Cr (VI) than CAC and BTT, mainly for the following reasons. First,
compared to CAC and BTT, the MS has a more ordered porous structure, larger average
pore size, and more adsorption sites. Second, the surface of the MS contained more active
functional groups and Si-O bonds. When the Cr (VI) solution was in contact with the
MS adsorbent, Cr (VI) formed a chemical bond with the oxygen atoms of the Si-O bond,
forming a Cr-O-Si structure. This structure has strong chemical stability and can prevent Cr
(VI) from leaving the surface of the adsorbent. Finally, under the experimental conditions,
the MS surface carries a positive charge, making it easier to adsorb negatively charged Cr
(VI) ions. In contrast, BTT performed the worst, possibly because of its fractured surface
morphology and limited porous structure, leading to insufficient adsorption capacity. These
experimental data demonstrate that MS exhibits excellent adsorption performance.
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To demonstrate the feasibility of the prepared MS as an effective adsorbent for the
removal of Cr(VI), the adsorption capacity of the MS on Cr(VI) was compared with the
efficiency of other novel low-cost adsorbents presented in similar batch studies. Table 6
shows a summary of the removal capacity of the MS and other low-cost adsorbents for
Cr(VI) at optimum pH and temperature. The adsorption capacity of the MS is at a high
level. Therefore, the MS can be considered a feasible adsorbent for the removal of Cr(VI)
from dilute solutions.

Table 6. Comparison of MS and other low-cost adsorbents for Cr(VI) removal.

Adsorbents Optimum pH Temperature
(◦C)

Model Used
to Calculate
Adsorption
Capacities

Maximum
Adsorption Capacity

Qm (mg/g)
Reference

MS 2 25 Langmuir 13.6
Composite alginate–goethite

beads 4 20 Langmuir 20.5 [53]

Raw rice bran 5 25 Freundlich 0.07 [54]
Maghemite nanoparticles 10 22.5 Freundlich 1.5 [55]

Sugarcane bagasse 4 25 Langmuir 4.76 [56]
Almond shell (AS) 4 10 Langmuir 2.4 [57]
Heat-treated algae

(Chlamydomonas reinhardtii) 2 25 Langmuir 30.2 [58]

Bauxite 2 35 Langmuir 0.5 [59]
Hydrous titanium(IV) oxide 2 25 Langmuir 5 [60]

Bagasse fly ash 5 40 Langmuir 2.3 [61]

3.8. Desorption Analysis of MS

The cyclic stability and reuse feasibility of the MS were investigated by performing six
cycles of Cr(VI) adsorption and desorption. Regeneration experiments were carried out in a
5% NaOH aqueous solution. The main principle of alkaline desorption is bond disruption;
i.e., the MS adsorbs Cr(VI) on its surface via the formation of adsorptive bonding between
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surface Si-O groups and Cr(VI). This bonding is the basis of adsorption. When an alkaline
solution is added, the hydroxide (OH−) or oxygen ions (O2−) in it will compete with the
Si-O groups on the adsorbent surface for adsorption [62], thereby breaking the bonding
between the adsorbent and Cr(VI) and desorbing Cr(VI) ions from the surface of the
adsorbent. As shown in Figure 17, the MS maintained nearly 75% of its initial adsorption
capacity after six cycles, indicating its excellent recoverability when removing Cr(VI) from
wastewater.
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3.9. Adsorption Mechanism

To fully understand the mechanism of Cr(VI) adsorption on the MS surface, the XPS
spectra of the MS before and after chromium adsorption were obtained at a solution pH
of 2 (the MS after adsorption is denoted as MS-Cr). The chemical state of the atoms on
the adsorbent surface changes when the adsorbate is adsorbed onto the adsorbent via
chemical interactions, resulting in different XPS spectra of the same atoms before and after
adsorption.

The XPS spectra of the MS and MS-Cr are shown in Figure 18a. The spectra of MS
show typical binding energy patterns of C1s, O1s, and Fe2p; the spectra of MS-Cr show
typical binding energy patterns of Si2p. As shown in Figure 18b, the C1s spectra of MS
and MS-Cr appeared at 284.80 eV, 286.36 eV, and 288.53 eV, which is attributed to forms of
C-C, C-O, and C=O. The O1s spectra of MS and MS-Cr can be divided into three peaks at
binding energies of 529.94 eV, 531.44 eV, and 532.93 eV (Figure 18c), corresponding to Fe-O,
Si-O, and C-O oxygen. As shown in Figure 18d, the spectrum of Fe2p showed four bands at
710.42 eV, 723.97 eV, 719.55 eV, and 732.83 eV, which are attributed to Fe2p3, Fe2p1, Fe2p3
Sat., and Fe2p1 Sat. These results indicate that all Fe was present in the form of Fe(III)-O.
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This suggests that the iron in Fe3O4 is oxidized to Fe(III) during the reduction of Cr(VI) by
magnetic nanomaterials.
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As shown in Figure 18e, the Si2p spectra of MS composites can be separated into
two peaks at binding energies of 99.69 eV and 102.22 eV, corresponding to Si and Si-O,
respectively. The relative intensities of both Si and Si-O were lower in the MS-Cr compared
to the MS, but the relative intensity of SiO2 was increased, which is attributed to the
oxidation of Si-O with Cr(VI) during the adsorption reaction breaking the Si-O bond and
forming SiO2. Together, the FT-IR and XPS results showed that Cr(VI) ions were bound
to the particle surface via Si-O groups, achieving good chemisorption. In addition, the
specific surface area and pore size distribution of the material had a significant influence
on the adsorption of Cr(VI) ions. The MS had a large specific surface area and abundant
micropores with a large number of adsorption sites, which increased the adsorption of
Cr(VI) ions, which primarily happened in the form of HCrO4

− present under acidic
conditions. In summary, the MS exhibited an excellent chromium removal performance
under a combination of chemisorption and physical adsorption.

To investigate the interaction between Si-O and Cr(VI) during the adsorption of Cr(VI)
by the MS, the changes in the atomic concentration of the MS before and after adsorption are
shown in Figure 18f. The concentration of Si atoms increased dramatically after adsorption,
which may be attributed to the large adsorption of heavy metals on the surface of the
adsorbent, and the silicon-based adsorbent itself contained silicon, which led to the signals
of the heavy metals in the XPS spectrum being superimposed on the signal of silicon.
However, superposition, which causes the XPS signal of silicon to appear higher in the
spectra, does not indicate that the silicon content itself was higher. Instead, the decrease
in the Fe concentration in the XPS analysis was due to the fact that, with the breaking of
the Si-O bond during the adsorption process, the silicon and oxygen atoms recombined
and formed silica oxides (SiO2). This transformation process created a new silica-based
cladding shell on top of the initial amorphous silica shell on the adsorbent MS, resulting in
a new core–shell–shell structure, which is in line with the SEM observations. In turn, this
leads to a decrease in the exposure of Fe atoms and a weakening of the signal of Fe atoms,
which was reflected by a decrease in the Fe concentration as per the XPS spectra. Notably,
this also did not indicate a decrease in Fe itself. Supported by existing studies [63,64], we
confirmed here that Cr(VI) undergoes a reduction reaction upon contact with substances
containing Si-O bonds and is converted into trivalent chromium (Cr(III)). Therefore, the
adsorption mechanism of Cr(VI) by the composite MS involves chemisorption, which
mainly occurs on Si-O groups on the MS surface. During the adsorption process, Cr(VI)
ions reacted with Si-O groups via chemical interactions, and part of the adsorbed Cr(VI)
was reduced to Cr(III), which led to the breakage of the chemical bonds of Si-O and the
recombination of silicon and oxygen atoms as well as the formation of a SiO2 protective
shell. This process increased the specific surface area of the MS and optimized the pore
structure, providing a large number of adsorption sites for Cr(VI) ions, thus resulting in
excellent chromium removal performance (Figure 19). In addition, Cr(VI) mainly existed in
the form of HCrO4

− at a solution pH of 2. Under acidic conditions, HCrO4
− had a higher

charge density and activity, and its chemisorption interactions with the Si-O groups on
the surface of the composite MS were more favorable, which improved the adsorption of
Cr(VI) [65].

Based on these results, it can be concluded that the interaction between the Si-O
chemical bonds and Cr(VI) on the adsorbent surface generated a silica oxide protective
shell, which will continuously increase the specific surface area and optimize the pore
structure of the magnetic adsorbent (MS). If the outer surface silica group is replenished
during the adsorption–desorption cycle, a new adsorbent will eventually be formed, which
continuously extends outward from the nano-magnetic core with layers of amorphous silica
encapsulated on its outer surface, possessing a large specific surface area and rich pore
structure. If it is ensured that the layer-wrapped adsorbent does not lose its strong magnetic
properties, this MS-based material can serve as a magnetic adsorbent with great potential.
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4. Conclusions

In this study, we successfully prepared silica-coated Fe3O4 magnetic particles using an
improved sol–gel method that can serve as a novel magnetic adsorbent to remove Cr(VI)
from water. Adsorption experiments showed that the Cr(VI) adsorption on the MS followed
the Langmuir isotherm model, and the pseudo-second-order kinetic model fit the kinetic
adsorption process. The maximum adsorption capacity of the MS was 13.609 mg·g−1,
and the optimal adsorption conditions were a concentration of 40 mg/L and a pH of 2.
The pH of the Cr(VI) wastewater impacted the adsorption effect, with the optimal effect
occurring at pH 2 and the adsorption capacity rapidly decreasing at pH > 6. In addition,
the MS efficiently removed Cr(VI) at low initial concentrations, with a removal rate of up
to 64.8%. Moreover, the MS had excellent cycling stability, retaining nearly 75% of its initial
adsorption capacity after six cycles.

Further, the results showed that the MS had an excellent pore structure, superpara-
magnetism, and good dispersibility in an aqueous solution, thus effectively removing
Cr(VI) from water and avoiding secondary pollution. Importantly, the Si-O group played
an important role in the removal of Cr(VI). During the adsorption process, Si-O broke
and formed a new silica cladding layer, which increased the specific surface area of the
adsorbent and optimized its pore structure. This makes it possible to prepare magnetic
adsorbents with geometrically multiplied adsorption capacity based on the MS, and subse-
quent studies focused on this will be conducted aiming to increase the adsorption capacity
for specific ions via surface modification. In addition, it could be considered to immobilize
the adsorption material on a carrier such as electrostatic spinning wire to further improve
the application performance of this magnetic adsorption material to better meet the needs
of wastewater treatment. Such studies will help to further expand the application prospects
of magnetic adsorption technology in the field of water treatment and provide more options
and ideas for future industrial wastewater treatment.
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59. Erdem, M.; Altundoğan, H.S.; Tümen, F. Removal of hexavalent chromium by using heat-activated bauxite. Miner. Eng. 2004, 17,
1045–1052. [CrossRef]

60. Tel, H.; Altas, Y.; Taner, M.S. Adsorption characteristics and separation of Cr(III) and Cr(VI) on hydrous titanium(IV) oxide. J.
Hazard. Mater. 2004, 112, 225–231. [CrossRef]

61. Gupta, V.K.; Ali, I. Removal of lead and chromium from wastewater using bagasse fly ash--a sugar industry waste. J. Colloid
Interface Sci. 2004, 271, 321–328. [CrossRef] [PubMed]

62. Daneshvar, E.; Zarrinmehr, M.J.; Kousha, M.; Hashtjin, A.M.; Saratale, G.D.; Maiti, A.; Vithanage, M.; Bhatnagar, A. Hexavalent
chromium removal from water by microalgal-based materials: Adsorption, desorption and recovery studies. Bioresour. Technol.
2019, 293, 122064. [CrossRef] [PubMed]

63. Qian, L.; Liu, S.; Zhang, W.; Chen, Y.; Ouyang, D.; Han, L.; Yan, J.; Chen, M. Enhanced reduction and adsorption of hexavalent
chromium by palladium and silicon rich biochar supported nanoscale zero-valent iron. J. Colloid Interface Sci. 2019, 533, 428–436.
[CrossRef] [PubMed]

64. Pakade, V.E.; Tavengwa, N.T.; Madikizela, L.M. Recent advances in hexavalent chromium removal from aqueous solutions by
adsorptive methods. RSC Adv. 2019, 9, 26142–26164. [CrossRef] [PubMed]

65. Wang, X.; Lu, J.; Cao, B.; Liu, X.; Lin, Z.; Yang, C.; Wu, R.; Su, X.; Wang, X. Facile synthesis of recycling Fe3O4/graphene
adsorbents with potassium humate for Cr(VI) removal. Colloids Surf. A Physicochem. Eng. Asp. 2019, 560, 384–392. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1080/25765299.2019.1567656
https://doi.org/10.1016/j.ijbiomac.2018.09.170
https://www.ncbi.nlm.nih.gov/pubmed/30267821
https://doi.org/10.1016/j.ijbiomac.2017.11.018
https://www.ncbi.nlm.nih.gov/pubmed/29122716
https://doi.org/10.1016/j.procbio.2004.06.010
https://doi.org/10.1016/j.procbio.2005.02.026
https://doi.org/10.1016/j.watres.2005.05.051
https://doi.org/10.1016/j.jhazmat.2006.06.056
https://doi.org/10.1016/j.biortech.2005.04.030
https://doi.org/10.1016/j.procbio.2004.09.008
https://doi.org/10.1016/j.mineng.2004.04.013
https://doi.org/10.1016/j.jhazmat.2004.05.025
https://doi.org/10.1016/j.jcis.2003.11.007
https://www.ncbi.nlm.nih.gov/pubmed/14972608
https://doi.org/10.1016/j.biortech.2019.122064
https://www.ncbi.nlm.nih.gov/pubmed/31491650
https://doi.org/10.1016/j.jcis.2018.08.075
https://www.ncbi.nlm.nih.gov/pubmed/30172153
https://doi.org/10.1039/c9ra05188k
https://www.ncbi.nlm.nih.gov/pubmed/35531021
https://doi.org/10.1016/j.colsurfa.2018.10.036

	Introduction 
	Materials and Experiments 
	Reagent Selection 
	Synthesis of SiO2-Coated Fe3O4 Particles 
	Structure and Characterization Methods 
	Experimental Method Analysis and Optimization 
	Magnetic Removal of Cr (VI) from Water 

	Results and Discussion 
	Characterization of Magnet MS 
	SEM Analysis and Particle Size Analysis 
	XRD Analysis 
	BET Analysis 
	FT-IR Analysis 
	Magnetic Analysis 

	Analysis of the Removal Rate of Cr (VI) 
	Adsorption Isotherm Analysis 
	Adsorption Kinetic Analysis 
	Effect of pH on Cr(VI) Adsorption 
	Effect of Temperature on the Adsorption of Cr(VI) 
	Comparison with Other Adsorbents 
	Desorption Analysis of MS 
	Adsorption Mechanism 

	Conclusions 
	References

