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Abstract: The Eastern Black Sea Region is regarded as the most prone to landslides in Turkey due
to its geological, geographical, and climatic characteristics. Landslides in this region inflict both
fatalities and significant economic damage. The main objective of this study was to create landslide
susceptibility maps (LSMs) using tree-based ensemble learning algorithms for the Ardeşen and
Fındıklı districts of Rize Province, which is the second-most-prone province in terms of landslides
within the Eastern Black Sea Region, after Trabzon. In the study, Random Forest (RF), Gradient
Boosting Machine (GBM), CatBoost, and Extreme Gradient Boosting (XGBoost) were used as tree-
based machine learning algorithms. Thus, comparing the prediction performances of these algorithms
was established as the second aim of the study. For this purpose, 14 conditioning factors were used to
create LMSs. The conditioning factors are: lithology, altitude, land cover, aspect, slope, slope length
and steepness factor (LS-factor), plan and profile curvatures, tree cover density, topographic position
index, topographic wetness index, distance to drainage, distance to roads, and distance to faults. The
total data set, which includes landslide and non-landslide pixels, was split into two parts: training
data set (70%) and validation data set (30%). The area under the receiver operating characteristic
curve (AUC-ROC) method was used to evaluate the prediction performances of the models. The AUC
values showed that the CatBoost (AUC = 0.988) had the highest prediction performance, followed by
XGBoost (AUC = 0.987), RF (AUC = 0.985), and GBM (ACU = 0.975) algorithms. Although the AUC
values of the models were close to each other, the CatBoost performed slightly better than the other
models. These results showed that especially CatBoost and XGBoost models can be used to reduce
landslide damages in the study area.

Keywords: landslide susceptibility map; machine learning; RF; GBM; CatBoost; XGBoost

1. Introduction

Natural events and subsequent disasters constitute an important problem for Turkey
and the whole world. Especially in recent years, when factors such as the rapid increase
in population; increasing land need and subsequent unplanned and improper land use;
global climate change; and deforestation are taken into consideration, there has been
a significant increase in the number of natural events that turn into disasters, and it is
predicted that this increasing trend will continue in the future [1–3]. The Sixth Assessment
Report of the Intergovernmental Panel on Climate Change emphasized that “unplanned
rapid urbanization is a significant risk where cities and settlements expand into lands prone
to natural disasters such as coastal flooding or landslides” [4]. In this context, landslides are
the type of disaster with the highest potential for damage and loss of life after earthquakes,
considering the long-term averages worldwide [1,5]. The most effective way to deal with
the threat of landslides and to reduce their negative impacts on human life, the environment,
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and the economy is to identify hazardous and risky areas and thus produce robust, up-
to-date, and trustworthy landslide susceptibility maps (LSMs) [3]. According to Pardeshi
et al. [6], if enough effort is paid to investigate trigger factors and determine high-risk
areas, 90% of landslide-related losses can be managed and mitigated. The difficulty in
predicting landslides makes it important to comprehend the factors that cause landslides
and to identify and map areas vulnerable to landslide occurrence in the future [7,8]. LSMs
include spatial rather than temporal and magnitude estimates of landslides [9] and are an
important tool to prevent or mitigate disasters, as well as for environmental management
and urban planning [5,8,10,11].

The methods used in the generation of LSMs can be categorized into two groups:
qualitative approaches (such as Analytic Hierarchy Process—AHP), which are mostly
based on expert knowledge, and quantitative approaches (such as logistic regression and
the frequency ratio method), which are based on statistical theories or modeling [8,11,12].
Recently, the interest in machine learning (ML) techniques due to the developments in
computer technologies has led to the use of ML algorithms in the production of LSMs and
thus allowed us to obtain high-precision, more-accurate, and reliable results. As a matter
of fact, Tien Bui et al. [7] reported that forecasting with high-performance models is very
important in controlling landslide-prone areas. The main advantage of ML techniques
over traditional statistical methods is their ability to deal with high-dimensional and
complex nonlinear data sets and thus effectively solve the nonlinear nature of geographical
problems [12]. The fundamental idea behind ML approaches is to investigate the functional
link between existing landslides and conditioning factors [13].

During the past decade, hundreds of studies have utilized ML algorithms for landslide
susceptibility (LS) evaluation. Looking at the previous studies using ML algorithms, it is
seen that some studies produced LSMs with a single ML algorithm [14–17], while some
studies produced LSMs using multiple ML algorithms together [18–20] and compared their
performances. In these studies, algorithms such as Support Vector Machines (SVM) [21,22],
K-Nearest Neighbor (KNN) [23,24], Naïve Bayes (NB) [25,26], Artificial Neural Network
(ANN) [27,28], Multilayer Perceptron (MLP) [7,29], Classification and Regression Tree
(CART) [30,31], Random Forest (RF) [16,32], Adaptive Boosting (AdaBoost) [33,34], Gradi-
ent Boosting Machine (GBM) [28,35], Light Gradient Boosting Machine (LightGBM) [36,37],
Natural Gradient Boosting (NGBoost) [3], Extreme Gradient Boosting (XGBoost) [17] and
categorical boosting (CatBoost) [36,38] are frequently used. Algorithms such as RF, GBM,
LightGBM, AdaBoost, NGBoost, CatBoost, and XGBoost that use ensemble methods such
as bagging, stacking, or boosting are called tree-based ensemble learning algorithms [36,39].

When previous studies in the literature are examined, it is seen that ML algorithms
produce successful results in the production of LSMs; however, the performance of the
algorithms varies depending on different topographies, geological formation, climate, and
geographies, and there is disagreement over the ideal paradigm for LS mapping [7,11,40,41].
Therefore, it is very important to test different ML algorithms in different geographies
and compare their performances in order to contribute to the LS literature. On the other
hand, Merghadi et al. [23] noticed that tree-based ensemble learning algorithms outperform
other ML algorithms. For example, in the LS mapping study conducted by Akinci and
Zeybek [19], logistic regression (LR), SVM, and RF algorithms were compared, and it was
determined that the RF algorithm gave better prediction results than other algorithms.
Merghadi et al. [42] examined five landslide susceptibility models, including ANN, LR, RF,
SVM, and GBM, and determined that GBM had the best predicting performance, followed
by RF. In the study carried out by Sahin [35], the performances of GBM, RF, and XGBoost
algorithms were compared. The researcher concluded that XGBoost is the optimum model
when compared to other ensemble models.

Deep learning (DL) is a current trending approach in LS mapping in addition to ML.
Convolutional Neural Networks (CNNs), Deep Belief Networks (DBNs), Deep Resid-
ual Networks (ResNets), and Recurrent Neural Networks (RNNs) have all been em-
ployed successfully in LS mapping applications [29,43–46]. It is possible to find LS map-
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ping research that claims DL methods beat ML algorithms like ANN, MLP, SVM, and
RF [7,43,47,48]. There has not been much research comparing DL algorithms to ad-
vanced ML algorithms like AdaBoost, CatBoost, LightGBM, and XGBoost. According
to Lv et al. [45], boosting and stacking learning models outperform deep learning models
such as DBN, CNN, and ResNet. This example demonstrates that DL algorithms do not
outperform ensemble learning algorithms in LS mapping, and the argument over the best
algorithm remains.

Trabzon and Rize are the two provinces in Turkey with the highest number of land-
slides. These two provinces account for around 13% of all landslides in Turkey. Therefore,
the first aim of this study is to produce LSMs of the Ardeşen and Fındıklı districts of
Rize Province by utilizing tree-based ensemble learning algorithms including RF, GBM,
CatBoost, and XGBoost. The second aim of this research is to compare the predictive
capabilities of these models. These two districts were selected as the study area for the
following reasons: (i) no previous LS mapping study has been conducted with ML algo-
rithms in the study area, (ii) the study area is one of the most landslide-prone regions in
Turkey, (iii) researchers reported that the landslide risk remains in these districts, and there
is a need for accurate and reliable LSMs [49,50], (iv) the slope in the region is high and
shows sudden changes, (v) Rize is the province with the highest rainfall in Turkey and
its geological and geomorphological characteristics as well as its climatic characteristics
are suitable for landslide formation. While traditional ML algorithms are widely used
in LS mapping applications, there have been few studies that examine the performance
of ensemble learning algorithms. As stated by Yu et al. [34], more studies are needed to
compare the performances of ensemble learning algorithms. To the best of our knowledge,
no study has compared the performance of the four algorithms employed in this study
when used simultaneously. As a result of this circumstance, our study will be able to
contribute to the LS mapping literature.

2. Materials and Methods
2.1. Study Area

The Ardeşen and Fındıklı districts of Rize Province, in the eastern Black Sea Region,
are the focus of this research (Figure 1). The overall area of the two districts, lying between
40◦57′37.42′′–41◦19′37.57′′ north latitude and 40◦57′41.5′′–41◦23′44.21′′ east longitude, is
76,001.20 ha. In the research area, where the average elevation is 1169.25 m, the elevation
varies between 0 and 3497.38 m. The slope in the study area, a very hilly topography, is
between 0◦ and 75.82◦. The slope is below 10◦ in 5.83% of the study area, between 10◦ and
20◦ in 14.51%, and above 20◦ in 79.66%.

Rize has cool summers, mild winters, and a rainy climate in all seasons. According
to the climate classification of Thornthwaite [51], Rize has a very humid, second-degree
mesothermal climate, no or very little water deficit, a summer evaporation rate of 50.4%,
and a climate type close to the ocean climate (A,B’2,r,b’4) [52]. Average temperatures in Rize
vary between 6.8 ◦C and 23.3 ◦C. Based on measurements made by the General Directorate
of Meteorology (GDM) from 1928 to 2022, the lowest average temperature is 3.7 ◦C in
February and the highest average temperature is 26.5 ◦C in August. In Rize, where the
average sunshine duration is 4.2 h, the average annual total precipitation is 2302 mm [53].
According to researchers [49,54,55], excessive and intense precipitation is the primary cause
of landslides in the Ardeşen and Fındıklı districts, as well as in Rize in general.

According to the CORINE 2018 land cover data set (Copernicus Land Monitoring
Service, European Environment Agency, EU), artificial surfaces cover 0.96% of the study
area, agricultural areas cover 21.12%, forest covers 59.27%, natural grass-land covers 8.07%,
transitional woodland/shrub covers 2.02%, bare rocks cover 4.94%, sparsely vegetated
areas cover 2.75%, and water bodies cover 0.87%. According to Karsli et al. [54], tea gardens
cover 90% of the agricultural land in Ardeşen. Tea cultivation is the primary source of
income for residents of the Ardeşen and Fındıklı districts. In the study conducted by
Yalcin [50], it was stated that 61.09% of the landslides in Ardeşen district occurred in tea
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gardens. Also, Akgun et al. [49] stated that 48.78% of the landslides in Fındıklı occurred in
residential and agricultural areas.
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Figure 1. Location of the study area.

Figure 2 contains the study area’s geological map. There are nine lithological units in
the research area according to this map at a 1/100.000 scale, which was collected from the
General Directorate of Mineral Research and Exploration (GDMRE). Hamurkesen Forma-
tion (Jh), which consists of Triassic-aged basaltic, andesitic, dacitic lavas and pyroclastics
and rock types such as sandstone, marl, limestone and shale, is the oldest unit in the
research area. The Santonian-aged Kızılkaya Formation (Kk) consists of dacite, rhyolite,
rhyolodacitic lavas and pyroclastics; the Campanian-Maastrichtian-aged Çağlayan Forma-
tion (Kça) consists of basaltic, andesitic lavas and pyroclastics and limestone, mudstone,
sandstone, marl and tuff interlayers; and the Maastrichtian-aged Çayırbağ Formation (Kçb)
consists of rhyolite, rhyolite, rhyodacite, dacitic lavas and pyroclastics. These volcanic
units are overlain by the Maastrichtian-Danian (Early Palaeocene)-aged Cankurtaran For-
mation (KTc) consisting of sandy limestone, micritic limestone, tuff, marl and volcanic
sandstone. These units were cut by the Kaçkar granitoid-I (Kk1), which is composed of
acidic and basic intrusive rocks that continued its development during the Late Cretaceous
and completed its intrusion at the end of the Palaeocene. Early-Middle Miocene-aged
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Pazar formation (Tmp) consists of sandstone, marl, pebble and claystone succession. The
Plio-Quaternary-aged Hamidiye formation (plQh) consisting of sand and clay lenticular
terrestrial conglomerate and Quaternary-aged alluvium (Qal) are the youngest units in the
study area [56].
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2.2. Landslide Inventory Map

In ML-based landslide susceptibility assessment, landslide inventory maps (LIMs)
are needed for the training and validation of the models. LIMs are maps that provide
information about the spatial distribution, activity, type, and, if known, the time of oc-
currence of landslides in a certain region [57]. The GDMRE provided digital landslide
inventory data for the research area. There are 76 landslide polygons in this 1/25.000 scale
data set. The total area of landslide polygons ranging from 0.74 ha to 54.67 ha is 621.06 ha.
According to GDMRE, 16 of the landslides are classified as inactive landslides, 30 as active
landslides, and the remaining 30 as active flow. According to Varnes [58], landslides in
the study area are mostly of the flow and rotational slide type. The main factor triggering
the occurrence of landslides in Rize Province is excessive and heavy rainfall [55,59]. The
other factor causing landslides is the significant weathering of lithological units. Yalçın [59]
found that about 95% of the landslides in Ardeşen happen in rocks that have been highly
and fully weathered. Landslide polygons in the study area are represented by 62,089 pixels
at 10 m spatial resolution. In parallel with previous studies in the literature, landslide
pixels were divided into two parts: training data set (70%) and validation/test data set
(30%) [28,46,60–62].

2.3. Data Preparation for Landslide Conditioning Factors

The literature, the study area’s local characteristics, and the availability of spatial data
were all taken into account while deciding on the conditioning factors employed in the
study. Although there is much research in the literature examining the relationship between
landslide factors and landslides in different geographies, there is no universal guideline
for the selection of conditioning factors. A certain factor may play an important role in the
occurrence of landslides in one region, while it may not be important in another region.
As a result, the study area’s characteristics and accessible data should be considered while
determining the conditioning factors [5,16,63,64].
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Therefore, in this study, 15 conditioning factors affecting landslide formation were
identified by considering topographical, hydrological, geological, and some anthropogenic
effects. These factors include lithology, altitude, land cover, aspect, slope, slope length
and steepness factor (LS-factor), plan and profile curvatures, tree cover density (TCD),
topographic position index (TPI), topographic ruggedness index (TRI), topographic wetness
index (TWI), distance to drainage, distance to roads, and distance to faults (Figures 2–5).
TRI was excluded based on multicollinearity analysis, and the remaining 14 factors were
used in ML-based LS mapping models. Raster-based factor maps with a spatial resolution
of 10 m were produced by ArcGIS 10.5 and SAGA GIS 7.8.2 software.
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On the other hand, since the role and importance of conditioning factors in the for-
mation of landslides have been explained in detail in the literature [16,21,38,65,66], the
data source and characteristics of the conditioning factors used in this article are shortly
presented in Table 1.

Table 1. Description and data source of the conditioning factors.

Factors Source Scale/Resolution Sub-Classes Reference

Altitude (m) DEM 10 m

1 0–300 6 1500–1800

[31,67,68]
2 300–600 7 1800–2100
3 600–900 8 2100–2400
4 900–1200 9 2400–2700
5 1200–1500 10 2700–3497.38

Aspect DEM 10 m

1 Flat 6 South

[16,29,36,69]
2 North 7 South West
3 North East 8 West
4 East 9 North West
5 South East
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Table 1. Cont.

Factors Source Scale/Resolution Sub-Classes Reference

Distance to
drainage (m) DEM 10 m

1 0–100 6 500–600

[16,19,35,70]
2 100–200 7 600–700
3 200–300 8 700–800
4 300–400 9 800–900
5 400–500 10 900–1090.18

Distance to
faults (m)

GDMRE,
Türkiye 1:100,000

1 0–1000 6 5000–6000

[16,19,71,72]
2 1000–2000 7 6000–7000
3 2000–3000 8 7000–8000
4 3000–4000 9 8000–9000
5 4000–5000 10 9000–16,500.94

Distance to
roads (m)

digital road
network

(Basarsoft
Inc., Ankara,

Turkey)

10 m

1 0–200 6 1000–1200

[16,19,73,74]
2 200–400 7 1200–1400
3 400–600 8 1400–1600
4 600–800 9 1600–1800
5 800–1000 10 1800–8658.22

Land cover ESRI Land
Cover

10 m

1 Water 7 Built Area

[23,34,46,75]
2 Trees 8 Bare ground
3 Grass (Rangeland) 9 Snow/ice
5 Crops
6 Scrub/shrub

Lithology GDMRE,
Türkiye 1:100,000 Presented in Figure 2. [56]

LS-factor DEM 10 m

1 0.003–13.938 5 76.648–118.455

[40,67,76,77]
2 13.938–30.196 6 118.455–190.456
3 30.196–48.777 7 190.456–592.265
4 48.777–76.648

Plan
curvature

DEM 10 m
1 <0 (concave)

[3,69,78]2 0 (flat)
3 >0 (convex)

Profile
curvature

DEM 10 m
1 <0 (concave)

[3,69,78]2 0 (flat)
3 >0 (convex)

Slope (◦) DEM 10 m

1 0–5 6 25–30

[16,69,79,80]
2 5–10 7 30–35
3 10–15 8 35–40
4 15–20 9 40–45
5 20–25 10 45–75.82

TCD (%)

Copernicus
Land

Monitoring
Service

10 m

1 0–10 6 50–60

[26,81,82]
2 10–20 7 60–70
3 20–30 8 70–80
4 30–40 9 80–90
5 40–50 10 90–100

TPI DEM 10 m

1 −58.711–15.402 5 5.113–11.381

[3,35,83]
2 −15.402–6.854 6 11.381–20.499
3 −6.854–0.586 7 20.499–86.602
4 −0.586–5.113

TWI DEM 10 m

1 0.869–4.627 5 9.548–12.591

[19,35,84]
2 4.627–5.880 6 12.591–16.796
3 5.880–7.401 7 16.796–23.686
4 7.401–9.548
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2.4. Multicollinearity Analysis

In ML-based LS mapping studies, verifying the independence of factors from each
other and determining the proper factors for the model is usually performed by multi-
collinearity analysis [32,46]. Multicollinearity problems may cause misleading results and
the misinterpretation of model results by reducing the prediction accuracy of the applied
model [3,85]. With multicollinearity analysis, factors that are highly correlated and have a
similar effect on landslide occurrence are identified and removed from the model. The most
commonly used statistical indicators to determine multicollinearity are variance inflation
factor (VIF) and tolerance (TOL) [26,86,87]. Using the following Equation (1) [26,39,85] and
Equation (2) [26,43,65], TOL and VIF are calculated.

TOL = 1− R2
j (1)

VIF =
1

1− R2
j
=

1
TOL

(2)

where Rj is the correlation coefficient of a particular conditioning factor on the remaining
factors. Multicollinear factors should be excluded from the model if their VIF is larger than
10 or TOL is below 0.1 [39,43,65,88].

2.5. Model Validation

The last step of LS mapping studies is the validation of the models used in the
study [89]. Wei et al. [39] stated that the effectiveness and reliability of the models cannot
be evaluated scientifically without validation. The commonly used validation method in
LS mapping studies is the receiver operating characteristic (ROC) curve and area under
the ROC curve (AUC-ROC for short) approach [28,29,32,60,62]. The AUC value of the
ROC curve, which displays the true positive rate (TPR) and false positive rate (FPR) on the
Y and X axes, respectively, ranges from 0.5 to 1, and a value near 1 denotes outstanding
model performance [65]. According to Chen et al. [31], Jiao et al. [90], and Wu et al. [91],
the AUC value is generally classified five 5 ways: poor (0.5–0.6), average (0.6–0.7), good
(0.7–0.8), very good (0.8–0.9), and excellent (0.9–1). As in previous studies in the literature,
success rate and prediction rate curves are used in this study to evaluate the performance
of landslide susceptibility algorithms [22,92,93]. While the success rate curve is produced
using the training data set, the prediction rate curve is produced using the validation data
set [13,16].

2.6. Machine Learning Methods
2.6.1. Random Forest (RF)

One of the well-known tree-based machine learning algorithms used for classification,
regression, and clustering issues is RF, developed by Breiman [94]. RF, which is essentially
a collection of decision trees, is an ensemble learning method that combines the results
or predictions of decision trees in the forest to make an accurate and stable prediction.
The RF algorithm uses majority voting for classification and averaging for regression [95].
Combining the predictions from multiple decision trees in this way both reduces the
variance of the model and greatly improves the performance of the model. RF has two
hyperparameters: the number of trees (ntree) and the number of randomly selected features
or variables (mtry) to train each decision tree in the forest [35,39]. RF has been widely
and successfully used in susceptibility mapping studies for different types of natural
disasters [84,95,96]. In this study, the “rf ” method of the caret library [97] in R 4.2.2
software was used to implement the RF algorithm. For hyperparameter optimization, the
tuneLength approach was applied and the value of the ntree parameter was set to 100 (same
number of trees used as GBM’s and XGBoost’s default number of trees) and the value of
the mtry parameter was set to 11.
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2.6.2. Gradient Boosting Machine (GBM)

GBM, proposed by Friedman [98], is an ensemble learning method that combines
multiple weak learners in a sequential manner to form a strong learner. Unlike RF, which
builds trees independently and in parallel, GBM builds trees continuously, and each tree
improves the model’s performance by reducing mistakes from the preceding tree [11,29].
GBM has four main hyperparameters: number of trees (n.trees), learning rate (shrinkage),
maximum tree depth (interaction.depth) and the minimum number of observations in trees
(n.minobsinnode). In this study, the number of trees was set to 100 in order to make an
objective comparison with the XGBoost algorithm performed with default values. The
n.minobsinnode parameter was set to the default value (10). The grid search optimization
approach was used to determine the values of the interaction.depth and shrinkage parameters.
Grid search and random search are two strategies for optimizing hyperparameters in ML al-
gorithms [18,34,36,39]. The grid search optimization found the value of the interaction.depth
parameter to be 8 and the value of the shrinkage parameter to be 0.3. In this study, the “caret”
library [97] and the “gbm” method of this library were used for landslide susceptibility
modeling with GBM.

2.6.3. Extreme Gradient Boosting (XGBoost)

Extreme Gradient Boosting, or XGBoost for short, introduced by Chen and Guestrin [99],
is a supervised machine learning algorithm for regression and classification problems.
Designed to achieve faster and more-accurate predictions, XGBoost is an optimized version
of GBM [3,17]. The main idea of the XGBoost algorithm is to transform several weak
learners into stronger learners through multiple iterations to achieve better prediction
performance [17,39]. Unlike RF and GBM, XGBoost uses two additional techniques called
“shrinkage” and “column (feature) subsampling” to avoid the overfitting problem [99].
XGBoost has hyperparameters called “nrounds (maximum number of iterations or number
of trees), max_depth (maximum depth of the trees), eta (learning rate), gamma (regular-
ization parameter), colsample_bytree (number of features or variables supplied to a tree),
min_child_weight (minimum sum of instance weight needed in a child) and subsample (num-
ber of samples or observations supplied to a tree)” to improve the performance of the
model. Hyperparameters are important parameters that affect the accuracy, performance,
and speed of the model. In this study, default values of hyperparameters (nrounds = 100,
max_depth = 6, eta = 0.3, gamma = 0, colsample_bytree = 1, min_child_weight = 1, subsample = 1)
were used. The “xgbTree” method from the “caret” library was used to implement XGBoost
for this research [97].

2.6.4. Categorical Boosting (CatBoost)

CatBoost, an algorithm using binary decision trees first introduced in 2017, uses
ordered boosting to achieve high prediction accuracy [100]. Features such as GPU support
for fast training, high learning speed, better handling of categorical details, visualization
tools, overcoming gradient bias, and producing symmetric oblivious trees make CatBoost
different from other gradient boosting algorithms [38,101]. Kang et al. [102] reported that
CatBoost responds to the overfitting problem better than other gradient boosting algorithms.
In this study, the “catboost” library [103] in R 4.2.2 software was used to implement the
CatBoost algorithm. There are six commonly used hyperparameters in CatBoost. These
are depth, learning_rate, iterations, l2_leaf_reg, rsm, and border_count. The iterations, which
represent the maximum number of trees, are set to 100 to be compatible with other models.
The values of the other hyperparameters of the CatBoost algorithm were determined using
the grid search method. As a result of the grid search optimization, the value of depth
parameter was determined as 8, the value of learning_rate parameter was determined as 0.3,
l2_leaf_reg was determined as 0.1, rsm was determined as 0.95 and the value of border_count
parameter was determined as 16.
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3. Results and Discussion
3.1. Multicollinearity Analysis of Conditioning Factors

Multicollinearity analysis results for the conditioning factors used in this investigation
are presented in Table 2. According to the preliminary results, it was determined that there
was a high correlation between slope and TRI. Therefore, TRI was removed from the model,
and multicollinearity analysis was performed again with the remaining 14 factors. The final
results are summarized in Table 2, where we learn that the highest VIF value was 3.61071
and that there was no multicollinearity among these factors. Therefore, the 14 factors in
Table 2 were used to produce LSMs of the study area.

Table 2. Multicollinearity analysis results for landslide conditioning factors [34,39,83,87].

Conditioning Factors VIF TOL

Altitude (m) 2.29424 0.43587
Aspect 1.04426 0.95762
Distance to drainage (m) 1.10645 0.90379
Distance to faults (m) 1.18195 0.84606
Distance to roads (m) 2.25385 0.44369
Land cover 1.17820 0.84875
Lithology 1.11000 0.90090
LS-factor 3.01434 0.33175
Plan curvature 1.31931 0.75797
Profile curvature 1.15036 0.86929
Slope (◦) 3.61071 0.27695
TCD 1.13473 0.88126
TPI 1.85399 0.53938
TWI 3.13184 0.31930

3.2. Landslide Susceptibility Maps

The landslide susceptibility index values calculated by RF, GBM, CatBoost, and XG-
Boost algorithms were categorized into five classes (very low, low, moderate, high and very
high) using the “natural breaks (jenks)” algorithm [104], and LSMs of the study area were
obtained (Figure 6). When the current studies in the literature are examined, it is seen that
landslide susceptibility index values are mostly classified with the “natural breaks (Jenks)”
algorithm [28,38,39,69].

In order to compare the produced LSMs, the areal distributions of landslide suscep-
tibility classes were calculated. In this context, the areal distributions of the landslide
susceptibility classes of the four models in percentage are given in Figure 7. It was deter-
mined according to the LSM produced by the RF model that 62.17% of the study area is
very low, 19.27% is low, 9.55% is moderate, 5.45% is high and 3.56% is very high in terms
of susceptibility to landslides. In the LSM produced according to the GBM model, the
proportion of areas susceptible to very low, low, moderate, high, and very high degrees
was determined as 20.76%, 40.48%, 19.85%, 12.06% and 6.85%, respectively. In the CatBoost
model, it was calculated that 13.40% of the study area was very low, 52.48% was low,
18.47% was moderate, 10.29% was high, and 5.36% was very high in terms of landslide
susceptibility. In the LSM produced according to the XGBoost model, the ratio of very low,
low, moderate, high and very high landslide susceptibility areas was calculated as 14.08%,
53.77%, 17.53%, 9.36% and 5.26%, respectively. It is clearly seen in Figure 7 that there are
significant differences in the distribution of landslide susceptibility classes. It is thought
that this difference in susceptibility classes is due to the differences in the mechanisms or
approaches used by the models while creating the decision trees.
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Figure 7. Percentage of susceptibility classes for machine learning models.

In the study area, the proportion of areas with very high landslide susceptibility varies
between 3.56% and 6.85%. Considering the sum of the areas susceptible to high and very
high landslides, it was seen that GBM ranks first with a rate of 18.91%, followed by CatBoost
(15.65%), XGBoost (14.62%) and RF (9.01%). It was determined in the LS mapping study
carried out by Akgun et al. [49] using the likelihood ratio model in the Fındıklı region that
the ratio of areas with very high landslide susceptibility was 2.88%.

When the LS maps were visually examined, it was seen that areas with high and very
high landslide susceptibility were located in the north and northwest parts of the study area,
while low and very low landslide-susceptible areas were located in the south and southeast
of the study area. The fact that the settlement and tea farming areas were mostly located in
the northern parts close to the Black Sea coast has caused the landslide-susceptible areas to
intensify in the north.
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An accurate LS map should be able to accurately classify the existing landslides in
the study area. When overlapping the LS maps produced in the study with the landslide
inventory map, the distribution of landslide pixels according to the susceptibility classes in
the LS maps was determined. The landslide pixel ratios coinciding with high and very high
landslide-susceptible areas were determined as 99.64%, 99.5%, 98.38%, and 96.42% for the
CatBoost, XGBoost, GBM, and RF models, respectively (Table 3). This evaluation revealed
that the LS map produced with CatBoost was slightly more accurate than other models.

Table 3. Comparison of the ML models’ results.

ML Model Susceptibility
Level

Area
Percentage

(%)

Landslide
Pixel

Landslide
Percentage

(%)

Frequency
Ratio

RF

Very low 62.17 31 0.049 0.0008
Low 19.27 501 0.807 0.0419

Moderate 9.55 1695 2.729 0.2858
High 5.45 5988 9.646 1.7699

Very high 3.56 53,874 86.769 24.3733

GBM

Very low 20.76 2 0.003 0.0001
Low 40.48 47 0.076 0.0019

Moderate 19.85 960 1.546 0.0779
High 12.06 5906 9.512 0.7887

Very high 6.85 55,174 88.863 12.9727

XGBoost

Very low 14.08 0 0 0
Low 53.77 7 0.011 0.0002

Moderate 17.53 306 0.493 0.0281
High 9.36 3383 5.449 0.5822

Very high 5.26 58,393 94.047 17.8796

CatBoost

Very low 13.40 0 0 0
Low 52.48 5 0.008 0.0001

Moderate 18.47 219 0.353 0.0191
High 10.29 3328 5.360 0.5209

Very high 5.36 58,537 94.279 17.5894

3.3. Landslide Susceptibility Map Rationality

The rationality of the landslide susceptibility maps was evaluated using the data
in Table 3. As stated by Guo et al. [105], the rationality of the susceptibility map can be
assessed as follows: “(i) landslides should be located in areas of high susceptibility as much
as possible; (ii) areas of very high susceptibility in the susceptibility map should be as small
as possible”.

As a whole, the landslide susceptibility maps derived from ML models displayed a
similar trend. As susceptibility increased, the frequency ratios tended to increase as well. In
all models, the class with the highest likelihood of landslides was found to have the highest
incidence rate. The data in Table 3 demonstrate that the produced landslide susceptibility
maps were plausible and that the percentage of landslide occurrence increased from regions
with very low susceptibility to very high susceptibility. In contrast, landslide susceptibility
maps derived from the CatBoost and XGBoost models appear to be more reasonable than
those derived from other models. Considering the first criterion stated by Guo et al. [105],
the fact that 99.64% of the landslides in CatBoost are in the high and very high sensitivity
classes propels this model to the forefront. Regarding the second criterion, the XGBoost
model comes out on top because it has the lowest rate (5.26%) of severely landslide-prone
regions. Nevertheless, the difference between both criteria for CatBoost and XGBoost is
relatively small, indicating that these models are reasonable, applicable, and rational for
the study area.
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3.4. Landslide Conditioning Factors Analysis

One of the most important analyses in landslide susceptibility assessment with ML
models is the determination of the importance of conditioning factors used in the mod-
els [11]. In LS modeling, there may be some conditioning factors that have little or no effect
on landslide formation [89]. For this study region, the contributions or importance levels
of conditioning factors to the modeling are displayed in Figure 8. In this study, the caret
library was used in R to implement LS models. The caret library provides functions that
report the importance of variables in the training data. Figure 8 was produced using the
varImp function, which is one of the built-in functions in the caret package. This function
displays the importance of variables by scaling them to a maximum value of 100 unless
the scale argument is set as “false” [97]. While the most important factor in RF, GBM, and
XGBoost models is slope, the most important factor in the CatBoost model is distance to
faults. In the study conducted by Kasahara et al. [106] in the Güneysu district of Rize,
where the effects of land use on landslides were investigated, it was determined that the
probability of landslides occurring in tea gardens in Rize was higher than in forest areas.
In addition, it was determined that the probability of landslides occurring on high slopes
(where the slope is between 30◦–40◦) in tea farming areas is 3.5 to 9.1 times higher than in
forested areas. In the rainfall-induced LS mapping study conducted by Ye et al. [38] in the
Fujian Province of China, the importance of conditioning factors was determined using the
CatBoost algorithm, and distance to faults was determined as the most important factor
affecting landslides among all factors. Figure 8 shows that slope, distance to faults, and
altitude are the three most important factors for the GBM, CatBoost, and XGBoost models.
On the other hand, plan and profile curvatures were found to be the least-important factors
for all models. In the LS mapping study conducted by Youssef and Pourghasemi [66] in the
Abha basin of Saudi Arabia, the researchers found that plan and profile curvature and land
use/land cover factors were the least-effective factors. Similarly, in the study conducted by
Kavzoglu and Teke [3] in Macka district of Trabzon Province in Turkey, elevation and slope
were found to be the most effective factors, while plan curvature and NDVI were found to
be the least-effective factors. Shahzad et al. [11] attributed the different maps produced by
landslide susceptibility models to the different contributions of the factors in the models.

3.5. Models Validation and Comparison

Landslide susceptibility maps produced using different ML models need to be val-
idated in order to be accepted in the scientific arena and to be used by the authorities in
mitigation studies. In many studies in the literature, it has been emphasized that unvali-
dated LSMs have no significance and do not carry any scientific value [83,107,108]. In this
study, the receiver operating characteristic (ROC) curve and the area under the ROC curve
(AUC) approach were used to evaluate the models and compare their performance. In
this study, success rate and prediction rate curves were generated using the training and
test data set, respectively. The success rate curve is used to explain how well the landslide
susceptibility models classify the existing landslide areas in the training data set, while
the prediction rate curve is used to explain how well the models can predict unknown
landslides or future landslides [109–111]. When the success rate curve shown in Figure 9 is
analyzed, it is seen that the AUC value of GBM is 0.977 and the AUC value of RF is 0.989.
The AUC values of CatBoost and XGBoost models, which have the highest AUC values,
are 0.99.
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Considering the AUC values of the prediction rate curves, it was determined that all
models showed excellent performance for the study region (Figure 10). However, it is seen
that the CatBoost algorithm, which has an AUC value of 0.988, performs slightly better
than other models. In the studies published by Dorogush et al. [112] and Prokhorenkova
et al. [100], it is also stated that CatBoost outperforms other gradient boosting algorithms.
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Sahin [35] compared the performances of GBM, CatBoost, XGBoost, and Light Gradient
Boosting Machine (LightGBM) algorithms in a landslide susceptibility modeling study
and concluded that CatBoost showed superior performance compared to other gradient
boosting algorithms. Finally, in the rainfall-induced LS mapping study by Ye et al. [38],
where SVM, RF, CatBoost, LightGBM, and XGBoost algorithms were used, CatBoost showed
the best performance with an AUC value of 0.917, while RF showed the lowest performance
among all algorithms used with an AUC value of 0.848.
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4. Conclusions

In this study, we aimed to produce LS maps of the Ardeşen and Fındıklı districts of Rize
Province by utilizing four tree-based ensemble learning algorithms, and the performances
of these models were evaluated. The study area is located in the Eastern Black Sea Region,
which receives the highest rainfall in Turkey. As stated in the literature, the main factor
triggering the occurrence of landslides in the study area is excessive and heavy rainfall.
Tree-based ensemble learning ML algorithms provide more-accurate prediction results by
combining predictions from many decision trees. Therefore, there is a tendency towards
ensemble learning algorithms in LS mapping studies. In this regard, tree-based ensemble
learning algorithms such as RF, GBM, CatBoost, and XGBoost were used in this study.
Considering the topographic, geological, and environmental conditions of the study area
and previous studies in the Eastern Black Sea Region, 14 landslide conditioning factors
were used in the LS models. The models’ performances were evaluated using the AUC-
ROC approach. During the validation phase, it was discovered that the AUC values of the
four models were extremely similar. The AUC values in the prediction rate curve used to
evaluate the prediction capability of the models range from 0.975 and 0.988. CatBoost has a
somewhat greater prediction capacity than other models, based on the characteristics of
the study region and conditioning factors. However, the resulting AUC values were very
close to each other, showing that the CatBoost and XGBoost models were promising for
LS mapping. Also, it was determined that the most effective factor in the occurrence of
landslides in the study area was slope, while plan and profile curvatures were the least-
effective factors. Moreover, tea production in Turkey is carried out in Giresun, Trabzon,
Rize, and Artvin provinces in the Eastern Black Sea Region. Approximately 65% of tea
production is carried out in Rize. In addition to the slope being the most effective factor in
the study region, which has a very rugged topography, incorrect land-use activities carried
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out due to tea cultivation are also contributory to the occurrence of landslides in the region.
The destruction of forested areas in the region for tea cultivation and the lack of necessary
drainage measures in tea-cultivation areas cause the number and frequency of landslides
to increase. As a result, it is thought that the LSMs produced in this study can provide
important contributions to the studies to be carried out to reduce the damages caused by
landslides in the region and to create landslide-resistant areas.
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