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Abstract: Artisanal and small-scale gold mining activities have an impact on natural resources and
human health. This study addresses the assessment of surface water quality in the Lom gold basin. A
combined approach of water quality index calculation, multivariate statistical analysis and spatial
interpolation was used. Sampling was performed at 15 stations during low- and high-water periods
in 2021 for classical physicochemical parameters and total mercury measurements. The results show
that the physicochemical parameters were below drinking water standards for both periods, except
for pH, total suspended solids and total mercury. These waters show a large cation deficit as well
as an anion deficit. The water chemistry is controlled by precipitations and silicate dissolutions
in rock that convert the water into the Ca-HCO3 and Ca-Mg-HCO3 types. The level of mercury
contamination varied from acceptable to high due to high flow rates during high water that cause a
dilution effect for the mercury concentration upstream and its accumulation downstream. The water
quality varied from excellent to very poor with better quality during the high-water period. The Lom
watershed is locally affected by physical and chemical pollution due to the abundance of suspended
solids and mercury resulting from the different gold mining activities.

Keywords: artisanal gold mining; Lom river basin; upstream Sanaga basin; physical pollution;
chemical pollution; water quality

1. Introduction

Surface water accounts for a small percentage (0.26%) of the world’s freshwater and
represents an essential natural resource for human life and activities [1]. It is therefore
essential to preserve the good ecological status for sources of freshwater [2]. However, de-
mographic growth and increasing needs emphasize the pressures on the water resource [1],
making it more sensitive to pollutants from various natural and anthropogenic sources [2].
Among the pressures on surface water, artisanal and small-scale gold mining (AGSM) is
of particular importance [3,4]. Small-scale gold mining has been practiced for centuries
around the world. It is a source of economic development and livelihood for people in
many developing countries in sub-Saharan Africa, Asia, South America and Oceania [5]. In
the eastern Cameroon region, the Lom River and its tributaries drain the Lom gold-bearing
catchment, where gold mining has been practiced in an artisanal manner since the 1950s [6]
and been semi-mechanized since the boom of extractive industries in Africa in the 2000s.
This period was characterized by the arrival of foreign mining companies (mainly Chinese)
equipped with modern machinery [7]. Semi-mechanized mining is more efficient than
artisanal mining because it uses machinery such as excavators, shovels, washing units and
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dredges. This type of mining is mainly used for shallow deposits that are less than 20 m
deep [8]. There are nearly one hundred semi-mechanized open-pit mines in the eastern
region, which had a production of approximately 318 kg of gold in 2019 [9]. Gold mining
is the source of many environmental, social and health problems, which include the use
of mercury and environmental contamination [10]. Indeed, mercury emissions from gold
mining represents nearly 38% of the total global emissions [11]. In this type of exploita-
tion, mercury is often used to extract the gold ore from the gangue by amalgamation; the
UNEP [12] estimates that it takes 1 to 2 g of mercury to process 1 g of gold. Mercury is
used in the ore extraction process as it facilitates the recovery of fine gold particles. After
extraction and crushing, the ore is treated by adding mercury to form an amalgam of equal
proportions of Hg and gold, which is then heated (400–500 ◦C) to preserve the spongy
gold and evaporate the Hg (Smith, 2019; Kosai et al., 2023). Mercury is thus released into
the environment (atmosphere, soil, water) at different stages of processing; the World
Gold Council [13] estimates that 5 to 45% of the mercury used is directly released in its
elementary form into rivers.

Numerous worldwide works in mining areas report the degradation of the physic-
ochemical quality of water resources due to this activity [14–23]. This degradation is
especially due to the contamination by heavy metals and various pollutants, as well as the
increase in the rate of erosion by the excavation work that enriches waters with sediment
and particulate matter. In general, several approaches are currently used to assess water
quality, including the calculation of quality indexes [24,25], numerical modeling [26,27],
multivariate statistical analysis [22,28], etc. Most of the studies in the Lom Basin have fo-
cused on the structural geology and geochemistry of gold-enriched formations [29–34]. Few
studies have focused on water quality or specifically on heavy metal pollution [22,35–37],
showing that the basin’s water quality is threatened by mining activity. However, no study
on mercury contamination has been conducted in the Lom watershed. This is regretful,
especially considering the project to supply drinking water from the Sanaga River [38]
below the confluence with the Lom River. Indeed, the project involves the construction
of catchment and pumping stations to produce 300.000 m3/d to solve the drinking water
deficit in Yaoundé and its surroundings. This work aims at (1) seasonal monitoring of
classical physicochemical parameters to assess the water quality and identify the potential
origins of pollution and (2) assessing the mercury contamination and the associated health
risks for the riverside population using raw water. A combined approach of water quality
index (WQI) calculation, multivariate statistical analysis (MSA) and spatial interpolation
(IDW) was used.

2. Materials and Methods
2.1. Study Area
2.1.1. Geographical Setting

The Lom gold-bearing watershed (11100 km2) is located in the East Region of Cameroon
(Figure 1). The climate is a typical equatorial transition type, characterized by (i) a long
dry season (from December to April), (ii) a transition period (from May to June) and (iii) a
heavy rainy season from July to November [35]. The mean annual temperature is 24.7 ◦C,
and the annual average rainfall is between 1500 and 2000 mm. The dominant vegetation
found in the area is a dense semi-deciduous forest of medium altitude with an advanced
stage of degradation due to mining [22]. The study area belongs to the geomorphological
unit known as the South Cameroon Plateau, which has average altitudes that vary between
600 and 1100 m [39]. Its relief is rugged and dominated by gently sloping hills interspersed
with swampy lowlands. The Lom Basin is drained by a dense hydrographic network, of
which the Lom River is the main watercourse. With a length of about 370 km, the Lom is
one of the main left-bank tributaries of the Sanaga River [40]. In recent years, the Lom River
Basin has been affected by intense mining activity and the construction of the Lom–Pangar
dam downstream of the watershed.
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Figure 1. Location map of the Lom Basin, showing sampling stations and geological context. Figure 1. Location map of the Lom Basin, showing sampling stations and geological context.
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2.1.2. Geological and Hydrogeological Setting

The Lom watershed belongs to the Cameroonian pan-African basement of the Pre-
cambrian age. The dominant geological formations in the area are metasedimentary
and metavolcanic rocks [41]. They are composed of schists, mica schist, quartzites, or-
thogneiss and intrusive granites (of Wakasso and Ndokayo). These rocks are known as
the “Lom series” and contain metamorphic–hydrothermal mineralization of a polymetallic
nature [29,30,41,42]. Some of these rocks include sulfide-bearing quartz veins containing
pyrite and gold [31,43], which are the origin of the intense artisanal mining in the area.
Over these geological formations, the pedological cover consists mainly of thick red or
brown ferralitic soils at high altitudes and darker hydromorphic soils in the swamps and
alluvial plains [39,44]. Hydrogeologically, groundwater is abundant and is housed in two
types of aquifers that are superposed or isolated depending on the case [45]: (a) the upper
aquifer of overlying residual rocks that is continuous (<20 m) and (b) the deep fractured
and/or fissured discontinuous aquifer (between 20 and 100 m).

2.2. Sampling and Analytical Procedure

Two field campaigns were carried out during the year 2021: the first one in March for
sampling during the low-water period (40 m3/s < flow < 106 m3/s) and the second one
in September for sampling during the high-water period (120 m3/s < flow < 430 m3/s), to
represent the hydrological regime of the basin. Fifteen sampling stations were positioned
in two sectors, one representative of the upstream part of the basin (Meiganga sector: M01
to M08) and the other of the downstream part (Bétaré-Oya sector: B01 to B07). The stations
were ideally located in urban areas and mining villages, downstream of mining sites under
exploitation and abandoned mining sites. Physical parameters: the potential of hydrogen
(pH), temperature (T), electrical conductivity (EC), dissolved oxygen (DO) and total dissolved
solids (TDS) were measured in situ using a previously calibrated multiparameter (SIERINO
AZ86031). A total of 30 surface water samples were collected from the Lom River and its main
tributaries. Teflon bottles (500 mL) were place about 30 to 50 cm under the surface of the water
in to collect the samples; these were then stored at 4 ◦C according to Rodier’s protocol [46].

In the laboratory, the samples were filtered using cellulose membrane filters (0.45 µm)
that had been previously dried in the oven (at 105 ◦C) and divided into two groups.

The first group was conditioned (100 mL borosilicate brown glass bottles kept at
4 ◦C) and sent to the laboratory (The International Institute of Tropical Agriculture) for
analysis of total mercury (Hg) by inductively coupled plasma emission spectroscopy (ICP-
EOS) using an Optima 8000 apparatus. Samples were preserved with 15 mL HCl and
6 mL potassium bromide bromate reagent (Merck quality, Darmstadt, Germany and/or
its affiliates) per 100 mL for at least 24 h before the analysis. All mercury compounds
were converted to divalent mercury by oxidation with Kbr/KBrO3 (Merck quality). The
solution was then reduced to the elemental form using 0.3% NaBH4 (Merck quality) in
0.5% NaOH (Merck quality) solution. Water samples were digested with 0.5 mL 10%
hydroxylamine hydrochloride solution (Merck quality) until the sample became colorless.
Then, the volumetric flask was brought to volume (50 mL) with ultra-pure water. An
amount of 1% ascorbic acid solution was added to the digested sample to eliminate free
brome. The prepared samples were vaporized in an induced argon plasma to undergo
atomization, ionization and thermal excitation for detection and quantification by the
optical emission spectrometer.

The second group was used for analyzing major cations (sodium (Na+), ammonium
(NH4

+), potassium (K+), magnesium (Mg2+), calcium (Ca2+) and anions (bicarbonate
(HCO3

−), chloride (Cl−), fluoride (F−), nitrate (NO3
−), phosphate (PO4

3−) and sulfate
(SO4

2−) by chromatography on ICS 90 and ICS 1000 models, respectively. The amount of
suspended solids (TSS) was determined by drying (105 ◦C) and weighing the filters before
and after filtration.
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2.3. Data Analysis
2.3.1. Hydrochemical Modeling

Piper’s and Gibbs’s diagrams were used to determine the hydrochemical type of the
water samples and the hydrogeochemical processes that led to the ionic load of the stud-
ied waters, respectively. The multilanguage hydrochemistry software “DIAGRAMMES”,
developed by Roland SIMLER at the Hydrogeology lab of Avignon, was used to generate
and visualize the ionic triangular typology of the water (http://www.lha.univ-avignon.fr/,
accessed on 2 September 2022). Excel 2013 software was used to generate the modified
Gibbs diagram, as well as the dispersion diagrams of the ions.

2.3.2. Multivariate Statistical Analysis

Pearson’s correlation matrix (CM) was used to assess the relationship between the
17 measured variables [47]. Principal component analysis (PCA) was used to identify
homogeneous groups of variables within the principal factors to determine their possible
origins as sources of pollution in the analyzed waters [48]. Finally, hierarchical cluster
analysis (HCA) was used to explore the similarities between different sampling stations to
better differentiate the likely pollution sources based on their locations, sampling periods
and/or types of activity [22]. All these analyses were performed with XLSTAT (2022)
software (https://www.xlstat.com/fr, accessed on 2 September 2022).

2.3.3. Calculation of Water Quality Index (WQI)

In this study, the weighted arithmetic method was used to calculate the water quality
index [36,48]. The parameters representing acidification (pH), particulate matter (TSS),
organic and oxidizable matter (DO, NH4

+, NO3
− and PO4

3−), mineral content (EC, TDS,
Ca2+, Mg2+, Na+, K+, Cl− and SO4

2−) and toxicity (Hg) were selected. The water quality
index (Equation (1)) is the sum of the sub-indexes (SI) of each parameter (Equation (2)).
The quality rating scale (qi) for each parameter is calculated by Equation (3). A relative
weight (Wi) ranging from 1 to 5 is assigned to each parameter according to its importance
in assessing drinking water quality (Equation (4)). The highest weight is assigned to pa-
rameters that have critical effects on the quality of water intended for human consumption
compared with the limits recommended by the World Health Organization (WHO) [49].

WQI =
n

∑
i=1

SIi (1)

SI = Wi × qi (2)

qi =
Ci
Si

× 100 (3)

Wi =
wi

n
∑

i=1
wi

(4)

qi indicates the quality score, Ci is the concentration of each chemical parameter and
Si is the WHO [50] guideline value; SIi is the sub-index of the ‘ith’ parameter, Wi is the
relative weight of each parameter, Wi is the weight assigned to each parameter and n is
the number of parameters. The calculated relative weight values (Wi) and corresponding
quality ranges are given in Tables 1 and 2, respectively.

http://www.lha.univ-avignon.fr/
https://www.xlstat.com/fr
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Table 1. Relative weights of parameters.

Parameters Units Standards
WHO Weight (Wi) Relative Weight

(Wi)

pH 8.5 4 0.093
EC µS/cm 1400 4 0.093
DO mg O2/L 8 4 0.093
TDS mg/L 500 2 0.046
TSS mg/L 40 2 0.046
Na+ mg/L 200 2 0.046

NH4+ mg/L 0.5 2 0.046
K+ mg/L 12 1 0.023

Mg2+ mg/L 125 2 0.046
Ca2+ mg/L 75 2 0.046

HCO3
− mg/L 130 3 0.069

F− mg/L 1.5 2 0.046
Cl− mg/L 250 3 0.069

NO3
− mg/L 50 4 0.093

SO4
2− mg/L 250 4 0.093

Hg tot mg/l 0.001 5 0.116

Table 2. Water quality ranges.

WQI Rating of Water Quality Grading

<50 Excellent water quality A
50–100 Good water quality B
100–200 Poor water quality C
200–300 Very poor water quality D

>300 Unsuitable for drinking
purposes E

2.3.4. Calculation of Hazard Quotient (HQ) and Hazard Index (HI)

The hazard quotient (HQ) and hazard index (HI) from direct ingestion and dermal ab-
sorption in adults and children were calculated to assess the level of health risk to the river-
side populations that are exposed to mercury toxicity in the Lom basin.
Equations (5)–(9) were used following the method proposed by [51–53] based on risk
guidelines of the US EPA [54], as shown in Table 3.

ADDingestion =
Cw × IR × ABSg × EF × ED

BW × AT
(5)

ADDdermal =
Cw × SA × Kp × EF × ET × ED × 0.001

BW × AT
(6)

HQingestion = ADDingestion/RfDingestion (7)

HQdermal =ADDdermal/RfDdermal (8)

HI = ∑(HQingestion + HQdermal) (9)

where ADDingestion and ADDdermal are the average daily ingestion and dermal absorption
dose in µg/kg/day, respectively; Cw is the mercury concentration (µg/L); BW is the
average body weight (70 kg for adults and 15 kg for children); IR is the ingestion rate
(2 and 0.64 L/day for adults and children); EF is the frequency of exposure (365 days/year);
ED is the duration of exposure (years); ABSg is the gastrointestinal absorption factor
(dimensionless); SA is the surface area of exposed skin (cm2); Kp is the skin permeability
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coefficient in water (cm/h); ET is the exposure time (h/day); AT is the averaging time
(days) and RfD is the corresponding reference dose (µg/kg/day).

Table 3. Reference values for the parameters considered for mercury.

Mercury (Hg) Sources

ABSg 10% [52,53,55]
Kp 0.001 [56]

RfDingestion 0.3 [52,53,55]
RfDdermal 0.086 [52,53,55]

For HQ > 1, non-carcinogenic effects should be considered; when HI > 1, carcinogenic
effects on human health should be noted.

2.3.5. Geostatistical Modeling: Spatial Interpolation of Mercury Concentrations

The spatial distribution of mercury in the Lom basin was performed by interpolation
between different measured concentrations at river points using an inverse distance weight-
ing (IDW) method in the ArcGIS 10.8 software. The IDW spatial analysis tool considers
that the influence of the plotted variable (mercury content) decreases with distance from
the sampled location [57].

3. Results and Discussion
3.1. Physicochemical Characterization of Waters
3.1.1. Seasonal and Spatial Variation of Parameters
Physical Parameters

Table 4 shows the statistics for measured parameters at the sampling stations alongside
the Lom River during the high-water and low-water periods. The charge balance error
was less than ±10% for all the samples. The pH varies from 5.2 (min) to 6.6 (max) with
an average of 5.90 during the low-water period and from 5.5 (min) to 7.1 (max) with an
average of 6.43 during the high-water period. This represents slightly acidic to neutral
waters. In general, the acidity of the basin increases from upstream to downstream for
each period. However, the waters are more acidic during the low-water period, and the
lowest measured pH values could be related to the oxidation of the sulfides contained in
ores [31]. The nearly neutral pH values could be due to non-reactive sulfide minerals or
due to rocks containing materials that neutralize the acidity [17]. These values are similar
to those obtained for surface waters found in other mining environments [22,58,59]. The
electrical conductivity (EC) oscillates between 12.80 (min) and 93.40 (max) with a mean of
39.94 µS/cm during the low-water period, whereas it varies from 16.10 (min) to 52 (max)
with a mean of 31.74 µS/cm during the high-water period. The amounts of the various
substances dissolved (TDS) in the water affects the water’s conductivity, with higher levels
of TDS leading to higher conductivity. During the low-water period, the TDS levels range
from 9 (min) to 65 (max) mg/L, with an average of 28 mg/L, whereas during the high-water
period, the range is from 11.24 (min) to 36.32 (max) mg/L and the average is 22.16 mg/L.
According to Boeglin et al. [60], such (extremely low) dissolved concentrations indicate that
the chemical weathering is very slow and this range for the TDS (<1000 mg/L) refers to
fresh waters [61,62]. Physical parameters such as pH, EC and TDS are below the European
Environmental Quality Standards [63] for drinking water limit values, as well as those
of the WHO [50]. On the other hand, the total suspended solids (TSS) value exceeded
the EQS and WHO guidelines (>25–40 mg/L) in some stations during the low-water
period (LW: min = 12 mg/L, max = 452 mg/L, avg = 149 mg/L; HW: min = 2.62 mg/L,
max = 20.90 mg/L, avg = 10.05 mg/L). High levels of suspended solids are generally found
in mining areas where mining activities (deforestation, land excavation, riverbed dredging,
ore panning and washing) increase particle erosion [3,22,64].
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Major Ions

The abundances of major ions (Table 4), according to their average concentrations,
during the low-water period is in the order Na+ > K+ > SO4

2− > Cl− > Ca2+ > Mg2+ >
NO3

− > NH4
+ > F− > PO4

3− vs. Na+ > Ca2+ > Mg2+ > SO4
2− > Cl− > K+ > NO3

− > NH4
+

> F− > PO4
3− during the high-water period. The major ions are all below the limits of

the WHO and EQS standards for each period. In general, the concentrations of dissolved
substances are more abundant during the high-water period than during the low-water
period. This reflects the transport mechanism in humid tropical areas where (i) the ionic
load of swampy areas (where the rock mineral dissolution is intense) and (ii) the various
inputs (atmospheric, vegetation and anthropogenic) are easily mobilized during the rainy
season [36,60,65]. However, the major ions remain very low and reflect a large cation deficit
as well as an anion deficit during the low-water period (TZ+ max = 132.88 µeq/L and
TZ− max = 375.75 µeq/L) compared with other rivers in the world [66]. This is due to (i)
the very thick ferralitic soils that protect the bedrock from chemical weathering [67] and
(ii) the drained granitic bedrock that is mainly composed of more inert materials that do
not significantly ionize the waters [68]. The predominance of cations (Ca2+, Mg2+, Na+

and K+) is typical of the weathering of the plutonic and metamorphic rocks that constitute
the geologic basement due to the weathering of plagioclase and primary feldspars [67,69].

Table 4. Statistics on the measured parameters at sampling stations alongside the Lom River during
the low-water and high-water periods.

Period Low Water/Dry Season High Water/Wet Season Standards

Parameters N Units Min Max Avg SD Min Max Avg SD WHO
(2017)

EQS
(2008)

pH 15 5.23 6.59 5.90 0.56 5.57 7.08 6.43 0.53 6.5–8.5 6.5–8.5
T 15 ◦C 18.10 28.30 23.16 2.36 22.80 36.80 26.31 3.76 25 30

EC 15 µS/cm 12.80 93.40 39.94 19.98 16.10 52.00 31.74 9.16 1500 800
DO 15 mg/L 5.00 7.40 5.74 0.68 1.50 6.30 3.82 1.76 - 2–6
TDS 15 mg/L 9.00 65.00 28.00 13.90 11.24 36.32 22.16 6.40 500
TSS 15 mg/L 12.00 452.00 149.00 152.01 2.62 20.90 10.05 5.47 25–40 25–40
Alka 15 µmol/L 41.89 373.21 182.08 78.51 0.57 51.63 15.13 15.24 - -
Na+ 15 mg/L 0.052 0.991 0.394 0.330 1.444 6.104 3.501 1.476 200 200

NH4
+ 15 mg/L 0.001 0.328 0.048 0.084 0.047 0.846 0.329 0.258 0.5 3

K+ 15 mg/L 0.037 0.845 0.266 0.238 0.217 2.604 1.175 0.824 12
Mg2+ 15 mg/L 0.014 0.453 0.132 0.115 5.248 36.976 17.492 9.349 125
Ca2+ 15 mg/L 0.040 0.367 0.148 0.096 16.032 65.642 29.083 14.817 75 75
TZ+ 15 µeq/L 11.29 132.87 62.14 41.88 1899.41 5840.52 3112.46 1280.78 - -

HCO3
− 15 mg/L 2.55 22.8 11.120 4.791 0.57 51.64 15.13 15.24 130 -

F− 15 mg/L 0.003 0.075 0.015 0.017 0.064 0.277 0.168 0.071 2 2
Cl− 15 mg/L 0.014 0.669 0.195 0.190 0.348 2.240 1.185 0.510 250 250

NO3− 15 mg/L 0.011 0.481 0.132 0.145 0.090 1.221 0.540 0.336 50 50
PO4

3− 15 mg/L 0.000 0.002 0.000 0.001 0.000 0.067 0.013 0.021 1.5 5
SO4

2− 15 mg/L 0.059 1.231 0.213 0.287 0.658 24.149 4.512 6.035 150 250
TZ− 15 µeq/L 48.699 375.74 194.811 77.146 82.580 1034.187 392.191 286.745 - -

Hg tot 15 mg/L 0.001 0.031 0.007 0.008 0.000 0.042 0.008 0.013 0.006 0.0007

Notes: Min = minimum, Max = maximum, Avg = average, SD = standard deviation, TZ+ = sum of cations,
TZ− = sum of anions, WHO = Word Heath Organization, EQS = Environmental Quality Standard.

3.1.2. Water Hydrochemistry
Hydrochemical Classification

The projection of the water composition in the Piper diagram [70] led to a hydrochemi-
cal classification of the analyzed waters as well as their spatiotemporal evolution (Figure 2).
During the low-water period and in the upstream part of the basin, the waters are of the
bicarbonate–calcic and magnesian type at 62.5% against 37.5% for the bicarbonate–sodium
and potassium types. Downstream of the watershed, the waters are divided into three types:
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chloride–sulfate–calcic and magnesian at 42.86%, bicarbonate–sodic–potassic at 42.86% and
bicarbonate–calcic–magnesian at 14.28%. During the high-water period, the hydrochemical
classes of the waters evolved, changing to be 100% the calcic–bicarbonate type in the up-
stream sector. In the downstream sector, the waters changed from the three previous types
to two types: bicarbonate–calcic–magnesian at 57.14% and bicarbonate–calcic at 42.86%.
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Figure 2. Piper diagram showing the hydrochemical facies of the waters.

In general, the predominant types in the analyzed waters are mainly bicarbonate–
calcic (Ca-HCO3) at 36.66% and bicarbonate–calcic–magnesian (CaMg-HCO3) at 33.33%.
These classes are typical of surface waters flowing over metamorphic rocks in tropical
forests [71] and characterize the dissolution processes of primary silicate minerals [22,35].

Saturation Index

The saturation index (SI) is used to describe the thermodynamic equilibrium of the
waters in terms of dissolved minerals (logarithm of the ratio between the ionic activity
product Q and the mineral equilibrium constant K, SI: log (SI) = log (Q/K) = logQ − logK).
Calculation of the saturation index in PHREEQC-2.7 software shows that Lom waters are
undersaturated (SI < 0) in carbonate minerals (aragonite, calcite and dolomite), sulfate
minerals (gypsum and anhydrite) and in CO2, H2O and O2 whatever the season (Table 5).
This corroborates the cationic and anionic deficits reported above and is in line with other
results from the same basin [36].

3.1.3. Origins of the Parameters
Processes Controlling Water Chemistry

Gibbs [72] identifies atmospheric precipitations, rock weathering and evaporation–
crystallization processes as the three main natural mechanisms controlling worldwide
surface water chemistry. He set up a diagram depicting the weight ratio of
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Na/(Na + Ca) versus cations and Cl/(Cl + HCO3) versus TDS to determine the ori-
gins of dissolved geochemical constituents.

Table 5. Saturation index.

Season Sector Mineral
Phase Anhydrite Aragonite Calcite Dolomite Gypsum H2(g) H2O(g) Halite O2(g) CO2(g)

Low
water

Up
stream

Min −7.50 −7.38 −7.24 −14.60 −7.28 −21.18 −20.99 −13.19 −46.18 −3.55
Max −6.39 −5.28 −5.13 −9.87 −6.02 −6.16 −1.43 −1.59 −14.95 −2.16

Mean −6.99 −5.83 −5.68 −11.22 −6.74 −18.80 −3.98 −11.00 −39.03 −3.00
Standard 0.37 0.75 0.75 1.58 0.41 5.18 6.87 3.85 9.89 0.43

Down
stream

Min −7.39 −6.95 −6.80 −13.43 −28.31 −18.87 −19.21 −19.24 −47.27 −2.09
Max −6.54 −5.75 −5.61 −10.82 −6.31 −7.16 −1.52 −1.55 −11.82 −1.56

Mean −7.01 −6.17 −6.03 −11.80 −9.99 −15.59 −4.84 −11.13 −37.19 −1.75
Standard 0.28 0.49 0.49 1.01 8.10 5.27 6.63 5.13 16.01 0.20

High
water

Up
stream

Min −4.04 −1.47 −1.32 −2.59 −8.25 −22.05 −3.69 −22.18 −40.78 −1.88
Max −3.58 −0.22 −0.07 −0.15 −2.77 −2.38 −1.49 −9.85 −5.54 −1.34

Mean −3.79 −0.85 −0.71 −1.32 −5.55 −7.79 −3.02 −18.81 −14.39 −1.57
Standard 0.16 0.38 0.38 0.78 1.90 7.17 0.77 4.39 12.41 0.20

Down
stream

Min −4.19 −2.45 −2.31 −4.91 −12.55 −20.63 −3.27 −19.41 −44.23 −1.20
Max −2.74 −1.73 −1.59 −3.13 −2.51 −2.48 −1.22 −9.61 −5.88 −0.31

Mean −3.52 −2.16 −2.02 −3.89 −5.77 −15.06 −1.88 −12.62 −31.46 −0.79
Standard 0.49 0.27 0.27 0.69 4.09 8.54 0.81 4.56 17.56 0.28

The sample results plotted in the Gibbs diagram (Figure 3) show that, in general,
precipitation and rock weathering are the primary mechanisms that dominate in the Lom
basin. Atmospheric precipitation controls most of the water chemistry during the high-
water period, whereas rock weathering dominates during the low-water period. Similar
to our observations, data related to the world’s major rivers that drain tropical areas
(Congo, Orinoco and Niger) were in the “precipitation control-rock control” series. Indeed,
the chemical composition of low salinity waters is controlled by the rate of dissolved
salts supplied by precipitation. This is precisely the case for tropical rivers in Africa
and South America that have their source in low relief areas where the supply rate of
dissolved salts to rivers is very low and the amount of precipitation is high [72]. These
results are comparable with those of Rakotondrabe et al. [22] in the Lom basin, those of
Mfonka et al. and Kamtchueng et al. [47,73] in the West Region of Cameroon and those of
Thalmeier et al. [74] in Argentina, where rock weathering processes predominate the
rainfall ones.

Different processes can occur during the rock–water interactions. The plot of total
cations versus alkalinity (Figure 4a) indicates that mineral dissolution is the primary process
controlling the chemistry of the studied waters. Furthermore, in the scatter plot of (Ca + Mg)
versus (HCO3 + SO4), the majority (80%) of samples fall below the theoretical equilibrium
line (Figure 4b). This result suggests that silicate weathering is the main source of ions [75],
especially since the bedrock is composed of primary silicate minerals. Mimba et al. [35]
suggest that silicate hydrolysis (plagioclases and feldspars) by the slightly acidic water
of the basin is at the origin of the dissolved cations. The scattering of samples (negative
and non-significant correlation) in Figure 4c eliminates the probability that nitrate derives
from nitrification during the degradation of organic matter. In which case the generation
of nitrate would consume the alkalinity [76]. Finally, the dispersion of Na as a function of
Cl (Figure 4d) indicates that atmospheric inputs are not the only source of sodium in the
analyzed waters and that sodium is also derived from cation exchange [73].
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Correlation Tests

To properly identify the relationships between the variables for each season, two Pear-
son correlation matrices were produced, one for the low-water period (Figure 5a) and one
for the high-water period (Figure 5b). The matrices show very strong
(0.7 < r < 1), strong (0.5 < r < 0.7) and acceptable (0.3 < r < 0.5) positive (+) or nega-
tive (−) correlation coefficients between some variables (TDS–EC, K+–Na+, Ca2+–Mg2+,
SO4

2−–F− and Hg–TSS).
During the low-water period, the Pearson correlation matrix shows (i) very strong

positive correlations between TDS and EC, SO4
2− and F−, K+ and Na+, Ca2+ and Mg2+, and

b NO3
−, Cl− and F−; (ii) strong positive correlations between DO and alkaline earth metals

(Mg2+ and Ca2+), NO3
− and SO4

2−, Ca2+ and Na+, and Hg, TSS and EC; and finally, (iii) a
strongly negative correlation was found between dissolved oxygen (DO) and dissolved
solids and conductivity (TDS and EC). During the high-water period, the matrix shows
(i) very strong positive correlations between TDS and EC, K+ and TSS, and DO and pH; (ii)
a strong positive correlation between Ca2+, pH and DO; and (iii) an acceptable correlation
between Hg and TSS.
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The correlation matrix highlights the link between some variables and the geological
nature of the drained terrains. Among these, the alteration of granites and metamorphic
rocks whose dissolution of potassium feldspars (orthoses) and plagioclases would be the



Water 2023, 15, 2502 13 of 23

origin of major cations (K+ and Na+, Ca2+ and Mg2+) [36,69,77]. The alteration of schists,
specifically the oxidation of sulfide ores (pyrite) contained in the gold-bearing veins to
which fluorine is generally associated, is at the origin of SO4

2− and F− [78]. The strong
correlation between TSS and Hg in the low-water period could reflect the importance
of the mercury adsorption phenomenon on the surface of very fine TSS, which present
larger specific surfaces. In the absence of published particle size analysis data from the
Lom Basin, data from the Sanaga Basin (to which the Lom Basin belongs) were used.
Indeed, the work of Ndam et al. [79] in the Sanaga Basin shows that suspended solids
are mainly made up of very fine mineral fractions (90% silts and clays and 10% organic
fraction) that can explain the adsorption phenomenon of Hg on TSS. During the high-water
period, the weak link between Hg and TSS can be explained by the high flows that are
capable of transporting larger particles that have smaller specific surfaces. The particle
size analysis in the Sanaga River sediments shows that they are mostly composed (76 to
100%) of unworn quartz grains [79] that offer smaller specific surfaces. These observations
corroborate those of the Amazon basin, where high Hg concentrations in white waters
(Rio Madeira) are mainly due to the high loads of suspended material from intense erosion
during the rainy season [80]. Moreover, the study by Guédron et al. [81] in the Lower
Mekong River Basin shows that Hg is preferentially adsorbed to the specific surface of very
fine suspended particles during its transport, in contrast to quartz sands, which have a low
adsorption capacity.
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Figure 5. Correlation between physicochemical parameters: (a) low water and (b) high water.

Pollutants Sources: Principal Component Analysis (PCA)

PCA (Table 6) of the data collected during the two periods (dry season and rainy
season) in the year 2021 produced 16 components or factors (F1–F16) representing the
total variability of the dataset. According to the eigenvalue criterion, only factors with
eigenvalues >1 were considered significant. Thus, factors F1 to F5, which represent 78.2%
of the variability of the data, were used to identify the main types of pollution encountered
in the analyzed waters. The correlations between variables and factors are considered very
strong for 0.7 < r < 1 and strong for 0.5 < r < 0.7.

The F1 plane (38.57%) is very strongly to strongly composed of the variables NH4
+,

K+, NO3
−, Mg2+, Ca2+, Na+, Cl− and F−. F1 represents the component of mineralization

resulting from various hydrogeochemical processes, such as the dissolution of silicate
minerals, ion exchange on clay minerals and soil leaching, or from anthropogenic activities,
such as agriculture, livestock and domestic wastewater discharge [82,83]. F2 (13.70%) shows
a very strong association with EC and TDS and a strong link with Hg. This component
is associated with the dissolved solids load and toxicity that are likely from gold mining
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activities, such as the discharge of mining effluents containing Hg and the erosion of
mine tailings [22]. The component F3 (12.25%) is linked to the pH and DO variables that
characterize the acid/alkaline nature of the water and the consumption of dissolved oxygen
for the degradation of organic matter. F3 designates the organic pollution of the waters [84].
The F4 factor (7.44%) is strongly related to sulfates (SO4

2−); it reflects the presence of
shale or pollution by domestic wastewater [62]. Finally, F5 (6.57%) is composed of the
characteristic variables of the contributions of agriculture activities (PO4

3− and NO3
−).

Table 6. Correlations between variables, principal factors and eigenvalues.

F1 F2 F3 F4 F5

pH 0.420 0.114 0.707 −0.029 −0.157
EC −0.358 0.833 0.254 0.290 −0.009
OD −0.594 −0.296 0.596 −0.036 0.061
TDS −0.362 0.830 0.254 0.290 −0.009
TSS −0.629 0.268 −0.082 −0.035 0.182
Na+ 0.818 0.170 −0.058 0.231 −0.286

NH4
+ 0.597 0.182 0.350 −0.240 −0.224

K+ 0.663 0.302 −0.221 −0.351 −0.052
Mg2+ 0.797 0.000 0.259 −0.096 −0.049
Ca2+ 0.800 −0.048 0.431 0.094 −0.101
F− 0.866 0.084 −0.231 0.275 0.130
Cl− 0.819 0.120 −0.212 −0.152 0.008

NO3
− 0.671 0.048 0.143 −0.199 0.514

PO4
3− 0.424 −0.111 0.271 0.302 0.715

SO4
2− 0.436 −0.183 −0.403 0.658 −0.119

Hg tot 0.091 0.642 −0.432 −0.323 0.191
Eigenvalues 6.17 2.19 1.96 1.19 1.05
Variability

(%) 38.57 13.70 12.25 7.44 6.57

Cumulative
% 38.57 52.27 64.53 71.97 78.54

The analysis of the correlation circle (Figure 6) following the F1/F2 axes, regrouping
52.28% of the variance and presenting the highest eigenvalues (6.17 and 2.19, respectively),
was used to identify the main types of pollution in the Lom water. Two groups stand out:
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Group 1—green circle, which includes the major ions (Na+, K+, Mg2+, Ca2+, NH4
+,

NO3
−, SO4

2−, Cl−, F− and PO4
3−) and pH. This group is characteristic of mineralization

from natural origins (mainly from the dissolution of silicate minerals, soil leaching, atmo-
spheric inputs and/or vegetation) or anthropogenic activities (agriculture, livestock and
domestic wastewater). The variables of Group 1 are all below the recommended limits
from the WHO and EQS.

Group 2—red circle, consists of EC, TDS, TSS and Hg. The first three variables
represent the dissolved matter load (mineral and organic) and Hg constitutes the toxicity
due to mercury introduced during ore processing by amalgamation and discharged in
the mining effluents. Suspended solids (TSS) represent the particulate load from land
excavation and tailing erosion and gold-panning activities.

Both TSS and Hg locally exceeded the recommended limits for drinking water (WHO
and EQS) and the Cameroonian discharge standard (CDS). These two variables indi-
cate that the two main types of pollution affecting the study waters are chemical pollu-
tion due to mercury toxicity and physical pollution due to suspended solids. Indeed,
Rakotondrabe et al. [22] and Achina-Obeng and Aram [4] also found high concentrations of
TSS, heavy metals and mercury in the Mari catchment (eastern Cameroon) and the Central
Region of Ghana that were mainly due to gold mining activities (digging of rivers beds,
excavation and gold amalgamation).

3.2. Mercury Contamination of Water
3.2.1. Water Quality Index (WQI)

The calculation of the water quality index (WQI) from the physicochemical parameters
(pH, EC, TDS, TSS, HCO3

−, Cl−, SO4
2−, Na+, Ca2+, Mg2+, NO3

−, F− and Hg) was used to
evaluate the water quality of the Lom Basin. The Lom’s water quality varies from excellent
to very poor (Figure 7).
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Figure 7. Water quality ranges in the Lom River Basin by season.

During the low-water period, nearly 60% of the waters are of excellent to good quality
(WQI < 100), compared with 40% of the waters that were doubtful to very poor quality
(WQI > 100). During the high-water period, a greater proportion of samples have ex-
cellent to good quality (73%) and only 26.69% have very poor quality. Globally, water
quality is better during the high-water season. The water quality degrades from up-
stream to downstream of the basin, and the highest WQI values (WQI > 100) are found
on the mainstream (M03, M07, B04 and B06), whereas the tributaries are of better quality
(WQI < 100). This is probably due to the dilution of the water by the abundant precipita-
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tion during this season. These results are quite similar to the observations of [36] in the
same basin.

3.2.2. Spatial and Seasonal Distribution of Mercury
Hierarchical Cluster Analysis (HCA)

To distinguish the sampling periods, samples collected during the low-water period
will be assigned the letter D at the beginning of the corresponding station code (DM01,
. . . , DB07) and those collected during the high-water period will be assigned the letter W
(WM01, . . . , WB01). The dendrogram obtained by HCA (Figure 8) clusters the different
sampling stations into two main classes (C1 and C2).
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Class C1 includes all samples taken during the low-water period (dry season) and
can be subdivided into two subclasses (A and B). Subclass A is composed of station DB07
(in an urban area) and stations DB02 to DB05, which are all located in the Bétaré-Oya
sector, downstream of the watershed. The latter stations are mainly located in mining
villages that are downstream of mining sites that are mostly in reduced activity due to
the low flows of the season. Subclass A represents sites with acceptable mercury levels in
the downstream part of the basin (2 < Hg < 5 µg/L). Subclass B can be subdivided into
three groups (B1, B2 and B3). Group B1 stations (DB01 and DB06) are located downstream
of intense exploitation areas and have Hg concentrations that are moderate to very high
(8 µg/L and 31 µg/L). Group B1 represents moderately and heavily polluted sites down-
stream of the basin. Group B2 is formed of stations DM01, DM05 and DM06, which are
located in urban areas upstream of the watershed where mercury levels are acceptable
(1 < Hg < 2 µg/L). This group contains unpolluted sites from the upstream part of the basin.
Group B3 includes stations DM02, DM04, DM08, DM03 and DM07, which are located
in the intense exploitation areas in the upstream basin. The mercury levels range from
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4 to 21 µg/L and the activity is mainly on the Lom River. Group B3 represents the moder-
ately to heavily polluted sites in the upstream part of the basin.

Class C2 is entirely composed of samples collected during the high-water period (wet
season). It can also be separated into two sub-classes (A’ and B’). Subclass A’ includes
stations located upstream of the basin, either downstream of the mining sites (WM02
to WM08) or in an urban area (WM06). The mercury concentrations for this group are
acceptable (0 < Hg < 2 µg/L), except for station WM07 (Hg = 19 µg/L), where mining was
carried out using a dredge in the riverbed. Subclass B’ can be divided into three groups
(B’1, B’2 and B’3). The first group (B’1) is composed of stations WB01 and WB02 that are
located in the downstream sector of the basin, in a washing pool and downstream of an
operating site. The mercury levels are acceptable (2 µg/L and 1 µg/L, respectively); these
stations are unpolluted sites downstream of the basin. Group B’2 is composed of station
WM01, which is located in the urban area of the basin’s upstream sector and where the
mercury content is also acceptable (Hg = 3 µg/L). Finally, Group B’3 is made up of stations
WB03 to WB07, which are located in both mining villages and urban areas (WB07) in the
downstream sector. These sites are highly polluted (15 < Hg < 42 µg/L), except for the
urban area (Hg = 4 µg/L).

Sample stations have been clustered according to the sampling period (high-water–
low-water), geographical location (upstream–downstream of the watershed) and the sta-
tion’s position relative to mining activities (upstream–downstream of mining sites). In
general, for both periods, mercury levels are acceptable in urban areas when mining areas
are moderately to heavily polluted. This reflects the localized mercury pollution near gold
mining sites. These observations are similar to those from the Puyango River Basin in
southwestern Ecuador [15]. In this study, mercury levels were very high in both seasons
and showed a downstream concentration gradient with the highest Hg levels (250 ng Hg/L)
adjacent to mining areas.

Spatial Interpolation of Mercury Concentrations

During the low-water period, the total mercury levels ranged from low
(0.7 < Hgtot < 6 µg/L) to moderate (6.1 < Hgtot < 10 µg/L) and the quality (related to
Hg) was better downstream than upstream in the basin. Hg remained below the Cameroo-
nian discharge standard (CDS = 10 µg/L) for both sectors but exceeded WHO limits for
drinking water upstream of the basin (<6 µg/L). During the high-water period, mercury
concentrations changed from low to moderate (1 < Hgtot < 10 µg/L) upstream and reached
high levels downstream (11 < Hgtot < 50 µg/L). The concentration of mercury decreases
from the upstream to downstream part of the basin. The lowest Hg levels are found near
mining areas upstream of the catchment, and Hg levels increase significantly downstream
where the pollutant concentrates and exceeds the limits of all of the standards (>11 µg/L).

Mercury concentrations in the basin are very variable for many reasons. Firstly, the
hydrological regime has a major influence on the variation of mercury levels in the basin.
Indeed, heavy precipitation during the high-water season contributes to (i) the dilution of
Hg upstream, (ii) the remobilization of sedimented fractions and (iii) the accumulation of
the pollutant in the lower elevation floodplains downstream of the basin. This is due to the
fact that in tropical regions, most of the transport of materials takes place during the high-
water periods when heavy rainfall leaches the slopes, erodes the banks and remobilizes
sediments from the bed [85]. Indeed, the same dynamic has been observed in Kazakhstani
rivers, where mercury transport during spring floods is dominated by the remobilization
of contaminated bed sediments and bank erosion [86]. The work of Carmouze et al. [80]
on the Rio Madeira shows that the maximum concentrations of Hg were not recorded
in the tributaries that were exploited for alluvial gold but 200 km downstream in the
Andean foothills. This corroborates part of our results on the spatial variations of mercury
concentrations near mining sites during the high-water period. These authors also found
that Hg levels are higher during low-water periods than during high-water periods in
the Amazon. This finding is the same for the Lom basin, except for stations located near
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the floodplain downstream of the basin, where mercury concentrations are higher during
floods. This could be due to increased mining activity during the high-water period or the
presence of unrecorded mines in the area.

The results of the spatial interpolation by the inverse distance weighting method for the
sampled sub-basins allowed the mapping of mercury contamination levels in the basin (Figure 9).
The areas in dark green (0 < Hgtot < 0.7 µg/L) and light green (0.7 < Hgtot < 1 µg/L)
have very low Hg levels that are below the European standards (EQS = 0.7 µg/L and
WFD = 1 µg/L). The areas in yellow (1 < Hgtot < 6 µg/L) have acceptable Hg levels, but
they are above the WHO standards (6 µg/L). The orange areas (6.1 < Hgtot < 10 µg/L)
correspond to moderate pollution levels that are below the Cameroonian standards for
industrial discharge (CSD = 10 µg/L). Finally, the red areas show high Hg pollution levels
(Hgtot > 11 µg/L) exceeding all the above limits.
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3.2.3. Human Health Risk for Mercury

The calculated values (µg/kg/day) of the hazard quotient (HQ) and the hazard index
(HI) in the analyzed waters are shown in Table 7. The maximum daily ingestion dose is
nearly two times higher for children (HQingestion Max = 0.573) and more than one time
higher for adults (HQingestion Max = 0.383) than the reference value (RfDingestion = 0.3). The
dermal absorption dose is below the reference value for adults but twice the reference limit
for children (RfDdermal = 0.21). However, for both children and adults, the average daily
ingestion doses, dermal absorption doses and the mercury hazard index are less than 1
(HQingestion < 1; HQdermal > 1 and HI < 1) regardless of season. This indicates that the
mercury concentrations in the analyzed waters represent little danger for both children and
adults in the riverside populations.
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Table 7. Hazard quotient (HQingestion/dermal) and hazard index (HI) of mercury during the low-
and high-water periods in the Lom Basin.

HQingestion HQdermal HI (∑HQ)

Children Adults Children Adults Children Adults

Total (∑) 3.080 2.060 1.110 3.76 ×
10−1 4.190 2.440

Min 0.000 0.000 0.000 0.000 0.000 0.000

Max 5.73 ×
10−1

3.84 ×
10−1

2.06 ×
10−1

6.98 ×
10−2

7.79 ×
10−1

4.53 ×
10−1

Average 1.03 ×
10−2

6.88 ×
10−2

3.70 ×
10−2

1.25 ×
10−2 0.140 8.13 ×

10−2

SD 1.46 ×
10−1

9.80 ×
10−2

5.26 ×
10−2

1.78 ×
10−2

1.99 ×
10−1

1.16 ×
10−1

RfDingestion 0.300 0.300 - - - -
RfDdermal - - 0.086 0.086 - -

Notes: Min = minimum, Max = maximum, SD = standard deviation.

As was observed in previous studies on soil and surface water samples in China and
Spain [52,55,87,88], the HQingestion values are higher than the HQdermal values
(HQingestion > HQdermal). Oral ingestion was found to be the primary form of exposure to
mercury for residents. Similarly, children have higher HQ and HI values (ingestion and
dermal) than adults, indicating that children’s health is more vulnerable to the adverse
effects of mercury contamination. However, these results are only indicative because, for a
better assessment of the health risk, methyl mercury (CH3Hg) should have been analyzed,
as it is the most toxic form of the pollutant found in living organisms.

4. Conclusions

This study shows that the physicochemical parameter concentrations of the Lom
surface water are below the recommended WHO and European Standards for drinking
water, except locally for suspended solids and total mercury. These waters have low mineral
composition at the origin of the ionic deficit observed during the low-water period. The
predominance of Ca2+, Mg2+ and HCO3

− ions converts waters the bicarbonate–calcic and
bicarbonate–calcic and magnesian types. The spatial and seasonal variations in parameters
highlight the typical hydrodynamics of tropical forest zones, where the ionic load is higher
during the high-water period due to the mobilization of dissolved elements, as well as
various inputs (atmospheric, vegetation and anthropic) during the heavy rainfall season.
This also reflects that the water chemistry is mainly controlled by precipitation and silicate
dissolution. The water physicochemical quality is better during the high-water period
than during the low-water period and deteriorates from upstream to downstream. This is
related to the dilution effect on the total Hg concentration upstream and its accumulation
downstream. Except for direct mercury users, Hg represents little danger for both the
children and adults of the riverside populations. However, (i) oral ingestion was found
to be the main way of exposure for residents and (ii) children’s health is more vulnerable
to the adverse effects of mercury contamination. The Lom waters are affected by physical
pollution (TSS) and chemical pollution (Hg) that are accentuated by and resulting from
different gold mining activities. These two types of pollution confirm the key role of gold
mining in the water quality degradation of the basin.

In general, this study constitutes a first approach and contributes to analyzing the
Lom Basin according to the levels of mercury in surface water and the health risks incurred
for the riverside populations. It completes the weak existing geochemical database. This
is essential for the sustainable management of this hydrosystem, which is subjected to
(i) intense artisanal and semi-mechanized gold mining and (ii) considering the PAEPYS
project of supplying drinking water from the Sanaga River from below the confluence with
the Lom River.
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