
Citation: Radha, R.; Singh, M.K.

Axial Groundwater Contaminant

Dispersion Modeling for a Finite

Heterogeneous Porous Medium.

Water 2023, 15, 2676. https://

doi.org/10.3390/w15142676

Academic Editors: Glen R. Walker,

Heejung Kim and Chungwan Lim

Received: 10 May 2023

Revised: 16 July 2023

Accepted: 19 July 2023

Published: 24 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

Axial Groundwater Contaminant Dispersion Modeling for a
Finite Heterogeneous Porous Medium
Rashmi Radha * and Mritunjay Kumar Singh

Department of Mathematics and Computing, Indian Institute of Technology (Indian School of Mines),
Dhanbad 826004, India; drmks29@iitism.ac.in
* Correspondence: rashmirishuradha@gmail.com; Tel.: +91-9693481437

Abstract: In this study, a two-dimensional contaminant transport model with time-varying axial
input sources subject to non-linear sorption, decay, and production is numerically solved to find the
concentration distribution profile in a heterogeneous, finite soil medium. The axial input sources are
assigned on the coordinate axes of the soil medium, with background sources varying sinusoidally
with space. The groundwater velocities are considered space-dependent in the longitudinal and
transversal directions. Various forms of axial input sources are considered to study their transport
patterns in the medium. The alternating direction implicit (ADI) and Crank-Nicolson (CN) methods
are applied to approximate the two-dimensional governing equation, and the obtained algebraic
system of equations in each case is further solved by MATLAB scripts. Both approximate solutions are
illustrated graphically for various hydrological input data. The influence of various hydrogeological
input parameters, such as the medium’s porosity, density, sorption conditions, dispersion coefficients,
etc., on the contaminant distribution is analyzed. Further, the influence of constant and varying
velocity parameters on groundwater contaminant transport is studied. The stability of the proposed
model is tested using the Peclet and Courant numbers. Substantial similarity is observed when the
approximate solution obtained using the CN method is compared with the finite element method in
a special case. The proposed approximate solution is compared with the existing numerical solutions,
and an overall agreement of 98–99% is observed between them. Finally, the stability analysis reveals
that the model is stable and robust.

Keywords: advection dispersion; non-linear sorption; axial input sources; porous media;
numerical solution

1. Introduction

Groundwater has been identified as a key route for contaminant migration, leading
to underground pollution and soil water contamination. Over the last several decades,
groundwater contamination has become a significant issue in various countries. A realistic,
physically-based mathematical model is necessary to study the extent of the contami-
nant movement, build a sophisticated groundwater utilization plan, and prevent polluted
groundwater from posing high risks to human health. Typically, the groundwater contami-
nant concentration distribution is modeled using the advection-dispersion equation (ADE).
Numerical and analytical solutions of the ADE are commonly used for depicting the plume
movement of pollutants in the groundwater system. Several studies have been found
to model the groundwater contamination problem using classical one-dimensional (1D),
two-dimensional (2D), or three-dimensional (3D) ADEs [1–7]. The solutions in these studies
were obtained using various state-of-the-art analytical and numerical methods. Although
analytical models necessitate the reduction of several assumptions, they are nonetheless
required since sensitivity analysis is considerably easier to perform on analytical models
than on numerical models for determining characteristic variables that impact pollutant
movement. In addition, analytical models can also be used to identify the best grid size for
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formulating a numerical model or evaluating the accuracy of the numerical solution. In the
past, several authors have used different analytical methods (Laplace transform technique,
Hankel transform, Green’s function method, etc.) to solve the ADEs with certain complex
hydrological parameters such as heterogeneity of the medium and unsteadiness of the
medium [8,9]. However, analytical approaches are often challenging to solve ADEs, and
moreover, their solutions are infeasible to obtain in the case of complicated hydrological pa-
rameters and non-linear ADEs. In such situations, semi-analytical or numerical approaches
may be suitable.

There is a growing trend toward using semi-analytical methods for solving ADEs
with integer or fractional-order derivatives. Solutions to non-linear differential equations
can be efficiently obtained using semi-analytical approaches [10], which are otherwise
difficult to obtain using traditional analytical approaches. Suk et al., [11] solved a 2D ADE
subject to variable boundary conditions under tidal fluctuations of subsurface water using
the semi-analytical method. The generalized integral transform and matrix exponential
techniques were used to obtain the solution of the 2D transport equation, and the results
were validated with the semi-analytical method of 1D ADE reported by [12] and the finite
element method (FEM). Also, Kumar et al., [13] discussed a 1D ADE by homotopy analysis
method (HAM) with time-dependent velocity and considered a non-linear time-dependent
dispersion coefficient. The solution was validated with the analytical solution and found
good agreement. However, semi-analytical approaches give solutions in truncated series
form. Convergence of the solution is one of the issues with such solutions. In such
cases, numerical approaches prove to be a better alternative than both analytical and
semi-analytical approaches in terms of accuracy and computational feasibility.

The numerical method generally translates differential equations specified in contin-
uous space and time into a wide range of discretized equations [14]. Several numerical
methods, such as the finite volume method (FVM), FEM, finite difference method (FDM),
boundary element method (BEM), mesh-free method, etc., have been proposed in the
literature [15,16] to achieve the discretized space. FDM is classical and widely popular
among all these methods since it eases computational complexity by translating the set
of partial differential equations into a set of algebraic equations. Numerous 1D, 2D, and
3D ADEs have been solved with various schemes of FDM such as backward time-centered
space (BTCS), forward time-centered space (FTCS), upwind schemes, Du-Fort Frankel,
Crank-Nicolson (CN) scheme, alternating direct implicit (ADI) method, etc. Recently, Ap-
padu et al., [17] solved an ADE using three different schemes of FDM, i.e., a non-standard
finite difference scheme, a third-order upwind scheme, and a fourth-order upwind scheme.
It was found that the non-standard finite difference scheme is substantially better than
the third- and fourth-order upwind schemes. Also, Johari et al., [18] employed the ADI
methods for 2D ADEs, while Hutomo et al. [19] applied the Du-Fort Frankel method for
solving a 2D ADE with variable coefficients. Singh et al., [20] solved a non-linear reactive
ADE by explicit FDM and calculated the stability of their model using the von Neumann
method. The solution was validated with the existing analytical solution and found a sub-
stantial similarity between them. FDM was also used in the past for solving fractional-order
derivatives (ADEs). Su et al., [21] solved a fractional-order space derivative ADE by using
the fractional CN scheme. Later, Heris et al., [22] used the fractional backward differential
formula method to obtain the solution for a 1D fractional ADE. Several studies explor-
ing fractional-order ADEs for groundwater contamination transport modeling have been
exhaustively reviewed by [23]. The article discusses the various challenges and recommen-
dations for fractional-order ADEs to be used as a real-world tool to predict groundwater
contaminant transport more effectively and accurately. ADI and CN methods are more
suitable among various FDM schemes since both are implicit methods and unconditionally
first-order and second-order accurate, respectively. Several authors have implemented
these methods to solve their problems.

Tian and Ge, [24] applied the ADI method to the unsteady ADE problem. The von
Neuman analysis method was used to verify the proposed method’s stability. The authors
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found their solution to be unconditionally stable and accurate as fourth-order and second-
order with respect to space and time, respectively. Later, Tian, [25] solved a 2D ADE in
the transient system using the rational high-order compact ADI technique. The method
was found to be unconditionally stable, having fourth-order and second-order accuracy
with respect to space-time, respectively. Recently, Chew et al., [26] applied the Half-sweep
Newton Successive Over Relaxation numerical method for dealing with a 1D non-linear
porous medium equation. The authors found that their method gave an uncondition-
ally stable solution and, hence, was a suitable numerical method for non-linear partial
differential equations.

In the context of groundwater contaminant transport problems, predicting the contam-
inant migration profile is a key challenge due to several limitations and model assumptions
about the underlying physical phenomenon. There have been continuous efforts by several
researchers to improve the accuracy of the prediction. A few of the critical parameters that
affect the model’s accuracy are the assumed nature of the contaminant input source and the
nature of porous media. In most of the research on contaminant concentration distribution
profiles, the input source was considered a point source [27,28]. Although the point source
assumption eases the calculations from a computational perspective, it doesn’t yield a
satisfactory prediction of the contaminant trajectory. Point pollutant sources are generated
or found from a single source, whereas non-point pollutant sources are generated from
diffused sources, resulting in the release of pollutants over a wide area. Excess fertilizer and
pesticides from cropland, oil, grease, and toxic chemicals from urban runoff are examples of
non-point pollutant sources. The innate heterogeneity of porous media is well known and
thus warrants inclusion in the groundwater contaminant transport modeling exercise [29].
Various studies in the literature indicate that the assumption of a heterogeneous medium
offers enhanced capabilities to account for scale-dependent dispersion and characterize ab-
normal transport [30]. Thus, the axial input source assumption and heterogeneous medium
present a resemblance to the realistic scenarios and governing physics of the transport
problem. In this study, non-point pollutant sources are considered along the coordinate
axes, typically known as axial input or line sources. Such input sources can be commonly
found in angular-type agricultural lands [31]. The authors studied solute transport with
axial input sources for uniform flow. However, their treatment of contaminant transport
phenomena assuming a homogenous medium would be a limitation in realistic scenarios.

With these research gaps discussed so far, we propose a model for analyzing the
contaminant transport with the axial input sources having non-linear sorption, decay, and
production terms in a heterogeneous medium. The approximate solution of the model
was achieved by employing the CN and ADI methods. Because of the heterogeneous
medium, the present work is more realistic in nature and gives an accurate prediction of
the contaminant concentration migration profile in groundwater reservoirs. To the authors’
best knowledge, no such type of problem has been solved previously in the heterogeneous
medium case. Further, several test cases were formulated to broaden the analysis of the
impacts of different parameters influencing the contamination process. To this effect,
the impact of different types of axial input sources, such as exponential, sinusoidal, and
asymptotical, is obtained. In particular, sinusoidally varying time-dependent axial sources
might be of interest to study the contaminant transport process in hilly regions. Further,
we also characterized the contaminant transport in different soil mediums and the non-
linearity power α for Langmuir sorption for all the axial input sources considered in this
paper. All the graphical solutions in the present study were obtained using the CN method
for different geological formations and hydrological input data. Finally, a PDEtool-based
validation strategy (a partial differential solver package in MATLAB software based on
FEM) is chosen to compare the numerical approximations obtained for the proposed
model problem.
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2. Contaminant Transport Model (CTM)

The governing contaminant transport equation is derived based on the mass con-
servation law and Fick’s law. Under the consideration of contaminant sorption in the
porous medium, the solid and liquid phase concentrations (i.e., Ch [ML−3] and Sh [MM−1],
respectively) take place in the process of transportation. The 2D contaminant transport
in a heterogeneous and anisotropic porous medium having a decay rate η [T−1], constant
porosity ϕ, bulk density ρ [ML−3], and production rate δ

[
ML−3T−1

]
, is expressed as [3]:

∂Ch
∂t

=
∂

∂x

(
Dxx

∂Ch
∂x

)
+

∂

∂y

(
Dyy

∂Ch
∂y

)
− ∂(uxCh)

∂x
−

∂
(
vyCh

)
∂y

− ηCh + δ− ρ

ϕ

∂Sh
∂t

(1)

where, ux [LT−1] and vy [LT−1] are seepage velocities, Dxx [LT−2] and Dyy [LT−2] are the
dispersion coefficients down the horizontal and vertical directions, respectively.

Periodic initial input problems exist in both natural and human-designed systems. In
the case of natural groundwater contaminant analysis, a periodic pattern in the concentra-
tion levels may typically be caused by seasonal variations. On the other hand, pollutants
can also be discharged at fixed intervals in man-made discharges. Such periodicity is found
to be best represented by a sinusoidally varying, space-dependent background distribu-
tion [32]. Thus, in this paper, initially, a sinusoidally varying space-dependent background
concentration is considered in the non-uniform porous medium as [33]:

Ch(x, y, t) = c0 sin(−m log((1 + a1x)(1 + a2y))) ; x ∈ [0, L], y ∈ [0, H], t = 0, (2)

where c0 [ML−3] is a constant background concentration, a1 and a2 are heterogeneity
parameters, m is the arbitrary constant, L [L] and H [L] denotes the finite lengths in the x, y
directions, respectively.

Figure 1 depicts the geometry of the proposed model, in which the axial input sources
assigned along the x- and y-directions follow the Dirichlet boundary conditions. In the
present study, periodic, exponential, and asymptotic [32,34,35] axial input sources are
considered. The boundary conditions for the proposed model are specified as follows:

Ch(x, y, t) = c1 f1(m1t) ; y = 0, x > 0, t > 0 (3)

Ch(x, y, t) = c2 f2(m2t) ; y > 0, x = 0, t > 0 (4)

where, c1 [ML−3] and c2 [ML−3] are the constants denoting the sources of input concentra-
tions down the x and y directions, respectively, m1 and m2 are decay constant parameters
along the x- and y-directions, respectively.

At the outlet boundaries, the boundary conditions are defined as follows:

lim
x→L

∂Ch
∂x

= 0 ; y > 0, t > 0 (5)

lim
y→H

∂Ch
∂y

= 0 ; x > 0, t > 0 (6)

The conceptual model corresponding to the 2D contaminant dispersion in a porous
soil medium with axial input sources and Neumann boundary conditions [31] is depicted
in Figure 1.
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Figure 1. Two-dimensional contaminant transport geometry of a soil medium with axial input
sources.

The relationship between the solid and liquid phase contaminant concentrations
sorbed onto the soil particles at a constant temperature is known as the isotherm. When the
sorption process occurs very quickly compared to the flow velocity, it attains an equilibrium
state known as the equilibrium sorption isotherm. The present study uses the equilibrium-
state sorption isotherm. The sorption isotherm may be either linear or non-linear. The linear
sorption isotherm applies to low solute concentrations and absorption. In the linear sorption
isotherm, there is no upper limit to the solute sorption onto the soil particles. However,
the solute transport is more realistic for the non-linear sorption model as compared to
the linear sorption model [36,37]. There are two types of non-linear sorption: Freundlich
and Langmuir. The Freundlich sorption is defined as Sh = kdCq

h, where kd [M−qL3q] is the
sorption coefficient and q is the empirically determined non-linearity parameter varying
from 0 to 1. The Freundlich sorption isotherm is the most preferable and widely used
isotherm so far, but it also does not have an upper limit on the solute sorption onto the
soil particles. The Langmuir sorption, which specifies an upper limit of the solute sorption
onto the soil particle, is defined as Sh = αklCh

1+αCh
where α [M−1L3

]
is known as the Langmuir

constant and kl denotes the maximum sorption capacity [38–41]. Using the relationships of
either Freundlich or Langmuir sorption isotherms between Sh and Ch in Equation (1) yields

R
∂Ch
∂t

=
∂

∂x

(
Dxx

∂Ch
∂x

)
+

∂

∂y

(
Dyy

∂Ch
∂y

)
− ∂(uxCh)

∂x
−

∂
(
vyCh

)
∂y

− ηCh + δ, (7)

where, R =

1 + ρqkd
ϕ Cq−1

h , for Freundlich sorption isotherm

1 + ραkl
ϕ(1+αCh)

2 , for Langmuir sorption isotherm
is known as the

retardation factor.
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Due to the heterogeneity of the medium, the horizontal and transversal seepage
velocities depend on space, and according to [8], the velocities are defined as follows:

ux = u(1 + a1x) and vy = v(1 + a2y), (8)

where, u and v are initial groundwater velocities, and a1, a2 are heterogeneity parameters.
The idea of classical dispersion theory [42], is as follows:

Dxx = Dx0(1 + a1x)β and Dyy = Dy0(1 + a2y)β, (9)

where, Dx0 [LT−2] and Dy0

[
LT−2

]
are initial dispersion coefficients. Using Equations (8)

and (9) for β = 2, Equation (7) becomes

R
∂Ch
∂t

= Dx0(1 + a1x)2 ∂2Ch
∂x2 + Dy0(1 + a2y)2 ∂2Ch

∂y2 − u1x
∂Ch
∂x
− v1y

∂Ch
∂y
− η′Ch + δ (10)

where, u1x = (ux − 2a1Dx0(1 + a1x)), v1y =
(
vy − 2a2Dy0(1+a2y)

)
, and η′ = (η+ua1+va2).

Using transformations X = 1
a1

log(1 + a1x) and Y = 1
a2

log(1 + a2y) [8] in
Equation (10) yields:

R
∂Ch
∂t

= Dx0
∂2Ch
∂X2 + Dy0

∂2Ch
∂Y2 − u1

∂Ch
∂X
− v1

∂Ch
∂Y
− η′Ch + δ (11)

where, u1 = u− Dx0a1 and v1 = v− Dy0a2.
The new space domain following the transformation of the geometrical conditions is

given as:

Ch(X, Y, t) = c0 sin(−m(Xa1 + Ya2)); X ∈ [0, L], Y ∈ [0, H], t = 0 (12)

Ch(X, Y, t) = c1 f1(m1t); Y = 0, X ≥ 0, t > 0 (13)

Ch(X, Y, t) = c2 f2(m2t); Y ≥ 0, X = 0, t > 0 (14)

lim
X→L

∂Ch
∂X

= 0; Y > 0, t > 0 (15)

lim
Y→H

∂Ch
∂Y

= 0; X > 0, t > 0 (16)

2.1. FDM-Based Solution of the Proposed CTM

The derivation of the solution begins by first splitting t into P subintervals of ∆t dif-
ferent sizes. Similarly, L and H are split into M and N subintervals, with each subinterval
having ∆X and ∆Y size respectively. Initially, the CN and ADI methods are used for obtain-
ing the numerical approximations of the proposed model described in Equation (11), along
with the conditions described by Equations (12)–(16). Following the initial approximation,
a penta-diagonal structure of linear algebraic equations for the CN and two batches of the
tri-diagonal structure of linear algebraic equations for the ADI method at each discrete time
interval ∆t are obtained. In the next stage, the set of algebraic equations obtained in the
previous step is solved at fixed time intervals using MATLAB scripts to obtain graphical
solutions. The mathematical formulations of the proposed numerical approximations are
discussed in the following sub-sections.
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2.2. CN Method-Based Approximate Solution

The time derivative of the ADE (Equation (11)) is estimated using the CN finite
difference scheme at the grid point

(
i, j, n+1

2

)
, while the space derivative is estimated by

their central approximations at the nth and (n + 1)th levels. To ensure that the resultant finite
difference approximations are linearized, the retardation factor R given in Equation (11)
is calculated using the previous time level (nth time level) [40]. This yields the following
approximation of Equation (11):

Rn
i,j

(Ch)
n+1
i,j −(Ch)

n
i,j

∆t =

Dx0
2

[
(Ch)

n+1
i−1,j−2(Ch)

n+1
i,j +(Ch)

n+1
i+1,j

(∆X)2 +
(Ch)

n
i−1,j−2(Ch)

n
i,j+(Ch)

n
i+1,j

(∆X)2

]
+

Dy0
2

[
(Ch)

n+1
i,j−1−2(Ch)

n+1
i,j +(Ch)

n+1
i,j+1

(∆Y)2 +
(Ch)

n
i,j−1−2(Ch)

n
i,j+(Ch)

n
i,j+1

(∆Y)2

]
− u1

2

[
(Ch)

n+1
i+1,j−(Ch)

n+1
i−1,j

2∆X +
(Ch)

n
i+1,j−(Ch)

n
i−1,j

2∆X

]
− v1

2

[
(Ch)

n+1
i,j+1−(Ch)

n+1
i,j−1

2∆Y +
(Ch)

n
i,j+1−(Ch)

n
i,j−1

2∆Y

]
− η′

2

[
(Ch)

n+1
i,j + (Ch)

n
i,j

]
+ δ

(17)

Equation (17) is rearranged in the following form:

−
( r2

4 + r4
2
)
(Ch)

n+1
i,j−1 −

( r1
4 + r3

2
)
(Ch)

n+1
i−1,j +

(
Rn

i,j + r3 + r4 +
η′

2

)
(Ch)

n+1
i,j

+
( r1

4 −
r3
2
)
(Ch)

n+1
i+1,j +

( r2
4 −

r4
2
)
(Ch)

n+1
i,j+1

=
( r2

4 + r4
2
)
(Ch)

n
i,j−1 +

( r1
4 + r3

2
)
(Ch)

n
i−1,j +

(
Rn

i,j − r3 − r4 − η′

2

)
(Ch)

n
i,j

−
( r1

4 −
r3
2
)
(Ch)

n
i+1,j −

( r2
4 −

r4
2
)
(Ch)

n
i,j+1 + δ∆t

(18)

where, j = 1, 2, . . . , N − 1, i = 1, 2, . . . , M − 1, r1 = u1∆t
∆X , r2 = v1∆t

∆Y , r3 = Dx0∆t
∆X2 , and

r4 =
Dy0∆t
∆Y2 .

Further, Equations (15) and (16) at the time levels n and n + 1 can be written as follows:

(Ch)
n
i+1,j = (Ch)

n
i−1,j; i = M (19)

(Ch)
n
i,j+1 = (Ch)

n
i,j−1; i = N (20)

(Ch)
n+1
i+1,j = (Ch)

n+1
i−1,j; i = M (21)

(Ch)
n+1
i,j+1 = (Ch)

n+1
i,j−1; i = N (22)

Applying Equations (19) and (21) to Equation (18) yields:

−
( r2

4 + r4
2
)
(Ch)

n+1
i,j−1 − r3(Ch)

n+1
i−1,j +

(
Rn

i,j + r3 + r4 +
η′

2

)
(Ch)

n+1
i,j +

( r2
4 −

r4
2
)
(Ch)

n+1
i,j+1

=
( r2

4 + r4
2
)
(Ch)

n
i,j−1 + r3(Ch)

n
i−1,j +

(
Rn

i,j − r3 − r4 − η′

2

)
(Ch)

n
i,j

−
( r2

4 −
r4
2
)
(Ch)

n
i,j+1 + δ∆t

(23)

where, j = 1, 2, . . . , N − 1 and i = M.
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Applying Equations (20) and (22) to Equation (18) yields:

−r4(Ch)
n+1
i,j−1 −

( r1
4 + r3

2
)
(Ch)

n+1
i−1,j +

(
Rn

i,j + r3 + r4 +
η′

2

)
(Ch)

n+1
i,j +

( r1
4 −

r3
2
)
(Ch)

n+1
i+1,j

= r4(Ch)
n
i,j−1 +

( r1
4 + r3

2
)
(Ch)

n
i−1,j +

(
Rn

i,j − r3 − r4 − η′

2

)
(Ch)

n
i,j

−
( r1

4 −
r3
2
)
(Ch)

n
i+1,j + δ∆t

(24)

where, j = N and i = 1, 2, . . . , M− 1.
Further, applying Equations (19)–(22) in Equation (18) gives:

−r4(Ch)
n+1
i,j−1 − r3(Ch)

n+1
i−1,j +

(
Rn

i,j + r3 + r4 +
η′

2

)
(Ch)

n+1
i,j

= r4(Ch)
n
i,j−1 + r3(Ch)

n
i−1,j +

(
Rn

i,j − r3 − r4 − η′

2

)
(Ch)

n
i,j + δ∆t

(25)

where, i = M and j = N.
The numerical approximation of the transport equation given by Equation (11) is

derived using the combined set of coupled Equations (19) and (23)–(25). Specifically,
equating M = N these sets of coupled equations result in a M×M penta-diagonal form of
linear algebraic equations for each iteration. In this paper, graphical visualizations of the
final numerical derivations, which have been obtained using MATLAB codes, for different
cases are presented and discussed in the result section.

2.3. ADI Method-Based Approximate Solution of CTM

Crank-Nicolson (CN) is the conventional approach for obtaining numerical approx-
imations to generic transport equations. However, they result in a complicated multi-
dimensional system of equations and are often infeasible for complex transport phenomena
with many parameters. On the other hand, the ADI method involves solving a system of
equations with a simple structure at each iteration. A generic approach to solving PDEs
using the ADI method involves approximating x and y derivatives in two stages. In the
first stage, the x derivative is approximated by an implicit scheme, and the y derivative is
approximated by an explicit scheme. In the second stage, the y derivative is approximated
by an implicit scheme, and the x derivative is approximated by an explicit scheme. Solv-
ing the two stages results in tridiagonal matrices, which are then solved to get the final
approximate solution.

Similar to solving PDEs using the generic approach of the ADI method, in this paper
too, the overall process of approximation using the ADI method is carried out in two steps.
In the first step, the entire spatio-temporal derivatives of Equation (11) are substituted by
the second-order central difference estimations such that the derivatives of x-terms are
estimated at the

(
n+1

2

)th
time level with unknown concentration and y-terms are estimated

at the nth time level with known concentration. The resultant equation after the substitution
in Equation (11) is given as:

Rn
i,j

(Ch)
n+1
i,j −(Ch)

n
i,j

∆t/2 =

Dx0
(Ch)

n+1/2
i−1,j −2(Ch)

n+1/2
i,j +(Ch)

n+1/2
i+1,j

∆X2 + Dy0
(Ch)

n
i,j−1−2(Ch)

n
i,j+(Ch)

n
i,j+1

∆Y2

−u1
(Ch)

n+1/2
i+1,j −(Ch)

n+1/2
i−1,j

2∆X − v1
(Ch)

n
i,j+1−(Ch)

n
i,j−1

2∆Y − η′

2 (Ch)
n+1/2
i,j + δ

(26)

After rearrangement, Equation (26) yields:

−r5(Ch)
n+1/2
i−1,j + r6(Ch)

n+1/2
i,j + r7(Ch)

n+1/2
i+1,j = r8(Ch)

n
i,j−1 + r9(Ch)

n
i,j − r10(Ch)

n
i,j+1 (27)

where, r5 = u1∆t
4∆X + Dx0∆t

2∆X2 ; r6 = Rn
i,j +

Dx0∆t
∆X2 + η′∆t

4 ; r7 = u1∆t
4∆X −

Dx0∆t
2∆X2 ; r8 = v1∆t

4∆Y +
Dy0∆t
2∆Y2 ;

r9 = Rn
i,j +

Dy0∆t
∆Y2 ; r10 = v1∆t

4∆Y −
Dy0∆t
2∆Y2 , i goes form 1 to M − 1 for every value of

j = 1, 2, . . . , N − 1.
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In the second phase, the method is reversed for the next half-time interval. Using
Equation (11), the y derivative components are approximated by the implicit scheme (i.e.,
n + 1 time step) with an unknown concentration, whereas x derivative components are
approximated by the explicit scheme (i.e., n + 1/2 time step) with a known concentration.
Consequently, at this point, Equation (11) is represented as:

r8(Ch)
n+1
i,j−1 + r11(Ch)

n+1
i,j − r10(Ch)

n+1
i,j+1 = −r5(Ch)

n+1/2
i−1,j + r12(Ch)

n+1/2
i,j + r7(Ch)

n+1/2
i+1,j (28)

where, r11 = Rn
i,j +

Dy0∆t
∆Y2 and r12 = Rn

i,j −
Dx0∆t
∆X2 −

η′∆t
4 .

Further, the estimation of the derivative boundary conditions described in
Equations (15) and (16) for the endpoints, i.e., for i = M and j = N, is given as:

(Ch)
n+1/2
i+1,j = (Ch)

n+1/2
i−1,j ; i = M (29)

(Ch)
n+1
i,j+1 = (Ch)

n+1
i,j−1; j = N (30)

At the nth time level and boundary point j = N, the estimation of Equation (16) is
produced as:

(Ch)
n
i,j+1 = (Ch)

n
i,j−1; j = N (31)

Using Equation (29) in Equation (27) and Equation (30) in Equation (28), we obtain,
respectively, the following:

(r7 − r5)(Ch)
n+1/2
i−1,j + r6(Ch)

n+1/2
i,j = r8(Ch)

n
i,j−1 + r9(Ch)

n
i,j − r10(Ch)

n
i,j+1 (32)

where, j = 1, 2, . . . , N − 1, and i = M, and

(r8 − r10)(Ch)
n+1
i,j−1 + r11(Ch)

n+1
i,j = −r5(Ch)

n+1/2
i−1,j + r12(Ch)

n+1/2
i,j + r7(Ch)

n+1/2
i+1,j (33)

where, j = N, i = 1, 2, . . . , M− 1.
Similarly, using Equation (29) in Equation (28) and Equation (31) in Equation (27), we

obtain the following:

−r5(Ch)
n+1/2
i−1,j + r6(Ch)

n+1/2
i,j + r7(Ch)

n+1/2
i+1,j = (r8 − r10)(Ch)

n
i,j−1 + r9(Ch)

n
i,j (34)

where, j = N, i = 1, 2, . . . , M− 1, and

r8(Ch)
n+1
i,j−1 + r11(Ch)

n+1
i,j − r10(Ch)

n+1
i,j+1 = (r7 − r5)(Ch)

n+1/2
i−1,j + r12(Ch)

n+1/2
i,j (35)

where, j = 1, 2, . . . , N − 1, and i = M.
Using Equation (29) and Equation (31) in Equation (27) yields:

(r7 − r5)(Ch)
n+1/2
i−1,j + r6(Ch)

n+1/2
i,j = (r8 − r10)(Ch)

n
i,j−1 + r9(Ch)

n
i,j; j = N and i = M (36)

Using Equation (29) and Equation (30) in Equation (28) yields:

(r8−r10)(Ch)
n+1
i,j−1+r11(Ch)

n+1
i,j =(r7 − r5)(Ch)

n+1/2
i−1,j + r12(Ch)

n+1/2
i,j ; j = N and i = M (37)

On solving the two sets of coupled Equations (27), (28), (32)–(37) for M = N, two
separate tridiagonal systems of linear equations are obtained. For illustration, graphical
solutions to these systems are obtained using MATLAB scripts and further discussed
in the following section. Further, to summarize all the steps, we present an algorithm
(Algorithm 1) below that contains the step-wise description of obtaining the solutions
presented in this paper.
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Algorithm 1: Axial Input Source Contaminant Transport System

Input
Dx0, Dy0: Dispersion coefficients
u, v: Advection coefficients
c0: initial background source
c1, c2: constant input sources
ϕ: porosity of soil medium
L, H: space domains length
t: time interval
M, N: Number of spatial nodes in x and y directions
P: Number of time steps
m1, m2: Decay parameters
Output
Ch(x, y, t): Concentration distribution matrix
Step 1: Spatial transformation:

Transform old transformation x, y of space variable into new transformation X, Y
Step 2: Mesh formation:

Construct mesh size of the space domain and time interval ∆X, ∆Y, ∆t
Step 3: Initialize the initial and axial boundary condition concentration matrix c as follows:

a) for j← 1 : N + 1
for i← 1 : M + 1

c(i, j, 1)← c0 × sin(−m× ((a1 × (i− 1)× dX) + (a2 × (j− 1)× dY)))
end for

end for
b) for k← 2 : P + 1

for i← 1 : M + 1
c(i, 1, k)← c1 × sin(−m1 × (k− 1)× dt)

end for
for j← 1 : N + 1

c(1, j, k)← c2 × sin(−m2 × (k− 1)× dt)
end for

end for
Step 4: Repeat this step for P time steps to compute the following:

A) Retardation matrix R (Freundlich and Langmuir)
B) The penta-diagonal coefficient matrices A and B for calculating concentration values

for each time step
C) Compute the unknowns and solve the system of equations C = B1_inv × B × Z as

follows:

i) compute B1_inv = inverse(A)
ii) Repeat this step for the P-1 time step to compute the final concentration values at
each time step as follows:

a) Compute Z
b) For each column of C from index 2. . ..M, update the values as follows:

C = B×Z

End

3. Results and Discussions

In this study, the 2D ADE, taking into account the non-linear sorption, decay, and
source terms with periodic initial conditions and three forms of time-varying axial input
boundary conditions (given in Table 1) is solved by CN and ADI methods for a hetero-
geneous medium. The temporally dependent axial sources c1 f1(m1t) and c2 f2(m2t) are
defined as shown in Table 1.
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Table 1. Different forms of the axial input sources f1(m1t), f2(m2t).

Sl. No. Forms of Axial Sources c1f1(m1t) c2f2(m2t)

1. Exponential c1 exp(−m1t) c2 exp(−m2t)
2. Sinusoidal c1 sin(−m1t) c2 sin(−m2t)
3. Asymptotic c1

m1t
1+m1t c2

m2t
1+m2t

Dispersion and advective coefficients are taken as space-dependent (i.e.,
Dxx = Dx0(1 + a1x)2, Dyy = Dy0(1 + a2y)2, ux = u(1 + a1x), vy = v(1 + a2y)). Periodic
initial and boundary conditions with identical input values of the advection and dispersion
coefficients in the horizontal and vertical directions are considered. Input data from [43]
are used for obtaining the graphical form of the solutions to the governing equation and
are given as follows:

M = 30, N = 30, P = 100, L = 1 km, H = 1 km, c0 = 0.05, c1 = 1, c2 = 1,
Dx0 = 0.16 km2/year, Dy0 = 0.16 km2year, u0 = 0.016 km/year, v0 = 0.016 km/year,
ρ = 2.65, ϕ = 0.32(Gravel), kd = 0.15, η = 0.02, δ = 0.04, m = 2, m1 = 0.01 year−1,
m2 = 0.01 year−1, α = 0.25, kl = 0.30, a1 = 0.03, a2 = 0.03

The pollutant distribution patterns by CN and ADI methods, assuming periodic initial
and boundary conditions in the gravel-type soil medium at time t = 1 year are presented
in Figures 2 and 3. As evident from the figures, the pollutant concentration attains the
highest level at the origin and gradually decreases with respect to distance to reach the
lowest level near the extreme boundaries. Further, it is observed that the spread of the
pollutant concentration is mirror-imaged around the diagonal line, possibly caused by the
assumption of an identical distribution profile of input pollutant concentration along the
coordinate axes.
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Figure 3. ADI method-based approximation of the contaminant concentration distribution pattern in
a 2D heterogeneous domain.

Figure 4 depicts the contour of the pollutant distribution pattern obtained using the CN
and ADI methods under the assumption of linear sorption. For the present case, periodic
initial and boundary conditions with a gravel-type soil medium for the time period t = 1
are considered. As evident, the pollutant concentration is maximum along the coordinate
axes and decreases with respect to distance towards the extreme boundaries. It may be
noted in Figures 2–4 that the concentration could be negative since the assumed sinusoidal
initial and boundary conditions in this work are known to manifest fluctuations in the
concentration and thus output a few negative values [33].
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Figure 4. Contaminant concentration distribution patterns obtained by (a) CN method and (b) ADI
method in a 2D heterogeneous domain under the assumption of linear sorption.

An earlier study by [31] elaborated on the efficacy of the CN method over the ADI
method for solving contaminant transport for axial input sources. A paucity of such
research analyses in the literature prompted us to carry out a similar comparative analysis
for our case too. In addition, for the generalizability of the results, findings based on the
numerical results must be compared in different cases. Since the cases in the literature and



Water 2023, 15, 2676 13 of 25

the proposed problem in this work are different, presenting ADI and CN would further help
to generalize the conclusions. We found a similarity in the results with the literature; hence,
for the cases reported in Figure 5 and subsequent cases, the CN method-based graphical
solutions alone are reported in this paper. Typically, the accuracy and error of a numerical
solution are obtained by validating it against the analytical solutions of the given model
problem. However, for the model problem considered in this paper, obtaining an analytical
solution is complicated and computationally infeasible. Hence, for the present work, the
numerical solution of the proposed model obtained using the CN method is validated
using the PDEtool box, as it is generally considered a benchmark for validating numerical
solutions of PDEs. The approximate solution to the model problem considered in this
paper is obtained for a special case using the following data:Dxx = Dyy = 0.16 km/year−2;
m = m1 = m2 = 0 as shown in Figure 5. As evident from Figure 5, a satisfactory agreement
is observed between the proposed numerical solution (CN-based) and the PDEtool-based
solution. As observed from the figure, concentration patterns are nearly identical near
the inlet and outlet boundaries, whereas a marginal gap is found near the middle of the
domain. Further, an apparent uniformity in the contaminant concentration pattern beyond
0.5 km is observed, which becomes constant towards the final boundary. The overall trend
suggests that the contaminant concentration reaches a maximum level at the inlet boundary,
decays with space, and hits a minimum level near the outlet boundary.
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Figure 5. Contour plot-based illustration of the distribution patterns of contaminant concentration
generated by the CN method (shown by dotted lines) compared to the PDE toolbox (shown by
solid lines).

Figure 6(a) illustrates the graphical comparison of the numerical solution for the
proposed model with the data (c0 = 0.03, c1 = 0.5, c2 = 0.5, m1 = 0.001 year−1,
m2 = 0.001 year−1, u0 = 0.015 km/year, v0 = 0.015 km/year, Dx0 = 0.15 km2/year,
Dy0 = 0.15 km2/year, ρ = 2.19, kd = 0.25, ϕ = 0.55) taken from the previous literature
given by [31]. To this effect, the proposed model is transformed into a homogeneous
medium without source-sink terms by taking dispersion coefficients and velocities as con-
stants. Also, the initial condition is taken as a constant, and the Dirichlet boundaries are
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taken as an exponential type. It is found that the pollutant concentration strength of the
proposed model solution is identical and shows close agreement with that of [31].

Water 2023, 15, x FOR PEER REVIEW 15 of 30 
 

 

 
Figure 5. Contour plot-based illustration of the distribution patterns of contaminant concentration 
generated by the CN method (shown by dotted lines) compared to the PDE toolbox (shown by solid 
lines). 

Figure 6(a) illustrates the graphical comparison of the numerical solution for the pro-
posed model with the data ( 0 0.03c =  , 1 0.5c =  , 2 0.5c =  , 1

1 0.001 m year −=  , 
1

2 0.001 m year−=  , 0 0.015 /u km year=  , 0 0.015 /v km year=  , 2
0 0.15 /xD km year=  , 

2
0 0.15 /yD km year=  , 2.19ρ =  , 0.25dk =  , 0.55ϕ =  ) taken from the previous literature 

given by [31]. To this effect, the proposed model is transformed into a homogeneous me-
dium without source-sink terms by taking dispersion coefficients and velocities as con-
stants. Also, the initial condition is taken as a constant, and the Dirichlet boundaries are 
taken as an exponential type. It is found that the pollutant concentration strength of the 
proposed model solution is identical and shows close agreement with that of [31]. 

 

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

x (in km)

y 
(in

 k
m

)

0.25

0.50

0.75

1.0

Ch

Figure 6. Comparative results of the proposed solution with the existing solution are (a) [31] for 2D
axial dispersion and (b) [44] for 1D ADE.

The proposed numerical solution was compared graphically with the previous existing
numerical solution [44] for 1D contaminant transport with spatially varying transport
parameters. The proposed 2D ADE model in this work was reduced to a 1D ADE transport
problem by setting all the y-directional terms to zero and subsequently taking the input
source as a single point source. The input data considered for comparison is as follows:
c0 = 0, c1 = 1, c2 = 0, a1 = 0.1, a2 = 0.0, u0 = 0.06 km/year, v0 = 0 km/year
Dx0 = 0.71 km2/year, Dy0 = 0 km2/year. We have used the above data in our model
with previous numerical solutions. As observed, both solutions match closely, as shown
in Figure 6b. Statistically, the relative match for the proposed solution with the numerical
methods shown in Figure 6a,b is found to be 99.7% and 97.2%, respectively.

In general, the level of contaminant concentration is a factor of different geological
formations in the 2D heterogeneous porous medium; hence, the pattern of pollutant
concentration levels in geological formulations of different porosities is investigated in the
present study. For this case, different soil mediums, such as clayey sand, fine sand, and silty,
represented by porosity, ϕ = 0.37, 0.46, 0.64 are considered. Figure 7a shows the pollutant
distribution profiles in various soil mediums at time t = 2 years estimated using the CN
method, assuming linear sorption for periodic initial and axial boundaries. The pollutant
concentration is highest for silty sand compared to clayey sand and fine sand. In contrast,
the pollutant concentration hits the minimum level in the clayey sand. The effect of different
soil mediums on the concentration distribution is shown in Figure 7b for exponential axial
input sources subject to a constant initial concentration value at a given time t = 2 years.
The contaminant level decreases with the decrease in the soil’s medium porosity. Figure 7c
depicts the concentration distribution pattern for different soil mediums for asymptotically
varying axial input sources with a constant initial concentration value under non-linear
sorption for time t = 2 year. It is observed that the contaminant concentration level in the
silty medium is higher than in the fine sand. In contrast, the contaminant concentration
reaches the lowest level in the clayey sand for asymptotically varying axial input sources.
Also, concentration reaches its minimum value at the final boundary. Also, it is observed
that the distribution of contaminant concentration patterns is similar in the sinusoidal and
asymptotic cases but opposite in nature in the exponential case. Since the exponential input
source typically represents a sorption-dominated flow process, a higher porosity (more
pore space) causes more retardation of the contaminant particles, and hence a slower decay
rate is observed.
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Figure 8 shows the pollutant transport profile at time t = 2 years for different bulk
densities of contaminant concentrations (ρ = 2.19, 2.65) in the gravel medium assumed
to be in a solid matrix-type packing. To characterize the concentration profile in this case,
periodic boundary conditions are considered. It is observed that the initial pollutant con-
centration for both bulk densities considered is similar near the inlet boundaries. However,
as evident from Figure 8, contaminant concentration diminishes relatively fast for a higher
bulk density (ρ = 2.65) compared to a low bulk density (ρ = 2.19).

Figure 9 illustrates the effects of the fractional power of q(0.3, 0.6, 0.9) over non-linear
Freundlich sorption of contaminant distribution at time t = 2 years in the gravel medium.
For this case, constant initial conditions and periodic boundary conditions are considered.
It is evident from Figure 9 that with rising values of q, which represent the nonlinearity of
the model, the contaminant concentration decreases.

Figure 10 presents the concentration distribution profile at different times (t = 2, 2.5 years)
subject to periodic initial conditions in a heterogeneous groundwater flow system. Initial
and boundary conditions are assumed to be periodic for both time domains. In general, it is
observed that the concentration distribution decreases with increasing time domain up to some
spatial distance. However, beyond a certain threshold distance, the concentration distribution
increases with increasing time. It is observed that the concentration distribution profile depends
on the nature of the initial and boundary conditions.
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Figure 11 presents the effect of the dispersion coefficients
(

Dx0, Dy0 = 0.16, 0.20, 0.24
)

in the longitudinal and transversal directions over the concentration distribution profiles. It
is observed that even with a marginal fluctuation in the dispersion coefficients, the resultant
concentration distribution profile varies significantly at each point of the domain. The
possible reason for such behavior may be attributed to the critical balance of the advection-
dispersion flow process, which is altered by the change in the dispersion coefficients.
Overall, the concentration value increases as the dispersion coefficients decrease for any
given fixed time domain.

The dependency of the contaminant concentration profile on the non-linearity power
α under Langmuir sorption is illustrated in Figure 12. Different forms of axial input
sources, such as sinusoidal, exponential, and asymptotic, are depicted in Figure 12a–c,
respectively. It is observed that the non-linearity terms for the sinusoidal and exponential
cases are similar in nature, whereas they are the opposite in nature for the asymptotic
case. This difference in contaminant distribution is possibly caused by the underlying
physical phenomenon. In sinusoidal and exponential cases, the dispersion phenomenon is
dominant and causes a gradual decrease in the contaminant concentration. In contrast, in
the asymptotical case, the contaminant concentration reaches a saturation point where it
does not change significantly. In addition, the dispersion process for the asymptotical case
is relatively weaker compared to the other two cases. These factors may cause different
distribution patterns, as observed in Figure 12a–c. The contaminant concentration for the
sinusoidal and exponential axial input sources decreases with increasing values of the
non-linearity term. However, in asymptotic cases, contaminant concentration increases
with an increase in the non-linearity power α.
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Figure 13 shows the graphical validation of the proposed model for the heterogeneous
silty (i.e., ϕ = 0.64) type porous medium. For this case, the input source is considered to



Water 2023, 15, 2676 19 of 25

be a point source, and hence we set (x = 0, y = 0) at the Dirichlet boundaries. Further,
the initial background source concentration is assumed to be zero (i.e., c0 = 0). Data
from [45] (a1 = 0.1, a2 = 0.1, u0 = 1.05 km/year, v0 = 0.15 km/year, Dx0 = 1.1 km2/year,
Dy0 = 0.1 km2/year) and [46] (Dx0 = 5 × 0.24 m2/day, Dy0 = 0.25 m2/day,
u0 = 0.24 m/day, v0 = 0.25 m/day, a1 = 0, a2 = 0) were fed into the proposed model,
and its output was compared to the output obtained by the data considered by the authors.
As evident, a similar overall trend of the contaminant profile—a spatially diminishing
concentration trend towards the edge of the domain, is observed between the various
existing models and the proposed model for the respective datasets considered. The ratio-
nale behind this graphical comparison was to establish the correctness of the input data
considered in this work.
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Figure 14, presented in this study, provides a comparative analysis between the con-
stant velocity and variable velocity of groundwater flow conditions. The constant velocity
assumption implicitly refers to a homogenous medium, whereas variable velocity refers to
a heterogeneous medium. For constant velocities, the advection and dispersion coefficients
were kept constant without any spatial dependence, as expressed in Equation (1). In general,
it is observed that the overall contaminant concentration may either increase or decrease
depending on the specific initial or boundary conditions. As observed from Figure 14a,
which represents the exponential boundary condition, contaminant concentration decreases
for both the constant and variable velocities; however, the dip in the constant velocity case
is greater than the variable velocity case toward the end of the boundary. In contrast, for
sinusoidal (Figure 14b) and asymptotic (Figure 14c), there is an overall trend of increasing
contaminant concentration, albeit at different rates for constant and variable groundwater
flow velocities. A higher peak concentration is observed for the constant velocity condition
compared to the variable velocity condition.
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Peclet and courant numbers are often used in the context of groundwater contam-
ination phenomena to explain the transport dynamics, i.e., establish a relation between
the advection-diffusion processes, and quantify the flow rate of contaminants for various
geological formations [9]. Mathematically, the Peclet number and Courant number are
defined as:

Pe =
u0x

ϕDx0
; Cr =

u0t
ϕx

(38)

A high Peclet number shows that the advection process is the cardinal transport
mechanism, while a low Peclet number shows that the dispersion mechanism dominates
the transport phenomenon. The courant number gives the number of particles in the
medium that are transported in a given time interval. The ideal value of the Courant
number must be less than 0.7 [47].

The relationship between the Peclet number and the porosity of the various geological
formations is also addressed. As evident from Figure 15, the Peclet number increases as
the porosity decreases, and vice versa. With a decrease in the Peclet number (increase
in porosity), the overall contaminant concentration is found to be higher. The pollutant
concentration decreases with space and approaches its lowest value near the extremes of
the boundary. Similarly, in the case of the Courant number, the contaminant concentration
is also predicted for the different geological formations.

Figure 16 depicts the contaminant concentration in various media with distinct
Courant numbers at a specific time period. We observed that as porosity values decreased,
the Courant number increased. The nature of the contaminant concentration is also demon-
strated, and it is noted that concentration values rise as the courant number decreases at
each of the positions. These concentration levels decrease with distance and approach their
lowest value near the final boundary.
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soil media.

Figure 17 shows the contaminant transport dynamics using a plot between the Peclet
and Courant numbers for various transport mediums with different inter-porosity ranges.
As observed from Figure 17, the general trend within a given medium indicates a non-
linear relationship between Pe and Cr with an increase in the inter-medium porosity. For
advection-dispersion problems, the stability of the numerical solution can be inferred using
the Peclet number. The solution will oscillate when the absolute value of the Peclet number
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is greater than two [48]. In the present problem, since the Peclet number is less than two,
the proposed numerical solution is stable and hence not discussed in the manuscript.
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4. Conclusions

This work analyzes the influence of varying migration parameters and the nature of
input sources (axial) on a two-dimensional reactive transport system. The CN and ADI
methods are used to derive approximate solutions to the modeled problem. The present
study is carried out for various time-dependent axial input sources of the transport system:
(a) sinusoidal, (b) exponential, and (c) asymptotical. Further, the phenomenon of non-linear
sorption is incorporated into the proposed model. To investigate the influence of spatially
varying transport parameters, a quadratic space-dependent dispersion coefficient and a
linear space-dependent function for the migration velocity terms are considered. As per
the author’s best knowledge, there are no specific studies on the 2D reactive transport
for axial input sources in a heterogeneous medium, as studies from the literature have
primarily focused on analyses for uniform flow axial input sources. The results presented
in this paper are a step forward toward building more robust and realistic models for
contaminant transport. The novelty of the proposed model, therefore, is the advancement
in the understanding of the contaminant transport model and the improvement of the
accuracy of the prediction by including realistic flow parameters. The proposed method
can be further extended to 3D axial input source or multi-directional contaminant transport
modeling, thereby encompassing more realistic scenarios in groundwater modeling. The
critical findings of the presented work are summarized as follows:

• Results of iterating over all the combinations of pollutant transport dynamics for the
two-dimensional reactive system suggest that the peak concentration strengths are
alike for homogeneous and heterogeneous media.

• A substantial influence of various soil media is observed for the different types of axial
input sources, such as sinusoidally, asymptotically, and exponentially varying non-
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point sources. It is observed that with an increase in the porosity values, contaminant
distribution also increases for sinusoidal and exponential cases. However, in the
asymptotic case, concentration distribution decreases with increasing porosity values.

• The apparent effect of different values of α parameters of Langmuir sorption for
the three types of axial input sources (sinusoidal, exponential, and asymptotical) is
observed. It is found that with an increase in the α parameter, the concentration
distribution also increases for sinusoidally varying input sources. In contrast, the con-
taminant concentration decreases when α parameter is increased for the exponentially
varying input sources.

• A comparison of the derived solution of the proposed model with the preceding
approximate model solution of the same model from several authors is successfully
carried out. Further, the validation under the special case is carried out for the special
case (Dxx = Dyy = 0.16 km/year−2; m = m1 = m2 = 0) of the proposed model by
PDEtool and found good agreement between them. In the present study, the CN
method is found to have an advantage over the ADI method.

• The influence of constant and varying velocity parameters on groundwater contami-
nant transport was examined. Although the effect was found to be a function of initial
or boundary conditions, the order of the impact is marginal.

• Finally, the model’s stability and contaminant transport dynamics in different media
are tested using the Peclet and Courant numbers. The model is found to be stable, as
indicated by the observed Peclet number.
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Nomenclature

Symbol Dimension Description
Ch [ML−3] Liquid phase contaminant concentration in heterogeneous medium
R [−] Retardation factor
Sh [MM−1] Solid phase contaminant concentration in heterogeneous medium
ρ [ML−3] Density
ϕ [−] Porosity
η [T−1] First-order decay rate coefficient
δ [ML−3T−1] Zero-order production rate
ux , vy [LT−1] Advection coefficients in x, y directions
Dxx , Dyy [L2T−1] Dispersion coefficient in x, y directions
x, y [L] Distance variables in Longitudinal Transversal directions
t [T] Time variable
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kd [M−1L−3] Sorption coefficient
kl [MM−1] Maximum sorption capacity
u, v [LT−1] Initial groundwater velocities in x, y directions
Dx0, Dy0 [L2T−1] Constant dispersion coefficients in x, y directions
m1, m2 [T−1] Flow resistant coefficients
a1, a2 [L−1] Heterogeneity parameters of the porous medium
c0 [ML−3] Initial constant solute concentration
c1 , c2 [ML−3] Sources of input concentration
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