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Abstract: Sodium hypochlorite (NaClO) solution is wildly used to remove membrane fouling-derived
organic materials and restore membrane flux, which can result in the formation of halogenated by-
products. To reduce the halogenated by-products, a combined cleaning process with NaClO and
peroxides including hydrogen peroxide (H2O2), peroxydisulfate (PDS), and peroxymonosulfate
(PMS) were applied in offline mode to remove the organic fouling. It was found that all the combined
cleaning processes could effectively restore the membrane flux. Compared with the process of NaClO
cleaning followed by peroxide cleaning (NaClO–peroxide), fewer halogenated by-products were
generated in the NaClO post-combined cleaning process (peroxide–NaClO), and the PDS–NaClO
cleaning process exhibited the best performance in controlling by-products. Overall, most by-product
generation showed a positive correlation with reaction time and temperature.

Keywords: membrane fouling; chemical cleaning; halogenated by-products; sodium hypochlorite
(NaClO); peroxide

1. Introduction

As an efficient physical separation technology without the addition of chemicals,
ultrafiltration membrane technology has been broadly applied in the fields of advanced
purification of drinking water and wastewater [1]. However, membrane fouling remains
a persistent problem during the filtration process due to the attachment of particulates,
colloids, and micro-biological organisms on membrane surface and pores, which can lead
to energy consumption and longer filtration time [2]. Membrane fouling has been widely
recognized as a major obstacle to the further application of ultrafiltration technology [3]. To
overcome this issue, various strategies have been developed, including membrane material
modification, pretreatment of feed water, and optimization of the operation process [4–6].
The chemical structure, surface charge, hydrophilicity, and pore size of membrane materials
significantly affect the filtration efficiency and fouling generation. Therefore, much of the
research on membrane materials modification has focused on the development of new
membrane materials with high flux and excellent anti-fouling performance, which can
effectively control the generation of membrane fouling [7]. Pretreatment of feed water is
intended to alter the properties of feed water through coagulation, adsorption, or oxidation
prior to the filtration process, which can alleviate the generation of membrane fouling [8,9].
The optimization of the operation process focused on the change in operating parameters
such as membrane flux (or transmembrane pressure), cleaning frequency, and filtration
mode (constant pressure or constant current), which can reduce membrane fouling [10–12].
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Compared to other strategies, membrane cleaning is an effective method for removing
foulants from membrane surface and pores, resulting in membrane flux recovery and the
reuse of membrane [13]. Membrane cleaning can be divided into physical cleaning and
chemical cleaning [14,15]. The cleaning processes can also be classified into online and
offline cleaning depending on whether the membrane components need to be transferred
from the filtration system [16,17]. Sodium hypochlorite (NaClO) is an extensive choice in
both online and offline cleaning processes due to its effectiveness in removing organic and
biological fouling [18]. For online cleaning, enhanced back-flush with water containing
NaOCl at concentrations ranging from several mg/L to several dozen mg/L can be used to
remove foulants [17,19]. Alternatively, fouled membranes can be soaked in NaOCl solution
at concentrations ranging from several dozen mg/L to several thousand mg/L for offline
cleaning [20]. However, previous studies reported that NaClO cleaning in offline mode can
lead to the generation of toxic halogenated by-products such as trichloromethanes (THMs),
haloacetic acids (HAAs), chloral hydrate (CH), haloacetonitriles (HANs), and haloketones
(HKs) during the cleaning of membrane fouled by organic and biological matters [21].
Cai et al. also proved that the exposure of activated sludge to NaClO in the MBR online
chemical cleaning process could result in the release of a substantial amount of DOM, and
a series of halogenated by-products such as haloacetic acids, haloquinones, halophenols,
and halopyrroles were detected in the cleaning solution [22]. Some of the toxic halogenated
by-products generated would inevitably be released into = natural water bodies through
the discharge of cleaning solution in offline mode and permeate in online mode, resulting
in potential environmental risks to human health and the natural environment.

Acids, bases, oxidants, surfactants, and chelating agents are the commonly used
chemicals in the membrane cleaning process. The combination of different agents is also
used to remove different types of membrane fouling, which may reduce the formation of
halogenated by-products during NaClO cleaning [22]. For instance, Woo et al. used the
combination of oxalic acid (H2C2O4) and NaClO to clean the ultrafiltration membranes
that were applied as pretreatment for seawater desalination. They found that a cleaning
in series of H2C2O4–NaClO–H2C2O4 showed optimal cleaning efficiency with a recovery
efficiency of 96.8%, 95.8%, 98.3%, and 99.9% after first, second, third, and fourth cleanings,
respectively [23]. Tian et al. reported that individual sodium hydroxide (NaOH) and
ethanol cleaning had limited performance in removing irreversible resistance caused by
river water. However, consecutive use of NaOH and ethanol had a synergistic effect on the
removal of membrane fouling [24]. Alongside NaClO, hydrogen peroxide (H2O2) is also a
common chemical agent in membrane cleaning process [25]. In recent years, peroxydisulfate
(PDS), and peroxymonosulfate (PMS) have also been wildly used in drinking water and
wastewater treatment, as well as membrane cleaing [26–29]. Due to the absence of a
halogen atom, the application of these peroxides could avoid the generation of halogenated
by-products. Wang et al. applied Fe(II)/PMS process for online chemical cleaning of
membrane bioreactor (MBR), which was reported to be a promising alternative for NaClO
cleaning [30]. He et al. found a novel H2O2–MnO2 system for the efficient cleaning of fouled
ultrafiltration membranes, which was attributed to simultaneous generation of reactive free
radicals and oxygen [31]. However, the cost of these processes would be much higher than
NaClO cleaning due to the low cost of NaClO. Previous studies have also reported that
these peroxides can react with organic matter and NaClO, limiting the by-products during
the reaction between organic matter and NaClO [32]. Thus, the combination of peroxide
and NaClO would also be a good choice for membrane cleaning. However, very limited
research has been conducted in this area.

In the present study, H2O2, PDS, and PMS were selected as representative peroxides
to combine with NaClO for membrane cleaning in offline mode. To simulate membrane
fouling, a synthetic feed water consisting of a mixture of humic acid (HA), bovine serum
albumin (BSA), and sodium alginate (SA) was prepared. The effects of different cleaning
sequences, including peroxide–NaClO (peroxide cleaning followed by NaClO cleaning)
and NaClO–peroxide (NaClO cleaning followed by peroxide cleaning), on membrane flux
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recovery and generation of halogenated toxic by-products were investigated. Subsequently,
the impact of various cleaning parameters on the generation of by-products was analyzed.
The results of this study would provide insights into the development of combined cleaning
which could make a balance in membrane cleaning and halogenated by-products generation
control and be helpful for parameters optimization in practical combined cleaning process.

2. Materials and Methods
2.1. Chemical Agents

Ultrapure water used in this study was produced by a water purifier (MicroPure UV,
Thermo Fisher Scientific, Waltham, MA, USA). Chemicals including PDS (Na2S2O8), H2O2,
NaClO, NaOH, and sulfuric acid (H2SO4) were of analytical grade at least and purchased
from Sinopharm Chemical Reagent Co., Ningbo, China. PMS (KHSO5·0.5KHSO4·0.5K2SO4),
HA, BSA, and SA were obtained from Aladdin Co., Ltd. (Shanghai, China). The stock
solutions of HA, BSA, and SA were prepared by dissolving corresponding solid powder in
ultrapure water according to the method described by Cheng et al. [33]. The concentrations
of HA, BSA, and SA in water samples for the filtration process were set at 10 mg/L. Before
the experiment, the PDS and PMS stock solutions were prepared and determined by the
oxidative coloration of N,N-diethyl-p-phenylene diamine (DPD, Aladdin Co., Shanghai,
China) at an absorption of 510 nm [34]. The H2O2 solution was calibrated by colorimetric
methods with DPD at an absorption of 551 nm [35]. Chlorine stock solution was prepared
by diluting NaClO in ultrapure water and standardized periodically using the DPD/FAS
titration method [32]. The concentrations of PDS, PMS, H2O2, and NaClO in the clean-
ing solutions were set at 1 mM. Standards of haloaldehydes (HAs), HKs, HANs, and
trichloronitromethane (TCNM) were obtained from AccuStandard (New Haven, CT, USA),
while THMs, trichloroethylene (TCE), monochloroacetic acid (MCAA), dichloroacetic acid
(DCAA), and trichloroacetic acid (TCAA) were purchased from Supelco (Bellefonte, PA,
USA), and the abbreviations of the selected halogenated by-products are shown in Table 1.

Table 1. Abbreviations of the selected halogenated by-products.

Category Abbreviation Compounds Abbreviation Molecular Formula

Trihalomethane THM Chloroform TCM CHCl3

Haloacetic acid HAA
Monochloroacetic acid MCAA C2H3ClO2

Dichloroacetic acid DCAA C2H2Cl2O2
Trichloroacetic acid TCAA C2HCl3O2

Haloketone HK
1,1-dichloro-2-propanon 1,1-DCP C3H4Cl2O

1,1,1-trichloro-2-propanone 1,1,1-TCP C3H3Cl3O
Haloaldehyde HA Chloral hydrate CH C2HCl3O

Haloacetonitriles HANs Dichloroacetonitrile DCAN C2HCl2N
Trihalonitromethane THNM Trichloronitromethane TCNM CCl3NO2

2.2. Experimental Procedures

A schematic diagram of the experimental setup is displayed in Figure S1. A UF
system, consisting of a dead-end filtration cell (Mosu Tech, Shanghai, China), a nitrogen gas
cylinder coupled with reducing valves for stable pressure supply, and an electronic balance
(Shunyu, JA21002, Shanghai, China) connected to a computer for the automatic recording,
was used for the filtration process. Polyethersulfone flat UF membranes (Mosu Tech,
Shanghai, China) with an effective membrane area of 38.5 cm2 and a molecular weight cut-
off (MWCO) of 50 kDa were employed in this work [8]. Prior to use, the membranes were
soaked in ultrapure water over 12 h to remove the preservative [4]. For each experiment, a
UF membrane was placed at the bottom of the UF cup, and the initial flux was measured
by 100 mL ultrapure water at a pressure of 80 kPa. The fouling process for the first cycle
was conducted with the filtration of 250 mL feed water sample under the same pressure.
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After filtration, the fouled membranes were immersed into different cleaning so-
lutions (250 mL) for chemical cleaning. The chemical cleaning was conducted in two
ways: (1) NaClO–peroxide and (2) peroxide–NaClO. The selected peroxides are H2O2,
PDS, and PMS. As an example, for H2O2–NaClO cleaning, the fouled membrane was
first immersed in H2O2 solution and then transferred to the NaClO solution for cleaning.
The initial pH of all cleaning solutions was maintained at 7.0. After cleaning for a certain
period, the cleaned membrane was rinsed by ultrapure water and then filtrated with
feed water sample again for the second cycle. Two portions of 20 mL samples were
withdrawn from NaClO solution and quenched with excess ascorbic acid for the next
halogenated by-products analysis.

2.3. Analytical Methods

The cleaning efficiency was evaluated in the form of flux recovery. The membrane flux
recovery could be calculated by Equation (1) [36]:

Flux Recovery =
Jc − Jf
J0 − Jf

, (1)

where J0 is the pure water flux (L/m2 h, LMH) of membrane before fouling, Jf rep-
resents the average permeate flux (LMH) at the end of first filtration process, and Jc
represents the average permeate flux (LMH) during the filtration of ultrapure water
after chemical cleaning.

Gas chromatography (GC-2014 C, Shimadzu, Japan) was applied to analyze volatile
chlorinated by-products and HAAs. According to USEPA methods 551.1 and 552.3, GC
was coupled with an electron capture detector (ECD) and a ZB-5column (30 m × 0.25 mm,
ID 0.25 µm) [37,38]. To analyze volatile chlorinated by-products, the temperature of injector
and ECD were set to 200 ◦C and 290 ◦C, respectively. The temperature program of the
oven began at 35 ◦C for 7 min and was then ramped to 200 ◦C at a rate of 40 ◦C/min and
held for 2 min. For the measurement of HAAs, including MCAA, DCAA, and TCAA,
the temperature of injector and ECD were set at 210 ◦C and 280 ◦C, respectively. The
temperature program of oven began at 35 ◦C for 7 min, increased to 80 ◦C at a rate of
8 ◦C/min and held for 10 min, was ramped to 200 ◦C at a rate of 20 ◦C/min, and then held
for 1 min. The detection limit of each halogenated by-product by the USEPA method was
determined and shown in Table S1 [21,39]. Student’s t-test was employed to analyze the
significance of by-product generation in different cleaning processes [40].

3. Results and Discussion
3.1. Removal of Membrane Fouling by the Combination of Peroxide and NaClO

In this study, the efficiency of different cleaning methods for fouling removal was
compared using a combination of peroxide and NaClO. The results are displayed in
Figure 1. During the experiment, the concentrations of NaClO and peroxide were 1 mM,
and the fouled membrane was immersed in the peroxide solution for 1 h, followed by
another 1 h for NaClO cleaning. It is observed that when the concentrations of HA,
BSA, and SA in the simulated natural water were 10 mg/L, the membrane fouling was
significant, causing the membrane flux at the end of filtration to decrease to around
30% of its initial value. While the membrane flux was found to have recovered to 98%,
100%, 105%, and 106% of its initial value after the cleaning by PDS–NaClO, PMS–NaClO,
H2O2–NaClO, and NaClO alone, respectively. The membrane flux recovery were calcu-
lated to be 97%, 100%, 107%, and 109%, respectively. This suggests that the combined
processes of PDS–NaClO and PMS–NaClO are effective in removing pollutants from
the fouled membrane. Previous research has indicated that the fouling of membranes
caused by HA–BSA–SA primarily leads to cake layer filtration, which can be recovered
to approximately 80% of the initial flux through hydraulic backwashing [8]. Due to
the strong oxidizing properties, NaClO can disrupt the organic matter’s structure and
facilitate the detachment of organic matter from the membrane surface and pores. Conse-
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quently, in this study, various NaClO-based cleaning combinations show high efficiency
to restore the membrane flux, and there is no significant disparity in the membrane flux
recovery among the different combination methods. However, the membrane flux after
cleaning was slightly higher than its original value after H2O2–NaClO cleaning and
NaClO cleaning alone. Prior studies have reported consistent results, indicating that the
membrane flux after NaClO or HCl cleaning exhibits an increase compared to the initial
flux. This observation may be attributed to an enhancement of membrane hydrophilicity
and an enlargement of membrane pore size [41,42]. During the second filtration cycle,
the flux of membrane cleaned by PDS–NaClO, PMS–NaClO, H2O2–NaClO, and NaClO
alone decreased by 69%, 71%, 71%, and 77%, respectively. These results indicated that
PDS–NaClO, PMS–NaClO, and H2O2–NaClO cleaning methods had little impact on
membrane fouling, while NaClO cleaning alone could exacerbate fouling during sec-
ondary use. Therefore, PDS–NaClO and PMS–NaClO exhibited better performance for
membrane cleaning among the four peroxide–NaClO cleaning methods.
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Figure 1. Effect of peroxide–NaClO combination cleaning on membrane fouling removal.

As displayed in Figure 2, the efficiency of fouling removal by various NaClO–
peroxide cleaning methods was compared. The four cleaning methods were found to be
effective in restoring membrane flux, with NaClO–PDS, NaClO–PMS, NaClO–H2O2, and
NaClO alone recovering 100%, 98%, 113%, and 106% of the initial flux, respectively. The
membrane flux recovery were calculated to be 100%, 97%, 119%, and 109%, respectively.
The membrane flux after H2O2–NaClO cleaning and NaClO cleaning alone is higher
than that of a virgin membrane, suggesting that the combined NaClO–H2O2 would
damage the UF membrane materials. Combining the results from Figures 1 and 2, it
is evident that the removal of membrane fouling by NaClO–H2O2 cleaning is superior
to that of H2O2–NaClO cleaning. Furthermore, higher flux recovery could be found in
NaClO–H2O2 compared to other combined cleaning process, which might be due to the
production of HO• with higher oxidation capacity from H2O2 decomposition and the
interaction between NaClO and H2O2. During the second filtration cycle, the flux of
the membrane cleaned by NaClO–PDS, NaClO–PMS, NaClO–H2O2, and NaClO alone
decreased by 70%, 68%, 79%, and 77%, respectively. This indicates that the combined
cleaning processes of NaClO–PDS and NaClO–PMS had little effect on membrane fouling
behavior during the following filtration process, whereas the membrane anti-fouling
performance was reduced after NaClO–H2O2 cleaning. Hence, among the three NaClO–
peroxide combined cleaning processes, NaClO–PDS and NaClO–PMS exhibited better
cleaning performance with little influence on membrane properties.
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3.2. Formation of Halogenated By-Product in Different Combined Processes

Figure 3 presents a comparison of halogenated by-product generation during
peroxide–NaClO cleaning. The identified by-products include trichloromethane (TCM),
trichloroacetaldehyde (CH), dichloroacetonitrile (DCAN), dichloroacetone (1,1-DCP),
TCNM, trichloroacetone (TCP), and HAAs [21]. Table 2 displays the results of the signifi-
cance analysis between combined cleaning processes and NaClO cleaning alone, and
combined cleaning of fouled membranes affected the formation of by-products signifi-
cantly with p < 0.05 for most of by-products. The highest formation of by-products could
be found in the NaClO-alone cleaning process, with concentrations of TCM, CH, DCAN,
TCP, MCAA, DCAA, and TCAA being 44.4, 6.5, 11.2, 4.7, 3.1, 62.9, and 137.3 µg/L,
respectively. Combined peroxide–NaClO cleaning processes significantly reduced the
generation of various halogenated by-products, and the lowest generation could be
found in the PDS–NaClO cleaning process. The total carbonaceous (C-) and nitrogenous
(N-) by-product concentrations generated in the PDS–NaClO cleaning process were 22.7
and 1.0 µg/L, respectively, which were much lower than those during NaClO alone
(259.2 µg/L and 12.1 µg/L). Combining the results of membrane flux recovery shown in
Figure 1, the PDS–NaClO cleaning process showed the best performance on membrane
flux recovery and by-product generation control.

Table 2. Significance analysis of halogenated by-products formation variation during the cleaning by
combined process and NaClO alone.

P (t < T, t > T), α = 0.05, n = 2

PDS–NaClO PMS–NaClO H2O2–NaClO

TCM 0.0012 0.0012 0.0014
CH 0.0033 0.0034 0.0397

DCAN 0.0006 0.0002 0.0001
1,1-DCP 0.0118 0.0367 0.4283
TCNM 0.0037 0.0082 0.0497

TCP 0.0002 0.0032 0.0559
MCAA 0.0019 0.0220 0.0017
DCAA 0.0003 0.0029 0.0017
TCAA 0.0001 0.0013 0.0001
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Figure 3. Comparison of halogenated by-products formation during the combined cleaning of
peroxides and NaClO.

Compared to NaClO alone, a lower generation of by-products in the combined
cleaning processes can be attributed to several factors. First, the peroxide could oxi-
dize pollutants on the membrane surface, thereby removing pollutants and reducing
by-product precursors before subsequent NaClO cleaning [4,8]. Second, the use of PDS,
PMS, and H2O2 treatment could shorten the NaClO cleaning time [43]. Third, peroxide
oxidation could alter the characteristics of organic foulants on the membrane surface,
which affects by-product generation during subsequent NaClO cleaning [44]. Xie et al.
previously investigated the impact of PDS and H2O2 pre-oxidation on the generation
of disinfection by-product during subsequent chlorination of natural organic matter
(NOM) [32], revealing that PDS pre-oxidation led to a slight decrease in by-product
generation, which was likely due to the weak oxidation capacity of PDS resulting in a
partial change in NOM properties. The PDS dosage (1 mM) and oxidation time (1 h) used
in this study were much higher than Xie et al.’s research (30 µM and 10 min). Therefore,
it can be speculated that the oxidation of mixed foulants (HA, BSA, and SA) on the mem-
brane surface by PDS can partly inhibit the generation of by-products in the subsequent
NaClO cleaning process [45]. However, Xie et al. also found that H2O2 pretreatment
significantly increased halogenated by-product generation during the subsequent chlori-
nation due to the production of HO• from H2O2 decomposition, which could cause a
hydrolysis reaction with aromatic functional groups in NOM and promote the reaction
between NOM and NaClO. Meanwhile, singlet oxygen (1O2) could be generated by
the reaction between H2O2 and NaClO [46]. On the one hand, 1O2 can promote the
electron densities of functional groups in NOM through the addition reaction, which
can enhance the reaction reactivity between NOM and NaClO [47]; on the other hand,
1O2 can oxidize NOM to produce halogenated by-product precursors such as aldehydes,
ketones, and carboxylic acids, which promote the formation of some by-products [48,49].
In this study, the reaction of residual H2O2 on the membrane surface with NaClO during
the NaClO–H2O2 cleaning process could contribute to the formation of by-products.
Furthermore, PMS was found to enhance the reactivity between chlorine and organic
compounds, potentially promoting the formation of halogenated by-products during
NaClO-PMS cleaning [32]. Therefore, the pre-oxidation of foulant and the catalytic
chlorination of foulant by PMS may promote the formation of by-products.
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Figure 4 shows the generation of by-products in the combined cleaning process of
NaClO–peroxide and the NaClO alone cleaning process. The significance analysis indicates
that the changes of most by-products produced in NaClO–peroxide cleaning and NaClO-
alone cleaning were significant, except for TCP and MCAA. Compared to NaClO cleaning
alone, the concentrations of TCM, CH, DCAN, DCAA, and TCAA in NaClO–peroxide
cleaning decreased by 31%, 27%, 29%, 11%, and 12%, respectively. The reduced by-products
in the NaClO–peroxide cleaning would be attributed to the short reaction time between
NaClO and foulants. As shown in Figure 2, NaClO–PDS and NaClO–PMS cleaning can
effectively remove foulants without affecting the membrane properties. However, when
comparing Figures 3 and 4, peroxide–NaClO cleaning produced fewer by-products than
NaClO–peroxide cleaning. Therefore, peroxide–NaClO cleaning is more effective in con-
trolling by-product formation, and PDS–NaClO shows the best performance among the
selected peroxide–NaClO cleaning processes.
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Figure 4. Comparison of halogenated by-products formation during the combined cleaning and
NaClO alone.

3.3. Effect of Cleaning Time and Temperature on Halogenated By-Products Generation

The effect of cleaning time on the production of halogenated by-products in the
combined cleaning process was studied under conditions of 10 mg/L of organic matter
(HA, BSA, or SA) in the feed water, an initial pH of 7.0, and a temperature of 25 ◦C. As
presented in Figure 5, a significant increase in DCAA and TCAA was found when cleaning
time was extended from 0.5 to 1 h. By further increasing the cleaning time to 4 h, the
concentrations of TCM, CH, DCAA, and TCAA increased by 161%, 741%, 137%, and 88%,
respectively, indicating that the increase in cleaning times can enhance the formation of
halogenated by-product. Although extended cleaning time can improve the removal of
foulant from the membrane surface, the extended reaction time for the NaClO cleaning
process will also promote the reaction between foulants and NaClO, thus enhancing the
generation of halogenated by-products [50]. Therefore, the long-term contact between
the fouled membrane and NaClO should be reduced while ensuring the membrane flux
recovery in practice, which can be achieved by prolonging the cleaning time of PDS and
reducing the cleaning time of NaClO.
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Figure 5. Effect of cleaning time on the formation of halogenated by-products during the combined
cleaning of PDS and NaClO.

Figure 6 shows the effect of reaction temperature on the generation of halogenated
by-products in the combined PDS–NaClO cleaning process. During the experiments, the
concentration of HA, BSA, and SA in the feed water was 10 mg/L, the initial pH was 7.0,
and the cleaning time for PDS and NaClO was 1 h. The significance analysis revealed
that increasing temperature from 15 to 25 ◦C promoted the production of TCM, 1,1-DCP,
and TCAA. Moreover, the formation of CH, dichloroacetonitrile (DCAN), DCAA, and
TCAA increased from 0.5, 0.2, 2.9, and 11.7 µg/L to 1.1, 0.4, 4.4, and 15.4 µg/L, respectively,
while raising the temperature from 15 ◦C to 35 ◦C, indicating that higher temperature
promoted the generation of halogenated by-products in the combined cleaning process.
The increase in reaction temperature can enhance proton transport efficiency, promote
foulant oxidation and modification, and further improve the removal of foulants from the
membrane surface, leading to a reduction in by-product precursors during the subsequent
NaClO cleaning [51,52]. On the other hand, it can accelerate the chemical reaction rate
between NaClO and organic matter, thereby promoting the formation of halogenated by-
products [53,54]. As a result, the slight increase in by-product generation in this study may
be due to multiple factors. A correlation analysis was performed to examine the relationship
between the concentrations of different by-products, cleaning times, and temperatures.
The results of the analysis are presented in Tables S2 and S3. It can be observed that
except for MCAA, there is a significant positive correlation between the concentrations of
the remaining eight by-products and the cleaning time. The correlation coefficients (R2)
for these correlations exceed 0.8, indicating a strong relationship. Additionally, Table S3
indicates a negative correlation between TCNM concentration and temperature, with an R2

value of 0.87. Conversely, the concentration of the remaining eight by-products shows a
positive correlation with cleaning temperature. Notably, the R2 values between TCM, CH,
DCAN, TCNM, TCP, and temperature all exceed 0.8. These findings demonstrate that the
concentration of most by-products exhibit a positive correlation with both cleaning time
and temperature.
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Figure 6. Effect of reaction temperature on the formation of halogenated by-products during the
combined cleaning of PDS and NaClO.

4. Conclusions

In this study, various combinations of peroxide and NaClO were applied to remove
membrane fouling, and the generation of halogenated by-products during the cleaning
process was explored. The main findings of the study are as follows:

(1) The composite pollutant composed of HA, BSA, and SA caused serious membrane
fouling during the filtration process. Combined cleaning processes of peroxide and
NaClO effectively removed pollutants and restored membrane flux, with the flux for
the cleaned membrane being similar to the initial membrane flux.

(2) Halogenated by-products, including TCM, CH, DCAN, 1,1-DCP, TCNM, TCP, and
HAAs, were formed during the cleaning of the membrane by NaClO. Compared
with the combined NaClO–peroxide cleaning process, the combined peroxide–NaClO
cleaning process resulted in a lower generation of halogenated by-products, and
PDS–NaClO cleaning showed the best performance for the control of halogenated
by-products.

(3) In the PDS–NaClO cleaning process, the increase in reaction time from 1 h to 4 h
mainly promoted the concentration of TCM, CH, DCAA, and TCAA, while TCM,
CH, DCAN, DCAA, and TCAA had a relatively high production with the increase
in reaction temperature from 15 ◦C to 35 ◦C. Most by-products exhibit a positive
correlation with both cleaning time and temperature.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w15132498/s1, Figure S1: Schematic diagram of UF system
experimental set-up; Table S1: Sensitivities of the determination methods for various halogenated by-
products.; Table S2: Correlation analysis between different by-product generation and cleaning time;
Table S3: Correlation analysis between different by-product generation and cleaning temperature.
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