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Abstract: Pollution indexes are instruments that allow a quick interpretation of water quality, com-
bining physical, chemical, and microbiological parameters to generate a numerical value. Our aim
was to evaluate spatial and temporal-spatial water quality and propose a water pollution index (WPI)
for high Andean rivers using multivariate statistics. Data on physical, chemical, and microbiological
parameters were collected from the river water of the Chumbao sub-basin during the rainy and
dry seasons at eight sampling points. The laboratory and field analysis methods were developed
following the methodology proposed by the APHA. Spearman’s correlation, cluster analysis, and
discriminate analysis were applied to evaluate water quality’s spatial and temporal variation and
principal component analysis/factor analysis to identify critical parameters to formulate the Water
Pollution Index (WPI). The parameters with the most incidence in water quality were color, conduc-
tivity, dissolved oxygen, biochemical demand oxygen, ammonia, total phosphorus, lead, chromium,
and thermotolerant coliforms. The inorganic pollution index (IPI) was obtained from conductivity,
lead, and chromium, reporting pollution levels for the river water between “none” to “high”; and
the organic pollution index (OPI) was obtained from dissolved oxygen, biochemical demand oxy-
gen, ammonia, total phosphorus, color, and thermotolerant coliforms, with levels of “low” to “very
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high” pollution. The proposed pollution indexes are water management instruments that evaluate
water quality.

Keywords: organic pollution index; inorganic pollution index; high Andean River; multivariate
analysis

1. Introduction

The high Andean rivers are a source of fresh water and allow the development of
anthropic activities in the surrounding communities, such as agriculture, cattle raising,
aquaculture, industry, energy, and water supply [1-4]. They are collectors of domestic,
agricultural, and industrial wastewater, and transport organic and inorganic substances [5]
that alter the natural composition and quality of water [6].

Assessing water quality involves monitoring spatial and temporal changes in parame-
ters [7-12], which are subject to variations in flow, precipitation, surface runoff, tributaries,
and effluents [1,13]. The practical and reliable water quality evaluation during monitoring
programs is complicated and difficult to interpret, so it is crucial to develop new ways to
approach and statistically interpret data for preventive or management purposes [6,14-16].

Multivariate statistical methods (MSM) are excellent research tools that help in-
terpret complex sets of information, identify parameters responsible for water quality
variation [17-25], and allow their selection to compose indexes that objectively evaluate
the water resource [21,26,27].

MSM, as the correlation analysis, cluster analysis (CA), discriminant analysis (DA),
principal component analysis (PCA), and factor analysis (FA), have been widely
used to evaluate temporal and spatial variations in complex water quality
datasets [1,6,10,14,19,24,28-32]. For example, Barakat et al. [3] used correlation, PCA, and
CA to evaluate the spatial and seasonal variations of Oum Er Bia River surface water quality
data; the PCA technique allowed the identification of the sources of water quality degra-
dation. Alam et al. [33] applied the Pearson correlation matrix to detect interrelationships
between variables; PCA /FA resulted in three principal components, showing that organic
substances, anthropogenic activity, fertilization, chemical wastes, and sewage runoff are
responsible for water quality deterioration. Hajigholizadeh and Melesse [10] used CA and
DA to assess spatial and temporal variations in water quality in South Florida; for this,
a dataset of 12 water quality variables was used. The CA grouped 16 monitoring sites
into three groups based on the similarity of the water quality characteristics, while the DA
reduced the data; both techniques allowed us to evaluate the state of water contamination.
Ramirez et al. [34] used multivariate statistics to formulate four pollution indexes devel-
oped based on legislation from different countries according to the concentrations of other
variables and potential water uses.

Many proposed water quality and pollution indexes make it possible to assess the
state of the water body. They are widely used by institutions that modulate water quality in
different countries [35-37]. Most of them are based on the criteria established by Horton [38],
such as, altitudinal, geological, climatic conditions, physicochemical transformations of
water, the use of nonoriginal parameters and different units, and the condition of water
quality, with some parameters critical to determine its status.

These indexes are helpful instruments for the rapid interpretation of water quality,
combining different physical, chemical, and microbiological parameters to generate a
numerical value that allows specific pollution levels and to present the current state of
water in rivers or bodies of water [24,39]; however, most of these indices do not adjust to
the reality of each zone; their selection, weight assignment, and conversion to a scale, in
most cases, are based on a subjective aspect [40].

The Chumbao River acts as a source of water for human consumption, irrigation,
aquaculture, energy, industry, and habitat for aquatic organisms [2,4,41,42]; however, its
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waters have been affected by the excessive growth of the urban zone, intensive agricultural
activities, and domestic and industrial wastewater discharges [16,17,43]. In this sense, the
present study aimed to evaluate spatial and temporal-spatial water quality and propose a
water pollution index (WPI) for high Andean rivers, using multivariate statistics, which
was applied in the study of the Chumbao River in the city of Andahuaylas, Peru.

2. Materials and Methods
2.1. Study Area

The study area comprised the Chumbao sub-basin (Figure 1). Hydrographically, the
Chumbao River is located in the Pampas River’s lower part and right bank and originates
in the high Andean zone at 4400 m. The sub-basin presents a Cwb climate according to
Koppen, with marked seasons, in avenues with intense rainfall between October and March
(from 500 to 1000 mm/year), and temperatures from 5 to 23 °C, and an average relative
humidity of 55% [44].
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Figure 1. Study area Chumbao Sub-basin.

It has an approximate length of 61.92 km until it flows into the Pampas River and acts
as a collector basin, covering 23.6% of soil use; agriculture and pasture cover a significant
percentage of soil use, 60.7%, and 15.7% corresponds to the urbanized zone and limited
industry [41].

2.2. Analysis of Water Quality Parameters

Water samples were collected at eight sampling points (Table 1) in the dry and rainy
seasons during 2018 and 2019; the evaluated water quality parameters were selected
in accordance with Peruvian regulations, specifically the environmental water quality
standards, temperature (TEM), dissolved oxygen (DO), conductivity (CON), salinity (SAL),
turbidity (TUR), total dissolved solids (TDS), and pH measured in the field; color (COL),
alkalinity (ALK), hardness (HAR), biochemical oxygen demand (BODs), chemical oxygen
demand (COD), chloride (CHL), phosphate (PHO), ammonia (AMM), nitrate (NITA),
nitrite (NITI), total phosphorus (TP), lead (Pb), chromium (Cr), iron (Fe), bromine (Br), total
coliforms (TCO), and thermotolerant coliforms (THC) determined in the laboratory. On the
other hand, some heavy metals were considered in the study because, in the area, there is
metallic and non-metallic extractive activity as well as some industries.
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Table 1. Sampling points.

Sampling  Altitude Coordinates Characteristics of the .
Points m) Reference South West Area Referential Photo
River Water collecting
P1 4079 headwater 13°46/38.4" 073°15'32.3" basin/native flora and
fauna
Water collection
P2 3184 Hydroelectric 13°41'10.9” 073°20'19.7" basin/limited agriculture
and grazing
Limited urbanization,
P3 2978 Suykl’h.‘guacca 13°39/23.4" 073°21'30.7" agriculture, and intense
riage grazing
Increasing urbanization,
P4 2916 Andahuaylas —ja05g33 50 gzgeppizgor  limited agriculture and
coliseum grazing, limited urban
industry
Engineering 0nalam (! omalen Ml High urbanization and
P5 2872 barracks 13°39°37.0 073723'52.7 limited urban industry
P6 2807 G(I:QOI%IIZ[AR 13°39/27 4" 073°25/50.8" ngh urbanization, llmlted
ge agriculture, and grazing
. Limited urbanization,
P7 2767 Chlngmpata 13°38'17.0” 073°27'10.6" agriculture, and intense
ridge grazing
P8 2572 Posoccoy 13°35/26.4" 073°27/00.8" Agriculture and intense

bridge

grazing
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Sampling and sample preservation procedures (Table 2) were realized according to
the National Protocol for monitoring the Quality of Superficial Water Resources [45] and
analyses as per the methods proposed by APHA [46].

Table 2. Water Quality evaluation methods.

Parameter Method Reference
Color Spectrophotometric 2120 B Standard Methods
Turbidity Selective electrode (NFU) User manual, Multiparameter
Conductivity Selective electrode (Conductometer) User manual, Multiparameter
Salinity Selective electrode (Conductometer) 2520 B Standard Methods
TDS Selective electrode (Conductometer) 2540 C Standard Methods
Temperature Selective electrode (thermometer) User manual, Multiparameter
Alkalinity Spectrophotometric User manual, Photometer
Hardness Spectrophotometric User manual, Photometer
Chloride Chloride selective electrode (ISE) User manual, Multiparameter
pH Potentiometric User manual, Multiparameter
Ammonia Ammonia selective electrode (ISE) 4500-NH3 D Standard Methods
Nitrite Spectrophotometric User manual, Photometer
Nitrate Nitrate selective electrode (ISE) User manual, Multiparameter
Phosphate Spectrophotometric User manual, Photometer
DO Selective electrode (oximetry) User manual, Multiparameter
BOD Respirometry/manometric 4500-0C y 5210 B Standard Methods
COD Spectrophotometric User manual, Photometer
Total phosphorus Spectrophotometric User manual, Photometer
Chromium Spectrophotometric User manual, Photometer
Lead Spectrophotometric User manual, ICP-OES
Iron Spectrophotometric User manual, Photometer
Bromine Spectrophotometric User manual, Photometer
Total coliforms Fermentation 9221 B y 9221C Standard Methods

Thermotolerant coliforms

Thermotolerant coliform 9221 E Standard Method

2.3. Evaluation of Water Pollution Index (WPI)

For the formulation of the water pollution indexes (WPI), the degree of relevance of
each variable was identified through PCA /FA, selecting those with the highest factorial
load and indicated in the Peruvian regulations: “ESQ: Environmental Standard Quality of
the water, category 4: Conservation of the Aquatic Environment” [47]. The classification
was according to the source of organic and inorganic pollution, and parameter weights
(W;) which were obtained as per Equation (1).

FI;

N Y=t F @

i

where Fl; is the factor load of each selected parameter, ijf FI; is the sum of the factor
loadings as per the classification.

Subsequently, each selected parameter’s nominal reason (N7;) was determined accord-
ing to Equation (2), considering field /laboratory-measured and ESQ values.

Ci

Nr; =
" Ceso

@)

where C; is the concentration of the selected and evaluated parameter; Cgs is the concen-
tration of the parameter established in the ESQ.

When the concentration of the evaluated parameter is greater than or equal to the
concentration of the ESQ, the nominal ratio is equal to 1.

Condition: C; > C ESQ/ Nr; =1.
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The WPI was formulated using the organic pollution index (OPI) and the inorganic
pollution index (IPI).
OPI =) _NriW; (3)

IPI =Y NrW; (4)

Water pollution indexes were applied to evaluate the water quality of the high Andean
River. The calculated WPI values were classified into five categories (Table 3) according to
Ramirez et al. [34]. The scale makes it possible to quantify the degree of contamination of
the waters for its general condition and not for specific contaminants.

Table 3. Water pollution index classification.

WPI Pollution Color Scale Characterization
0.0-0.2 None Pure waters, perhap§ with biogenic
contributions
>0.2-0.4 Low Mild anthropic incidence
>0.4-0.6 Medium Yellow Notable anthropic activity
>0.6-0.8 High Orange Important incidence of pollution

>0.8-1.0 Very high _ Highly polluted areas

2.4. Statistical Analysis

The normality of the data was tested using the Kolmogorov-Smirnov test [40]. Spear-
man’s correlation analysis was applied to determine the relationship between the param-
eters. The clustering of sampling points was performed through a CA, using the Ward
method to evaluate the distance between clusters and the squared Euclidean distance as an
index of proximity or similarity. The DA was used to assess spatial and temporal variations
in water quality. The PCA/FA was performed to determine the factors and sources of
pollution that affect water quality. The Kaiser-Meyer—Olkin (KMO) sphericity and Bartlett’s
test [48] were previously applied to evaluate the effectiveness of the data in executing the
PCA/FA. Origin Pro 2022b software (OriginLab Corporation, Northampton, MA, USA)
was used, and 5% was used as the significance level.

3. Results and Discussion
3.1. Analysis of Water Quality Parameters

The physical water parameters (Figure 2) levels were high during the dry season,
especially for COL, CON, SAL, and TDS, with average values of 91.67 PCU, 907.17 uS/cm,
0.46 PSU, and 453.00 mg/L, respectively. The TUR reported high levels during the rainy
season, associated with increased flow and removal of particulate material [33,49]. The
CON, SAL, and TDS presented high levels in the populated zone; TEM reported values
with an increasing and varied trend during the rainy and dry seasons, respectively.

The chemical parameters of the water are shown in Figure 3; the DO reported levels
higher than 5.00 mg/L except for points P6 and P7 of the dry season, which show the
degree of pollution, demonstrating the behavior of rivers in urban areas [50]. The COD
reported higher values than the BODs; this would be due to the presence of degradable and
oxidizable organic substances [51]; however, a limitation of the COD test is its inability to
differentiate between biodegradable and biologically inert organic matter on its own [52];
regarding pH, neutral values were mostly reported. Although, slightly alkaline values
were reported in the populated zone; this parameter is related to the toxicity of some
compounds in the water [53]. The ALK and HAR reported high levels of up to 61.67 mg/L
and 212.65 mg/L, respectively, while the basin headwater showed a decreasing trend; the
variability of these parameters is subject to pH changes [50,54,55]. The presence of NITA
was reported only during the rainy season, especially in the populated zone. Regarding
the concentration of NITI and AMM, average values were 5.44 mg/L and 11.85 mg/L,
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Color (PCU)

Salinity (PSU)

4
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respectively. The CHL levels in the water were high in the basin headwater and downstream
of the populated zone; their presence may cause water and soil salinization, plant growth
inhibition [56], and corrosion [57]. The PHO and TP concentrations were high in the
populated zone with values of up to 3.53 mg/L and 0.99 mg/L, respectively; their increase
in the water led to a rise in nutrients, causing irreversible damage to aquatic life [58].
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Figure 2. Values of physical parameters: (a) Color, (b) Turbidity, (c¢) Conductivity, (d) Salinity,
(e) TDS, (f) Temperature.

The concentration of Br, Fe, Cr, and Pb (Figure 4) presented values of up to 0.28 ppm,
0.48 ppm, 64.00 ppb, and 1.20 ppb, respectively. The level of Cr and Pb indicates the extent
to which industrial activities have developed in the study zone [59-61].

Heavy metals such as Cr and Pb bioaccumulate in the body. The effects of toxicity
range from mild irritation to the eyes, nose, and skin to severe headaches, stomach pain,
diarrhea, hematemesis, vomiting, and dizziness, to organ dysfunctions such as cirrhosis,
necrosis, low blood pressure, hypertension, and gastrointestinal upset [62].

Regarding the Peruvian regulations, some chromium values exceed the limit (11 ppb),
while lead is within the limit (2.5 ppb). The level of Cr and Pb indicates the extent to which
industrial activities have developed in the study zone [59,61].

The presence of TCO and THC in the water (Figure 5) is indicative of pollution by
human or animal fecal waste [49]; levels were high, especially during the dry season and
in zones with higher population density, as a result of domestic effluents and the lack of
wastewater collection and treatment infrastructure.

In general, it was observed that most of the parameters are within the limit established
by Peruvian regulations [47], except for COL, DO, BODs, AMM, pH, TP, Cr, and THC.
However, no reference value exists for TUR, SAL, TDS, COD, NITI, PHO, CHL, ALK, Fe,
Br, and TCO (Table 4).
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Figure 3. Values of chemical parameters: (a) DO: Dissolved oxygen, (b) BOD: Biochemical oxy-
gen demand, (¢) COD: Chemical oxygen demand, (d) pH, (e) Hardness, (f) Alkalinity, (g) Nitrite,
(h) Nitrate, (i) Ammonia, (j) Chloride, (k) Phosphate, (1) Total phosphorus.

3.2. Correlation of Water Quality Parameters

Most of the parameters were correlated, except CHL (Figure 6). Values of r > 0.99 were
observed for CON, SAL, and TDS. These parameters would be associated with dissolved
ions in the water due to evaporation and mineral weathering [63,64]. Likewise, a significant
correlation was observed between COL and BODs (r = 0.71), TUR, and COD (r = 0.77),
which are related to the organic and inorganic load from agricultural and domestic sources;
similarly, for ALK and HAR (r = 0.92), which would be linked to the geology of the
study zone.
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Table 4. Statistical summary of water quality parameters of the high Andean River.
Parameters N Min Max Mean SD Ccv ESQ Units
Color 96 0.00 172.00 36.96 36.08 97.62 20 PCU
Turbidity 96 0.60 194.60 49.49 4597 92.89 NA NTU
Conductivity 96 27.00 917.00 302.68 290.68 96.03 1000 ps/cm
Salinity 96 0.01 0.46 0.15 0.14 95.36 - PSU
TDS 96 13.00 471.00 153.01 146.86 95.98 NA mg/L
Temperature 96 4.99 22.96 14.73 3.86 26.22 3 °C
DO 96 2.18 8.72 6.38 151 23.59 5 mg/L
BODs 96 0.00 292.00 32.27 62.20 192.77 10 mg/L
COD 96 0.00 330.00 57.02 77.77 136.39 NA mg/L
Nitrate 96 0.00 4.87 0.30 0.90 305.99 13 mg/L
Nitrite 96 0.00 10.08 1.16 2.55 220.67 NA mg/L
Phosphate 96 0.04 5.62 1.13 1.14 101.47 NA mg/L
Ammonia 96 0.00 20.89 2.05 4.72 229.88 0.88 mg/L
Chloride 96 6.10 80.20 29.05 17.49 60.19 NA mg/L
Alkalinity 96 2.90 74.40 30.12 19.24 63.86 NA mg/L
Hardness 96 6.30 256.60 78.78 61.09 77.55 NA mg/L
pH 96 7.13 9.34 7.97 0.44 5.57 6.59.0
Total phosphorus 96 0.00 1.40 0.37 0.34 92.35 0.05 mg/L
Lead 96 0.00 1.40 0.45 0.44 98.89 2.5 ppb
Chromium 96 0.00 83.00 18.70 18.09 96.73 11 ppb
Iron 96 0.01 0.61 0.31 0.17 55.91 NA ppm
Bromine 96 0.00 0.35 0.09 0.08 81.21 NA ppm
Total coliforms 96 000  406x10% 257x107  818x107  3.19 x 107 NA MPN/100 mL
Thermotolerant . 40 147,106 175x 105  3.02x105 172 x 102 2000 MPN/100 mL
coliforms

N is the data number; Min is the minimum value; Max is the maximum value; SD is the standard deviation; CV is
the coefficient of variation; ESQ: Environmental Standard Quality of the water, category 4: Conservation of the
Aquatic Environment; NA is Not applicable.
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Figure 6. Correlation of water quality parameters of the high Andean River; X is not significant.

3.3. Spatial Similarity and Site Clustering

The dendrogram showed the clustering of three groups with a similarity index of
60% (Figure 7). Cluster I comprised points P1, P2, and P3, which are low pollution (LP)
sites located in the headwater of the basin, where there is no anthropogenic presence.
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Cluster II included sites P4, P5, and P8, considered medium polluted (MP) sites, located in
zones dedicated to agricultural and livestock activities, and sites P6 and P7 were part of
Cluster III, which are highly polluted sites (HP), directly receiving domestic and industrial
wastewater discharges.

)
) ]’

Cluster I
Low pollution

Ly

Cluster II
Medium pollution

Cluster I11

v5

< >

Figure 7. Dendrogram of sampling points of the high Andean River.

3.4. Spatial and Season Variation of River Water Quality

The spatial DA indicated that CON, NITI, HAR, Pb, Cr, and TCO are the parameters
responsible for spatial variation (Figure 8). The evaluation showed that water CON was
low in the LP zone with significant spatial variations, indicating that the dissolution of
geological soil components and organic and inorganic substances introduced to the river
channel caused an increase in water conductivity in the MP and HP zone. Likewise, the
MP and HP sites reported high concentrations of HAR associated with cations in the
water due to the study zone’s lithological origin and geological complexity [65]. The
concentrations of Pb and Cr were high in the MP and HP zones, respectively, which is
related to wastewater from mining and agricultural activities developed in the zone. This
behavior is characteristic of zones of anthropogenic activity [59-61], while the presence of
these metals in the LP zone could be due to their natural form in rocks or surface mineral
grains that are mobilized by natural means or artificial recharge [66,67]. The presence of
high concentrations of NITT in the MP zone would be associated with crop residues and
nitrogen fertilizers [68,69]. The TCO levels were high at the HP zones, suggesting a critical
level of microbial pollution. The spatial relationships between the variables showed more
significant environmental pollution problems in the PM and HP zones.
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Figure 8. Spatial variations of: (a) Conductivity, (b) Hardness, (c) Lead, (d) Chromium, (e) Nitrite,
(f) Total coliforms.

The temporal AD showed that TDS, ALK, Br, and TCO are responsible for the vari-
ations (Figure 9), being higher in the dry season due to the concentration of organic and
inorganic substances present in the water in a natural or anthropic form [50,70-74].
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Figure 9. Season variations of: (a) TDS, (b) Alkalinity, (c) Bromine, (d) Total coliforms.

3.5. Identification of Source of Pollution

The KMO sphericity analysis was 0.62, and Bartlett’s test was significant (p = 0.00);
therefore, the data are adequate to reduce the dimensionality of the information by PCA /FA.
The PCA/FA with a normalized Varimax rotation identified three factors, which explained
66.85% of the total variance (Table 5). The first factor (F1) explained 38.73% of the total
variance, presenting strong positive loadings (>0.70) for CON, SAL, TDS, ALK, HAR, Br,
TP, and Pb. This F1 is related to natural sources of dissolution of geological components
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of the soil, especially inorganic ones such as anions and cations dissolved in the water
due to the mineral weathering process or anthropogenic sources [32,75]. In addition,
a Spearman’s correlation test applied to environmental parameters showed that TDS
was significantly correlated with SAL, ALK, HAR, Br, TP, and Pb, indicating that these
components are the principal source of TDS. The second factor (F2) accounted for 16.22%
of the total variance, with moderate loads for COL, BODs, TCO, and THC and a negative
contribution of DO to this factor. This F2 represents the contributions of nutrients and
organic matter from untreated domestic wastewater, effluents, and agricultural runoff. The
negative contribution of DO to this factor is due to the increase in nutrients that raises
the concentration of organic matter; therefore, the degradation of organic matter reduces
the DO concentration [6,76]. The third factor (F3) shows 11.91% of the total variance and
presents a heavy positive load for TUR, COD, and Cr. This F3 represents the sediments
coming from erosion, suspended solids, and urban runoff responsible for the TUR of the
water and a high concentration of COD; the contribution of Cr to this factor is an indicator
of pollution from industrial activities [61].

Table 5. Factor loadings (Varimax normalized).

Parameters F1 F2 F3
COL —0.03 0.87 * 0.19
TUR 0.22 0.06 0.85*
CON 0.94 * 0.30 0.03
SAL 0.95* 0.29 0.04
TDS 0.94 * 0.30 0.03
TEM 0.52 0.56 0.19

DO 0.11 —0.72 0.08
BODs 0.17 0.89 * 0.04
COD 0.24 0.17 0.73 *
NITA —0.08 -0.18 0.66
NITI 0.58 0.22 —0.28
PHO 0.46 0.60 —0.11
AMM 0.39 0.82* —0.09
CHL 0.43 -0.11 —-0.51
ALK 0.83* 0.03 0.40
HAR 0.86 * 0.04 0.15

pH 0.32 -0.26 0.00

TP 0.70 * 0.14 0.08

Pb 0.70 * —0.06 0.33

Cr 0.09 0.36 0.70 *

Fe -0.21 0.17 —0.45
Br 0.75* 0.17 0.17
TCO 0.17 0.92* —0.09
THC 0.32 0.86 * 0.23
Eigenvalue 9.29 3.89 2.86
%Total variance 38.73 16.22 11.91
Cumulative % 38.73 54.95 66.85

* Indicates factor loading > 0.7.

3.6. Identification of Sources of Pollution

The results of the weights were calculated from Equation (1) and shown in Table 6.
The factor loads were grouped into two sources of contamination. The inorganic source
showed that CON presented the most significant weight, followed by Pb and Cr. While the
organic source revealed that the BOD5, COL, and THC presented higher weights, followed
by AMM, DO, and TP.
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Table 6. Weights of water quality parameters.
Source of Pollution Parameters Factor Loading Weight (W;)
CON 0.94 0.40
Inoreanic Pb 0.70 0.30
& Cr 0.70 0.30
Total 2.34 1.00
DO 0.72 0.15
BODs 0.89 0.18
AMM 0.82 0.17
Organic TP 0.70 0.14
COL 0.87 0.18
THC 0.86 0.18
Total 4.86 1.00

Other studies obtained the relative weights by combining physical, chemical, and
microbiological parameters; for example, Khanoranga and Khalid [75] combined 21 param-
eters to calculate the relative weights, weighting the values according to the WHO standard
to calculate the groundwater quality index. Dimri [49] used 11 parameters according to the
drinking water quality standard to calculate the relative weights and calculated the water
quality index for the Ganga River.

The values of the nominal reason are shown in Table 7. The nominal reason represents
the scale of assessment of water contamination, which was obtained by dividing the
concentration observed by the concentration regulated in the regulations. In terms of
the evaluation, it was possible to appreciate values close to one, especially for TP, THC,
BODs, and chromium. Regarding temporality, the dry season showed high classification
scales, which would be associated with the low flow of the river water that concentrates
the pollutants. Furthermore, Khanoranga and Khalid [75] applied the quality rating scale
to obtain a groundwater quality index.

Table 7. Nominal reason water quality parameters.

Sampling Points Season DO BODs AMM TP COL THC CON Pb Cr
P1 Rainy 0.84 0.14 0.04 0.27 0.30 0.00 0.03 0.00 0.20
P2 Rainy 0.83 0.15 0.01 0.33 0.30 0.00 0.03 0.00 0.89
P3 Rainy 0.81 0.13 0.00 1.00 0.31 0.00 0.01 0.00 1.00
P4 Rainy 0.82 0.26 0.15 1.00 0.30 1.00 0.05 0.25 1.00
P5 Rainy 0.81 1.00 0.08 1.00 0.31 1.00 0.03 0.20 1.00
P6 Rainy 0.85 1.00 0.12 1.00 0.29 1.00 0.05 0.15 1.00
p7 Rainy 0.73 1.00 0.66 1.00 0.34 1.00 0.07 0.15 1.00
P8 Rainy 0.67 1.00 0.41 1.00 0.37 1.00 0.03 0.27 1.00
P1 Dry 0.78 0.00 0.21 1.00 0.32 0.00 0.01 0.04 0.26
P2 Dry 0.72 0.00 0.02 1.00 0.35 0.00 0.02 0.01 0.67
P3 Dry 0.65 1.00 0.07 1.00 0.39 1.00 0.02 0.08 0.71
P4 Dry 0.87 1.00 1.00 1.00 0.29 1.00 0.08 0.36 1.00
P5 Dry 0.61 1.00 1.00 1.00 0.41 1.00 0.03 0.33 1.00
P6 Dry 1.00 1.00 1.00 1.00 0.20 1.00 0.09 0.30 1.00
p7 Dry 1.00 1.00 1.00 1.00 0.22 1.00 0.04 0.25 1.00
P8 Dry 0.62 0.70 1.00 1.00 0.41 1.00 0.01 0.48 1.00

The evaluation of water quality is shown in Figure 10. It was observed that the OPI
values ranged from 0.25 to 0.78 during rains, indicating “low” to “high” pollution, and from
0.35 to 0.86 during the dry season, meaning “low” to “very high” pollution, evidencing
slight anthropogenic incidence and highly contaminated areas, especially in the populated
zone, which would be related to the presence of organic substances and decomposing
plant material from domestic and agricultural activities [6,49,76,77]. The IPI presented
mild biogenic contributions and notable anthropic activity in the populated zone, with
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values that fluctuated between 0.07 and 0.39 during the rainy season, indicating “none”
and “low” pollution, and between 0.09 and 0.45 during the dry season, indicating “none”
to “medium” pollution; this index would be indicative of industrial activities developed in
the zone [59-61,66,67].
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Figure 10. Water pollution index of the high Andean River.

4. Conclusions

The study applied different multivariate statistical techniques to evaluate spatial and
temporal variations and identify possible sources of contamination of surface water quality
in the Chumbao sub-basin.

The AC grouped the eight sampling points into three seasonal groups with identical
water quality characteristics. The DA substantially reduced both temporal and spatial data,
and the AF/PCA allowed extracting and recognizing the factors responsible for changes in
water quality.

The parameters with the most significant impact on water quality were identified,
which allowed the formulation of the IPI constructed from the parameters CON, Cr, and Pb,
and the OPI with the parameters DO, BOD5, AMM, TP, COL, and THC. The water quality
of the high Andean River reported pollution levels between “none” and “medium” for the
IPI and between “low” and “very high” for the OPI. The proposal of an ICO provides a
water quality management instrument.

The indices can be applied to high Andean rivers with similar characteristics located at
an altitude of at least 2500 m. Finally, the indices can be used as a management instrument
to assess water quality.
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