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Abstract: Groundwater is vital to local human life and agricultural irrigation, and the quality of the
water is critical to human health. As a result, it is critical to investigate the hydrochemical evolution
and water quality of groundwater in the Sanjiang Plain. There were 259 samples obtained. Fur-
thermore, hydrogeochemical simulation was performed to highlight groundwater’s hydrochemical
features, evolution process, and water quality. The analytical results show that the groundwater in the
study area is somewhat alkaline with a mean TDS of 285.94 mgL−1 and the primary contributing ions
being Ca2+ and HCO3

−. The closer the concentration of TDS and NO3
− is to the city, the higher the

concentration, indicating that the chemical composition of the water body has been affected by certain
human activities. The Piper diagram, Gibbs diagram, and correlation analysis results demonstrate
that the chemical type of groundwater is mostly HCO3-Ca and the hydrochemistry is primarily
regulated by weathering and carbonate and silicate dissolution. According to the entropy-weighted
water quality index, the groundwater quality in this location is pretty acceptable. This study could
help strengthen groundwater quality monitoring based on local conditions, identify the source of
nitrate, provide data support for the safe use of local water resources, and serve as a reference for
global water chemical evolution and water quality evaluation in cold regions.

Keywords: groundwater; hydrochemistry; water quality; WQI; Sanjiang Plain

1. Introduction

Water is essential for the survival and growth of both animals and plants, and it
also serves as the foundation for industrial and agricultural development. Water safety
is critical to human existence [1–4]. Groundwater is frequently employed in industrial
and agricultural production because of its steady water supply and generally acceptable
water quality [4–8]. Groundwater has traditionally been used as a primary source of water,
particularly in locations where rivers and lakes are underdeveloped [9–11]. Understanding
the variance trend in regional groundwater quality and the variables that influence it is
critical for fully using and rationally maintaining groundwater resources, avoiding and
managing groundwater contamination, protecting people’s health, and fostering economic
growth. As a result, the researchers performed extensive study on groundwater contam-
ination [12,13], focusing on three-nitrogen pollution and heavy metal pollution [14–16].
Pollutant movement, transformation, source, and health risk assessment were researched
using statistical analysis, ion ratio, isotope analysis, and entropy weight analysis, yielding
numerous findings [17–19].

Nitrate contamination is one of the most serious environmental geological issues
that has to be addressed immediately [18,20]. Groundwater nitrate-nitrogen pollution
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tends to be severe when urbanization speeds up and human activities intensify. NO3-N
is frequently used to assess the toxicity and eutrophication of water [21,22], and its high
concentration will result in degradation of water quality, ecological damage, and a hazard
to human health. NO3-N undergoes a sequence of modifications that result in the formation
of carcinogenic and teratogenic chemicals. Long-term use of nitrate-rich water raises the
chance of people developing disorders such as methemoglobin. Furthermore, high nitrate
levels have a negative impact on the biological environment, causing eutrophication and
algal bloom. As a result, removing nitrate from groundwater has become a research priority.

Sanjiang Plain has an abundance of black land, which is ideal for cultivating food
crops. Groundwater is frequently utilized to irrigate crops in this region [23,24]. The
exploitation of groundwater is expanding as urbanization and industrialization progress,
and human activities have an increasing influence on groundwater quality. There are many
dry and paddy fields in the region, and groundwater is mostly utilized to irrigate crops.
The hydrochemical composition of groundwater is continually changing as a result of
overexploitation of groundwater, fertilization, irrigation, and other agricultural operations,
and the deterioration of water quality will impair the safety of local agricultural and
household water [25–27].

So far, the primary groundwater study paths in Sanjiang Plain have been a ground-
water pollution risk model [28], shallow groundwater quality [29], and water resource
allocation [30], with assessment research on the combination of groundwater pollution
being very rare. The regional variable features and sources of major ions, as well as the
overall water quality and control factors in the research area, need to be investigated further.
As a result, this work focuses on the source and chemical evolution of groundwater in
the Sanjiang Plain, and it investigates groundwater hydrochemistry using hydrochemical
theory, multivariate statistical techniques, and a water quality index. In order to explain
the mechanism of groundwater hydrochemistry evolution, the following three contents
are largely investigated: (1) spatial distribution characteristics of groundwater chemistry,
(2) groundwater hydrochemical evolution, and (3) groundwater quality. It is expected to
provide a hydrochemical foundation for better revealing the variation trend of groundwater
quality and environmental factors, as well as realizing the Sanjiang Plain groundwater
management objectives of food security, ecological security, and water supply security. This
work will serve as a resource for assessing water chemical evolution in frigid places across
the world.

2. Materials and Methods
2.1. Study Area

The Sanjiang Plain is situated in the Heilongjiang Province, China (Figure 1). The
Sanjiang Plain’s mountains rose and the plain sank as a result of tectonic and neotectonic
activity, and quaternary strata 100–300 m thick were deposited in the lower plain region.
The principal river that flows through the study region is the Naoli River, which is a
tributary of the Wusuli River. It rises in the Nadanhada Mountains of the Wanda Mountains,
between Qitaihe and Mishan in the Heilongjiang Province, and runs through Qitaihe,
Baoqing, Fujin, and Raohe before joining the Wusuli River in Dong’an Town. The overall
length is 596 km, the main river channel is 20–100 m wide, the curvature coefficient is
1.4–3.0, and the gradient of the river channel is 1/2000–1/8000. There are nine rivers that
flow into the upper reaches, eleven rivers that flow into the middle and lower sections, and
a total of twenty tributaries in the basin. The river channels are meandering and serpentine,
with crisscrossing river branches. Both sides were previously highly forested, with plentiful
plankton growth and great fishing productivity conditions. This area’s climate belongs to
the temperate zone’s humid and semi-humid continental monsoon climatic zone, which
is marked by rapid spring warming, frequent wind and little rain, and the occurrence of
spring drought. Summer is warm and humid, with frequent rainstorms and flash floods.
The sky is high and the air is cool in fall; the temperature drops swiftly, and frost and cold
waves arrive early. Winter is cold and dry, with ice and snow, although it is mainly bright.
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The annual average temperature is 3.5 ◦C, with July being the warmest month and the
monthly average temperature being 21.9 ◦C; January is the coldest month, with a monthly
average temperature of −18.1 ◦C, an annual sunshine duration of approximately 2500 h, a
frost-free period of approximately 140 days, and a maximum depth of 2.2 m. The yearly
precipitation average is 537.2 mm. The yearly evaporation rate is 670.8 mm.
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The regional aquifer system is divided into three compartments based on topography,
landform, hydrology, and aquifer geological structure: the Quaternary pore aquifer system,
the Paleogene–Neogene pore fissure aquifer system, and the Quaternary bedrock fissure
aquifer system. The aquifer formations from bottom to top are the Lower Pleistocene
Suibin Formation, the Middle Pleistocene Nongjiang Formation, the Upper Pleistocene
Xiangyangchuan Formation, and the Biela Formation, according to the lithology, origin, and
distribution of the Quaternary pore aquifer system. The sediments of different ages and
sources in the alluvium and strata of the Honghe River are overlying structures between
aquifers. There is no obvious water barrier in the middle, and the weak permeable layer
is discontinuous, which is a uniform and large-thickness aquifer. The quaternary pore
water may be separated into three strata based on groundwater circulation depth and
runoff intensity: shallow, medium, and deep. Extracted from the Heilongjiang River,
groundwater in the region flows generally from the southwest to the northeast. The major
source of groundwater recharge is atmospheric precipitation, followed by lateral runoff
replenishment of rivers, recharge of river water during flood times, and infiltration of
swamp water. The main excretion routes are runoff, evaporation, and artificial mining.

Sanjiang Plain features flat topography, abundant land resources, little pollution, and
significant agricultural development potential. This area has a relative scarcity of water
resources, which are mostly used to irrigate crops by pumping groundwater. Since the end
of the twentieth century, agricultural activities have increased, particularly the planting of
well-irrigated rice. Groundwater alone cannot cover the water requirements of agricultural
irrigation due to its scarcity. As a result, a huge number of tube wells have been developed
and groundwater extraction has expanded fast, resulting in various ecological concerns
such as wetland degradation, a major reduction in grassland area compared to previous
periods, the loss of pump wells, and a reduction in rice output. The issue of groundwater
quality is also fairly prevalent in this area. Trace indicators such as NH4

+, NO3
−, NO2

−,
CODMn, Fe2+, and Mn2+ exceed the limit at a very high rate, which is the primary source of
groundwater quality degradation.
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2.2. Sample Collection and Analysis

A total of 259 groundwater samples were taken (Figure 1). The water sample was
filtered and placed in two plastic bottles. Nitric acid was added to one bottle of sample to
make the pH of water sample 2 for the cation test, and another bottle was added to make
the pH of water sample 2 for the other index test. The cation was measured using a flame
atomic absorption spectrometer (ContrAA300, Thuringia, Germany) [31]. Cl−, NO3

−, and
SO4

2− were quantified using ion chromatographs (883i, Herisau, Swiss) [32]. Titration with
hydrochloric acid was used to determine HCO3

− and CO3
2− [29]. Titration with disodium

(EDTA) was used to calculate total hardness (TH) [32]. Total dissolved solids (TDSs) were
measured using a weighing technique [32]. pH was measured in the field by the glass
electrode method [32]. The relative standard deviation of all test indices was less than 5%.

2.3. Entropy-Weighted Water Quality Index (EWQI)

The entropy technique is an objective weighing approach that determines an index’s
dispersion degree by computing the entropy value [33–35]. The entropy technique was
used to calculate the weights of hydrochemical indicators such as Na+, Cl−, SO4

2−, NO3
−,

TDS, TH, and pH, and groundwater quality was assessed using the groundwater quality
standard: excellent (WQI < 25), acceptable (25 < WQI < 50), medium (50 < WQI < 100),
poor (100 < WQI < 150), or severely bad (WQI > 150) [36]. Before computing the overall
score using these indications, because the influence on groundwater chemistry varies
depending on the content of the test indicators, various data were translated to the same
measurement standard to remove the inaccuracy caused by variable content. The entropy
weight method’s quality index evaluation value (EWQI) is the product of wi and Cj is the
concentration of j in groundwater, and Sj is the standard value of j in groundwater, and was
calculated as Equation (1) [37]:

EWQI = ∑m
j=1 wi ×

Cj

Sj
(1)

3. Results and Discussion
3.1. Hydrochemical Composition and Hydrochemical Types
3.1.1. Chemical Composition Characteristics of Groundwater

The primary cations in groundwater are Ca2+ and Na+. The concentration of ground-
water ions shows the relationship Ca2+ > Na+ > Mg2+ > K+, with Ca2+ and Na+ content
ranges of 0.34–142.28 mg·L−1 and 2.75–65.22 mg·L−1, respectively, with mean values of
45.76 mg·L−1 and 23.23 mg·L−1 (Table 1).

Table 1. Statistics of major parameters in groundwater.

Chemical
Parameter Mean Standard

Deviation Min Max
NSPRC
(NSPRC,

2017)

Coefficient
Variation

K+/mg·L−1 3.01 4.83 0.08 61.17 — 1.61
Na+/mg·L−1 23.23 12.53 2.75 65.22 200.00 0.54
Ca2+/mg·L−1 45.76 25.59 0.34 142.28 — 0.56
Mg2+/mg·L−1 16.13 10.74 2.52 67.47 — 0.67
Cl−/mg·L−1 12.45 15.31 1.77 109.02 250.00 1.23

SO4
2−/mg·L−1 9.31 32.04 0.00 450.00 250.00 0.54

HCO3
−/mg·L−1 255.28 138.65 0.00 682.63 — 3.16

NO3
−/mg·L−1 10.21 24.57 0.00 205.00 88.60 2.41

TDS/mg·L−1 285.94 118.59 85.24 839.64 1000.00 0.41
TH/mg·L−1 178.33 93.62 20.80 474.95 450.00 0.52

pH 7.15 0.42 5.46 9.04 6.5–8.5 0.06
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The anion is mostly HCO3
−, and groundwater concentrations show a relationship of

HCO3
− > Cl− > SO4

2− > NO3
−. The concentration ranges for HCO3

− and NO3
− were

0–682.63 mg·L−1 and 0–205.0 mg·L−1, respectively, with mean values of 255.27 mg·L−1

and 10.21 mg·L−1. In general, the greater the content, the closer to the metropolitan area.
This is linked to the aggregation of urban populations, demonstrating that NO3

− is heavily
influenced by human activity.

The pH value, as an essential parameter, can represent information about hydro-
geochemical equilibrium. The pH ranges from 5.46 to 9.04, with a mean value of 7.15,
showing that the regional diversity of pH values is limited and that the groundwater
samples are generally slightly alkaline. TDS and TH concentration variation ranges
were 85.24–839.64 mg·L−1 and 20.80–474.95 mg·L−1, respectively, with mean values of
285.94 mg·L−1 and 178.33 mg·L−1, and the coefficients of variation were 41.47% and 52.50%,
showing that the regional disparities in TDS and TH concentrations were considerable.
TDS was found to be higher in the north–south direction and lower in the east–west direc-
tion. The greater the TDS of densely inhabited populations, the closer they were to towns,
indicating that the high TDS of certain water samples was induced by human activity
(Figure 2).
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3.1.2. Hydrochemical Type

The hydrochemistry and hydrochemical types were evaluated using a piper triplot,
and the majority of the water samples fell towards Ca2+, showing that Ca2+ is prevalent in



Water 2023, 15, 2669 6 of 14

groundwater, followed by Mg2+. All of the water sample points are near the HCO3
− end

of the anion diagram, indicating that HCO3
− ions are common and that the chemical types

are mostly HCO3-Ca·Mg (Figure 3a). Ca2+ and HCO3
−, on the other hand, are primarily

derived from the dissolution of carbonate or silicate, indicating that this area is primarily
governed by weathering and rock dissolution.

Water 2023, 15, x FOR PEER REVIEW 7 of 15 
 

 

 
Figure 3. The piper plot of groundwater (a) and correlation between chemical parameters in ground-
water of Sanjiang Plain (b). 

3.1.3. Relationship between Chemical Indexes 
Correlation analysis is frequently used to investigate the origin of ions in the evolu-

tion of hydrochemistry [24]. There is a strong link between the components of the same 
source. TDS has a high association with Na+, Ca2+, Mg2+, SO42−, and HCO3− (Figure 3b), 
indicating that Na+, Ca2+, Mg2+, SO42−, and HCO3− are the primary sources of groundwater 
TDS, among which TDS has a substantial correlation with Ca2+ (R2 = 0.866, p < 0.01) and 

Figure 3. The piper plot of groundwater (a) and correlation between chemical parameters in ground-
water of Sanjiang Plain (b).



Water 2023, 15, 2669 7 of 14

3.1.3. Relationship between Chemical Indexes

Correlation analysis is frequently used to investigate the origin of ions in the evolu-
tion of hydrochemistry [24]. There is a strong link between the components of the same
source. TDS has a high association with Na+, Ca2+, Mg2+, SO4

2−, and HCO3
− (Figure 3b),

indicating that Na+, Ca2+, Mg2+, SO4
2−, and HCO3

− are the primary sources of groundwa-
ter TDS, among which TDS has a substantial correlation with Ca2+ (R2 = 0.866, p < 0.01)
and HCO3

− (R2 = 0.813, p < 0.01). The correlation coefficients between SO4
2− and Ca2+,

Mg2+ are 0.251 and 0.288, respectively, showing that they have a similar material source,
namely weathering dissolution and sulfuric acid dissolution of calcite, dolomite, and other
carbonate minerals.

3.2. Control Factors of Groundwater Hydrochemistry
3.2.1. Natural Factors

The Gibbs model is commonly used to determine the primary water regulating param-
eters [38–42]. It consists of three governing endmembers: precipitation, rock weathering,
and evaporative [43–45]. The atmospheric precipitation control area has a lower total
dissolved solid concentration and a greater ratio of Na+/(Na+ + Ca2+) and Cl−/(Cl− +
HCO3

−), both of which are normally in the 0.5–1 range, and is dispersed in the bottom
right corner of the Gibbs plot. The rock weathering area is in the middle left, the TDS value
ranges from 70 to 300 mg·L−1, and the ratio is less than 0.5. The upper right of the diagram
shows the evaporative crystallization control region, which has a greater TDS and a higher
ratio (0.5–1). The TDS and ratios of the groundwater samples in this location are lower, and
all samples fall within the rock weathering control area, indicating that the major ions in
groundwater are caused by rock weathering (Figure 4a,b).
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Various rocks will create different ions as they weather. The weathering of carbonate
rock, silicate rock, and evaporite produces Ca2+ and Mg2+ in abundance. The main elements
Na+ and K+ are formed through the weathering and disintegration of silicate rock and
evaporite. Weathering and dissolution of carbonate and silicate rocks produce HCO3

−

in significant amounts. As a result of the breakdown of evaporated, SO4
2− and Cl−

significant compounds are formed [46,47]. A mixing map generally reveals the source of
ions created by chemical weathering in the watershed. Because the Ca2+/Na+, Mg2+/Na+,
HCO3

−/Na+ relationships are unaffected by flow rate, dilution, or evaporation, they can
reveal the hydrochemical origin and dissolution of minerals from which the major ions
originate. The samples are located in the silicate rock and carbonate areas, demonstrating
that groundwater is influenced by water–rock interaction (Figure 4c,d).

Cation alternating adsorption occurs when particles adsorb some cations in water and
transform some of their initially adsorbed cations into water components under particular
circumstances [48]. (Na+ − Cl−) and [(2SO4

2− + HCO3
−) − 2(Ca2+ + Mg2+)] (mmol·L−1)

concentrations can be used to determine if Na+ − Ca2+ exchange occurs. The ratio
(Na+ − Cl−)/[(2SO4

2− + HCO3
−) − 2(Ca2+ + Mg2+)] should be close to 1:1 if the hy-

drogeochemical process is mostly cation exchange [49]. Water sample molar concentration
ratios (Na+ − Cl−)/[(2SO4

2− + HCO3
−) − 2(Ca2+ + Mg2+)] are typically near the 1:1 line,

indicating that cation exchange is important in the subsurface hydrogeochemical process
(Figure 5a).
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The chlor-alkali index (CAI-I and CAI-II) is a water ion exchange test. If CAI-I and CAI-
II are negative, then Ca2+ and Mg2+ exchange with Na+ and K+ in groundwater; if CAI-I and
CAI-II are positive, then Na+ and K+ exchange with Ca2+ and Mg2+ in groundwater [39,50].
The majority of chlor-alkali indices in groundwater are less than zero, indicating that
calcium and magnesium are mostly exchanged for sodium and potassium in groundwater
in the research region. It aids in the enrichment of sodium and potassium in groundwater
(Figure 5b).

The major source of Na+ is the dissolution of halite and silicate, and the dissolution
of halite results in the same molar concentration of Na+ and Cl− [51]. However, the ratio
of Na+ to Cl− in the water sample is far from the 1:1 line and near that of Na+ (Figure 4c),
showing that the Cl− content is definitely lower than that of Na+ and that there should
be other anions to balance the excess sodium, indicating that sodium should have other
sources. The molar concentration ratio of Na+/Cl− ranges from 0.47 to 55.67, with an
average of 5.56. This demonstrates that Na+ is not only derived from the dissolving of rock
salt, whereas sodium is mostly derived from the weathering breakdown of silicate rock.

The majority of locations are above and deviate significantly from the Cl− + SO4
2− and

HCO3
− 1:1 lines (Figure 5d), indicating that the carbonate source is significantly greater

than the evaporate source. The average (Ca2+ + Mg2+)/(Na+ + K+) ratio of groundwater
samples in Sanjiang Plain is 3.93, indicating that weathering and carbonate and silicate
dissolution are dominant in this region. The correlation coefficient between sodium and
calcium is 0.2, suggesting that Na+ and Ca2+ are derived from the same source, implying
that some of them are derived via silicate breakdown.

In order to identify whether the hydrochemistry in this region is governed by car-
bonate rock or gypsum dissolution, (Ca2+ + Mg2+) and (HCO3

− + SO4
2−) are usually

used to examine the hydrochemical process at the watershed scale [52]. If the equiva-
lent concentration ratio of (HCO3

− + SO4
2−)/(Ca2+ + Mg2+) in the water sample is 1:1,

carbonate rock or gypsum dissolution controls the hydrochemistry [53,54]. The ratio of
(HCO3

− + SO4
2−)/(Ca2+ + Mg2+) is greater than 1:1. (HCO3

− + SO4
2−) exceeds

(Ca2+ + Mg2+) (Figure 5e), indicating that other cations should be present to balance
the amount of surplus anions and that there are other sources of HCO3

− in groundwater,
some of which originate from silicate dissolution. The correlation coefficients between
HCO3

− and Ca2+, Mg2+ are 0.806 (p < 0.01) and 0.757 (p < 0.01), respectively, indicating that
they share a common material source, primarily carbonate dissolution. When combined
with the Sanjiang Plain’s geological history, it suggests that weathering and dissolution of
carbonate rocks contribute to Ca2+ and HCO3

−.
The majority of the points in the figure are in the upper part of the 1:1 ratio (Figure 5f),

and the amount of Mg2+ and Ca2+ is greater than that of HCO3
−, with a ratio of around

1.19, indicating that carbonate dissolution cannot explain the composition of Mg2+ and
Ca2+ in groundwater entirely. Cl− and SO4

2− may balance out additional Mg2+ and Ca2+.
Ca2+ and SO4

2− have a significant correlation value of 0.251 (p < 0.01), indicating that a
small amount of halite dissolution is occurring to balance Mg2+ and Ca2+.

3.2.2. Human Activity Input

Human actions have a significant impact on the evolution of water chemistry [32,55].
It alters the chemical composition of water by transporting wastewater, waste, and waste
gas. NO3

−, Cl−, and SO4
2− levels will be higher in areas with high human activity. Of

course, weathering can produce Cl− and SO4
2−. When water is impacted by human activity,

the Cl−/Na+ and NO3
−/Na+ ratios are often high. The ratios are rather high (Figure 6),

demonstrating that human production and life have an effect on groundwater in this area,
which is connected to urban home sewage discharge and large-scale agricultural output.
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3.3. Groundwater Quality

According to the findings of the water quality assessments, the majority of the samples
are of high quality (Figure 7a). The EWQI value varied from 2.27 to 91.69, with a mean value
of 9.82 obtained from 259 samples. There are 243 high-quality water sources in the research
region, accounting for approximately 93.8% of the total. Another nine groundwater samples
were categorized as having good water quality, accounting for approximately 3.5% of the
total. These two types of water are useful for a variety of applications. Seven samples are
rated as medium-grade water, accounting for around 2.7% of the total, which is within the
recommended drinking range. There are no samples of water that are of bad or extremely
poor quality. The higher the content of NO3

− in water, the higher the corresponding WQI,
indicating that NO3

− is the main influencing factor of WQI (Figure 7a). The higher the
concentration of NO3

− in water, the higher the corresponding WQI (Figure 7a), indicating
that NO3

− is the primary influencing factor of WQI. The samples with low water quality
were primarily dispersed in cities with dense populations, indicating that water quality
was directly tied to human activities (Figure 7b).
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4. Conclusions

Based on the regional scale, this study analyzed the hydrochemical characteristics
and hydrochemical evolution of groundwater in Sanjiang Plain, Heilongjiang Province,
China and grasped the hydrochemical evolution law of this area. The chemical type of
groundwater is Ca-HCO3, with a cation concentration of Ca2+ > Na+ > Mg2+ > K+ and
an anion concentration of HCO3

− > Cl− > SO4
2− > NO3

−. The chemical composition
of water is mainly affected by the dissolution of carbonate rock and silicate rock, and
the alternative adsorption of cations and the impact of human activities also play a role.
The groundwater quality index results show that the EWQI value is lower than the World
Health Organization’s drinking water standards, making it suitable for drinking. This study
provides a hydrochemical basis for better revealing the interaction mechanism between
groundwater and environment and achieving the goal of groundwater management for
food security, ecological security, and water supply security in the Sanjiang Plain, and it
can serve as a reference for groundwater chemical evolution and water quality evaluation
in the global cold area.
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