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Abstract: Frequency analysis has long been an important theme of hydrology research. Although
meteorological techniques (physical approaches) such as radar nowcasting, remote sensing, and
forecasting heavy rainfall events using meteorological simulation models are quite effective for urban
disaster prevention, statistical and stochastic theories that include frequency analysis, which are
usually used in flood control plans, are also valuable for flood control plans for disaster prevention.
Master plans for flood control projects in urban areas often use the concept of T-year hydrological
values with a T-year return period. A flood control target is a “landside area that is safe against heavy
rainfall or floods with a return period of T years”. This review emphasizes discussions of parameter
estimation of stochastic models and selection of optimal statistical models, which include evaluation of
goodness-of-fit techniques of statistical models. Based on those results, the authors criticize Japanese
standard procedures recommended by the central government. Consistency between parameter
estimation and evaluation of goodness-of-fit is necessary. From this perspective, we recommend
using the maximum likelihood method and AIC, both of which are related to Kullback–Leibler
divergence. If one prefers using SLSC, we recommend not SLSC itself but SLSC’s non-exceedance
probability. One important purpose of this review is the introduction of well-used Japanese methods.
Because some techniques that are slightly different from the international standard have been used
for many years in Japan, we introduce those in the review article.

Keywords: AIC; frequency analysis; goodness-of-fit; maximum likelihood method; parameter estimation;
stochastic model; statistical test

1. Introduction

First, we would like to emphasize that parameter-estimation processes and processes
for selecting the optimal probability distribution are the most important processes in
hydrological frequency analyses. Therefore, we focus on only these techniques in this
review article. Nevertheless, we have used similar techniques for the past three or four
decades. We cannot propose optimal and decisive techniques that numerous researchers
think are the optimal techniques.

For preventing water-related disasters, flood control plans are usually made for large
rivers. In Japan, main rivers are designated as “Class-1 rivers” in principle, managed by
the central government, or as “Class-2 rivers” managed by local governments. A certain
numerical goal is set in a flood control plan, for which the jurisdictional government has a
responsibility to protect people, residences, and other properties in the river basin.

According to Nakamura [1], such numerical goals are set using two methods. Japan,
the Netherlands, the Philippines, and other countries have adopted stochastic goals: T-year
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hydrological values with a return period of T years. The United States, China, and other
nations have adopted historical maximum values. This review specifically examines the
former case. For the former case, the government estimates T-year hydrological values. The
estimation processes are divisible mainly into methods of two kinds: non-parametric and
parametric methods. Takara [2] described that non-parametric methods can be adopted
when the sample size is sufficiently large.

Non-parametric methods are likely to be superior to parametric methods because they
use no specific probability distribution: neither a parameter nor an optimal probability
distribution need to be selected. By contrast, using the parametric methods, one must
estimate parameters and select the optimal probability distribution. Selecting parameters
and probability distribution processes include subjective judgments. If one uses parametric
methods, subjective judgment must be eliminated to the greatest degree possible. The
“Japanese MLIT (Ministry of Land, Infrastructure, Transport and Tourism) flow chart”
described later includes some subjective judgment. Therefore, the authors are critical of the
method. One should not refer to the flow chart by Japanese MLIT.

The next chapter briefly presents international standard procedures used for hydrological
frequency analysis. Because some techniques used in Japan are slightly different from the inter-
national standard, we introduce those in Section 3. Techniques described in Sections 2 and 3
are those which have been used for many years. Section 4 presents other techniques developed
in recent years. Subsequently, we introduce some future perspectives.

2. International Standard Procedure

The World Meteorological Organization (WMO) published its “Guide to Hydrological
Practices (WMO-No. 168 fifth edition)” [3] in 1994. One chapter has the title “Frequency
analysis (Chapter 27)”. The chapter includes the statement that “hydrological phenomena
that are commonly described by frequency analysis are storm precipitation and annual
flood maxima”. They present 16 probability distributions that are commonly used in
hydrology. These include a lognormal distribution, Pearson type three distribution, Gumbel
distribution, general extreme value distribution, and others, which have been used for
hydrologically extreme values. The sixth edition of the guide [4] was published later, and
the Kolmogorov–Smirnov test, the probability plot correlation test, AIC, and BIC were
introduced. Those are related to the goodness-of-fit test. Moreover, the L-moment method
was also mentioned in the guide.

In the “Handbook of Hydrology” [5], one chapter has the title “Frequency Analysis
of Extreme Events”. As a parameter estimation method, the authors first introduced
the method of moments (MOM), the method of L-moments, and maximum likelihood.
They describe that maximum likelihood estimators (MLEs) have very good statistical
properties for large samples. Experience has shown that they generally perform well
with data from records available from hydrology studies, but experience has also shown
that MLEs often cannot be reduced to simple formulas. Regarding the selection of the
optimal probability distribution, the authors described goodness-of-fit tests and L-moment
diagrams. The textbook introduces the Kolmogorov–Smirnov test, the probability plot
correlation coefficient test, L-moment diagrams [6], and ratio tests.

Rao and Hamed [7] explicitly described the selection of distributions. After reviewing
many reports of the literature, including reports by Hazen [8], Markovic [9], Gupta [10],
McCuen and Rawls [11], McCuen [12], Campbell and Sidel [13], Turkman [14], Vogel [15],
Vogel and McMartin [16], Haktanir [17], Bobee et al. [18], and Onoz and Bayazit [19], they
expounded the chi-square test, Kolmogorov–Smirnoff test, and Akaike’s Information Crite-
rion (AIC) [20]. Using these three methods, they described that probability distributions
for flood frequency analysis had been selected.

3. Japanese History of Estimating T-Year Hydrological Value

As described in Section 2, Akaike proposed the information criterion—AIC [20].
Moreover, many researchers developed their own statistical hydrological theories. We have
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an impression that some hydrological procedures used in Japan differ somewhat from
international standard procedures. Some effective theories might not be known worldwide
because they have been published only in Japanese-language journals.

In Japan, the main class-1 rivers are managed by MLIT. An organization related to
MLIT published some manuals [21–23] in which they explained river plan production.

3.1. Iwai Method for Parameter Estimation of a Three-Parameter Lognormal Distribution

Iwai [24] proposed their method, which belongs to the “quantile method” type and
is used for parameter estimation of the three parameters lognormal distribution. The so-
called “Slade type [25] of lognormal distribution” has a bounded probability distribution
function. Iwai used “Slade type II” described below. His method consists of the estimation
of parameters of the three-parameter lognormal distribution. First, one can define a
cumulative distribution function F(x) as explained below. In Equation (1), ξ is designated
as “reduced variate” (Equation (2)).

F(x) =
1√
π

∫ ξ

−∞
exp

(
−t2

)
dt (1)

ξ = α log10
x + b
x0 + b

(2)

This function for the lognormal distribution has three parameters: α, x0, and b. Ad-
ditionally, −b is a lower bound (x > −b). After Kadoya [26] proposed a modification of
the original Iwai method, the modified Iwai method has come to be used in most cases.
Therefore, we intend to present the “modified Iwai method” herein.

Presuming that there are extreme data with sample size n, then they are annual
maxima data. We present these samples as xn (i = 1, 2, 3, . . . , n), which is the ascending
order of statistics.

A. Approximation of x0

First, we use Equation (3) to estimate xg(approximation of x0)

log10 xg =

n
∑

i=1
log10 xi

n
(3)

B. Estimation of b and x0

First, we produce b(s)i (i = 1, 2, 3, . . . m) values (Equation (4)). Integer m is the nearest
integer to n/10.

b(s)i =
xixn−i+1 − xg

2

2xg − (xi + xn−i+1)
(4)

Then, b is estimated using the following equation.

b̂ =
1
m

m

∑
i=1

b(s)i (5)

By defining Xi = log10(xi + b), x̂0 can be estimated by solving the following Equation (6).

log10(x̂0 + b) =
1
n

n

∑
i=1

log10(xi + b) =
1
n

n

∑
i=1

Xi (6)

In this Equation, x̂0 is the estimate of x0; b̂ is obtained using Equation (5), and is
substituted for b in Equation (6).

C. Final process: Estimation of α.
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α is estimated by solving the following equation.

1
α̂
=

√
2n

n− 1

√
X2 −

(
X
)2 (7)

In Equation (7), X = 1
n

n
∑

i=1
Xi and X2 = 1

n

n
∑

i=1
Xi

2.

3.2. Ishihara–Takase Method for Parameter Estimation of Three-Parameter Lognormal Distribution

Ishihara and Takase proposed their method [27], which belongs to the “moment
method” type. Their method, similar to the Iwai method, estimates the parameters of the
three-parameter lognormal distribution. Although a natural logarithm can be used instead
of a common logarithm, we use Equation (2) for assigning priority to uniformity with the
Iwai method described above.

First, we calculate the sample average x, standard deviation s, and coefficient of
skewness CS1. These are estimated using Equations (8)–(10) presented below.

x =
1
n

n

∑
i=1

xi (8)

s2 =
1

n− 1

n

∑
i=1

(xi − x)
2

=
n

n− 1

(
x2 − (x)2

)
, s =

√
s2 (9)

CS1 =
n

∑
i=1

(xi − x)3/s3/(n− 1) (10)

The parameters that must be estimated are α, b, and x0. Ishihara and Takase concluded
that α is estimated using the following Equation (11).

k = 1/

√2

√√√√ln

[
−1 + 21/3(

2+CS
2+
√

4CS
2+CS

4
)1/3 +

(
2+CS

2+
√

4CS
2+CS

4
)1/3

21/3

]
α = k · ln 10

(11)

The reason for using k is that their original paper adopted natural instead of common
logarithms in Equation (2); k is a parameter for the case of using natural logarithms.
Furthermore, CS is not CS1 in Equation (10). Therein, CS1 is biased; CS is corrected when
using correction factor FCS in Equation (12).

CS = CS1(1 + FCS) (12)

As for the correction factor FCS , Ishihara and Takase showed it using a figure. One
can obtain FCS , which is a function of sample size n and CS1, using their figure, which is
well-known as Ishihara–Takase’s figure. However, calculating FCS by PC can be performed
more easily than ever using the following procedure. Therefore, we recommend that
analysts calculate FCS by themselves.

A. Estimating tentative k and α using Equation (11)

First, we estimate k and α. In Equation (11), CS1 is substituted into CS. CS1 is calculated
using Equation (10); sample xi represents observed data.

B. Generating ξi (i = 1, 2, 3, . . . . n)

According to Hazen’s plotting position formula (as for plotting position formula,
see [8,28,29]), Fi(i = 1, 2, 3, . . . . n, which is the probability of non-exceedance) is calculated.
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Additionally, ξi is calculated by the inverse function of Equation (1) as ξ(F). Hazen’s
plotting position formula is the following, where i is the order of ascending-order statistics:

Fi =
2i− 1

2n
(13)

The method for obtaining ξ(F) using the inverse function depends on the software used.
Equation (1) can be written as F(ξ) = {1 + Er f (ξ)}/2, where Er f (·) is the error function.
Therefore, an inverse function of it can be expressed as the following Equation (14).

ξ(F) = Er f−1(2F− 1) (14)

yi is obtained using an inverse function of Equation (2): —Equation (15). Then we can use
x0 = 1, b = 0 for simplicity of calculation.

y(ξ) = 10ξ/α(x0 + b)− b

= eξ/k(x0 + b)− b
(15)

C. Calculating C∗S1_y and C∗S_y of samples

We can calculate C∗S1_y using yi, which is the coefficient of skewness not of xi but of
yi by Equation (10). Then, we obtain the theoretical coefficient of skewness C∗S_y using
the following Equation (16). When one calculates C∗S_y, k is the value estimated by using
sample xi first.

C∗S_y =
exp

(
9/(4k2)

)
− 3 exp

(
5/(4k2)

)
+ 2 exp

(
3/(4k2)

)
(exp(1/(k2))− exp(1/(2k2)))

3/2 (16)

As a result, FCS = C∗S_y/C∗S1_y − 1 is obtained.

D. Calculating three parameters

Using the corrected coefficient of skewness, k or α is obtained. Then b and x0 are
estimated using the following equations (Iwai and Ishiguro [30]).

λ = exp
(
1/(4k2)

)
b = 1√

λ2−1
σ− x

x0 = x− λ−1
λ
√

λ2−1
σ

(17)

In Equation (17), x and σ, respectively, denote the average and standard deviation of
the observed sample xi.

3.3. Etoh’s Distribution

Etoh et al. proposed the probability distribution for extreme values (Etoh et al. [31]).
The cumulative distribution function of Etoh’s distribution, which has the two parameters
a and b, is the following. This probability density function has a heavy tail.

F(x) =

{
exp

{
−a
(

1 +
√

bx
)

exp
(
−
√

bx
)}

(x ≥ 0)
0 (x < 0) (18)

Although the following probability density function (Equation (19)) has been used,
F(0) (left-hand limit) is e−a. It is not zero in accordance with Equation (18). Therefore,
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Hayashi et al. [32] proposed the modified function as Equation (20), where δ(x) represents
Dirac’s delta.

f (x) =
ab
2

exp
{
−
√

bx− a
(

1 +
√

bx
)

exp
(
−
√

bx
)}

(x ≥ 0) (19)

f (x) =

{
ab
2 exp

{
−
√

bx− a
(

1 +
√

bx
)

exp
(
−
√

bx
)}

+ δ(x) exp(−a) (x ≥ 0)
0 (x < 0)

(20)

Because exp(−a) is usually small, however, the use of Equation (19) is adequate.
As a parameter estimation method, we usually use the maximum likelihood method.

Etoh et al. [31] and Hoshi [33] recommend the following procedure. The log-likelihood of
this probability distribution is presented as Equation (21).

L(a, b) =
N
∑

j=1
ln f

(
xj
)

= N ln a + N ln b− N ln 2−
N
∑

j=1

√
bxj

−a

[
N
∑

j=1
exp

(
−
√

bxj

)
+

N
∑

j=1

√
bxj exp

(
−
√

bxj

)] (21)

By solving ∂L
∂b = 0, we can obtain a, which is a function of b, as the following

Equation (22), which is referred to as a1.

a1 =

N
∑

j=1

√
bxj − 2N

N
∑

j=1
bxj exp

(
−
√

bxj

) (22)

Then, substituting a1, obtained by Equation (22) into Equation (21), L(a, b) is modified
to L(b). Finally, we seek the largest L(b)—the optimal b in some way. Kubota [34] proposed
the following procedure. Solving ∂L

∂a = 0, one can obtain a (designated as “a2”), which is a
function of b, from Equation (23).

a2 =
N

N
∑

j=1
exp

(
−
√

bxj

)
+

N
∑

j=1

√
bxj exp

(
−
√

bxj

) (23)

The solution of a can be obtained by minimizing h(b) = |a1 − a2| [33], which can be
performed easily using software such as Mathematica [34]. In Japan, Etoh’s distribution is
thought to be appropriate for extreme values data. Kuzuha and Mizuki [35] applied several
probability distributions to 42,500 pieces of annual maximum one-hour rainfall data whose
sample size is 60. They reported that Etoh’s distribution was most appropriate for 37% of
the 42,500 data. Two-parameters lognormal distribution was most appropriate for 42%,
and the Gumbel distribution was most appropriate for 14%.

3.4. Approach Proposed by Tsuchiya and Takeuchi

Although Etoh’s distribution is quite an effective probability distribution, the L-moment
solution has not been known. This probability distribution was not described by Hosking and
Wallis [6] because this probability distribution is not well-known internationally.

Tsuchiya et al. [36] (see also Kuzuha [37]) presented the PWM solution of this proba-
bility distribution as follows. Their solution was obtained using numerical procedures, but
the method is simple.
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Specifically, we can estimate the parameters using the following procedure.

βr =
∫ 1

0
x(F)FrdF =

∫ ∞

0
x(F)Fr f (x)dx (24)

M1,0,0 = β0 =
∫ ∞

0 x f (x)dx = ab
2

∫ ∞
0 x exp

{
−
√

bx− a
(

1 +
√

bx
)

exp
(
−
√

bx
)}

dx
M1,1,0 = β1 =

∫ ∞
0 xF(x) f (x)dx

= ab
2

∫ ∞
0 x exp

{
−
√

bx− 2a
(

1 +
√

bx
)

exp
(
−
√

bx
)}

dx
(25)

Equations (24) and (25) indicate the first-order and second-order probability weighted
moments. Equation (26) presents the sample probability weighted moments.

M̂1,0,0 = b0 = 1
n

n
∑

i=1
xi

M̂1,1,0 = b1 = 1
n

n
∑

i=1
xi

i−1
n−1

(26)

As Tsuchiya and Takeuchi reported [36], M1,1,0/M1,0,0 is independent of b; it is a function
of only a. Therefore, we can ignore b and can set b = 1 as the following Equation (27).∫ ∞

0 x exp
{
−
√

x− 2a
(
1 +
√

x
)

exp
(
−
√

x
)}

dx∫ ∞
0 x exp

{
−
√

x− a
(
1 +
√

x
)

exp
(
−
√

x
)}

dx
=

b1

b0
(27)

a is obtained by numerically solving Equation (27).
Finally, estimation of b is obtained by numerical solution of Equation (28) after substi-

tuting the â obtained into a.

M̂1,0,0 =
ab
2

∫ ∞

0
x exp

{
−
√

bx− a
(

1 +
√

bx
)

exp
(
−
√

bx
)}

dx (28)

Furthermore, we would like to mention the following facts. Takeuchi and Tsuchiya
reported the PWM solution of the normal distribution [38], a lognormal distribution, and
Pearson type three distribution [39]. Because their findings were published in a Japanese
journal, they have not become well-known internationally, but they found their solution
ahead of the international hydrological community.

3.5. Ueda–Kawamura’s Criterion for Evaluating Goodness-of-Fit

Ueda and Kawamura [40] proposed a criterion to evaluate the goodness-of-fit of a
probability model. Although many textbooks have recommended the evaluation of the
validity of a probability model based on probability studies, it is difficult to evaluate
their validity quantitatively. They sought to quantitively evaluate the probability model’s
goodness-of-fit, as explained below.

A. Presuming sample data with size n and that have ascending order statistics, then using
the plotting position formula, the non-exceedance probability FP(xi) is estimated.
Several plotting position formulas are expressed as Equation (29).

FP(xi) =
i− α

n + 1− 2α− β
(29)

For example, for Cunnan’s formula [29], α is 0.4 and β is 0.
B. If the cumulative distribution function of the probability model is F(x), then, of course,

the non-exceedance probability is F(xi).
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C. Ueda and Kawamura plot (F(xi), FP(xi)) on a graph with the normal axis. The
minimum and maximum of both axes are 0 and 1. From the viewpoint of goodness-
of-fit, the data shown are near the line of y = x.

Ueda and Kawamura proposed the use of the χ2 test as a goodness-of-fit test. As a
result, the χ2 value of each probability distribution is a candidate “fair criterion” when
choosing a probability distribution.

3.6. Takasao–Takara’s SLSC for Evaluating Goodness-of-Fit

Takasao et al. [41] proposed the standard least-squares criterion for goodness of fit
(SLSC). This criterion evaluates goodness-of-fit by linearity on a probability plotting paper.
The SLSC is expressed as the following Equation (30).

SLSC =

√
n
∑

i=1
(si − s∗ i)

2/n

|s0.99 − s0.01|
(30)

In Equation (30), s is a reduced variate and calculated according to Equation (31),
where ξ and α, respectively, denote the location and scale parameter.

s = (x− ξ)/α (31)

xi
∗ = x(F(xi)) (32)

The value of xi
∗ is calculated using Equation (32); in addition, s∗ i is transformed from

xi
∗ by Equation (31). One can assume a probability plotting paper with a horizontal axis x

and vertical axis s. (xi, si) is on a linear line because of the definition. However, (xi, s∗ i) is
plotted nearly as a straight line but not on the line: SLSC is the mean distance between a
straight line and (xi, s∗ i). That is, SLSC evaluates the mean distance which is the degree of
separation of the probability model from the sample, not by vision but by values.

Takasao et al. used a denominator of the right side of Equation (30) to maintain the
fairness of the criterion. They regarded vertical scales of the probability plotting paper of
each probability distribution as corrected to the same scale, divided by the denominator.
As Kuzuha [42] and Hayashi et al. [43] found and Kuzuha et al. [35] [44–46] later examined
in detail, however, it is not true. That point is explained in the next section.

3.7. Procedure for Parameter Estimation and Choosing the Probability Distribution of the Japan
Ministry of Land, Infrastructure, Transport, and Tourism

For estimating long-term stochastic hydrological values (e.g., 100-year precipitation
whose return period is 100 years), THE MLIT used their own flow chart for parameter
estimation and for choosing an optimal probability distribution [21]. Recently, Kuzuha and
Mizuki criticized the flow chart. The flow chart has several shortcomings, but it is wholly
inappropriate for three main reasons:

(1) The most important process of the MLIT flow chart is THE evaluation of goodness-
of-fit by SLSC and the evaluation of variability by resampling technique for each
probability distribution: some candidates are first chosen for the optimal probability
distribution by SLSC. However, the authors found that SLSC is not valid from the
perspective of fairness among probability distributions. An unfair referee should not
judge the match.

(2) In the MLIT flow chart, the probability distribution with the smallest variability is
thought to be the optimal one among the candidates selected above. They regard the
probability distribution having the least variability of T-year values as optimal. They
use three criteria in the flow chart: “at parameter-estimation process”, “at process of
selecting the optimal”, and “at evaluating variability”.

(3) The criteria of the least likelihood method for parameter estimation and AIC are
related to Kullback–Leibler divergence [47]. If they use the L-moment method (or the
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“conventional” moment method), they assign importance to the coincidence of the
L-moment (moment) between the model and data.

(4) Work by Tanaka and Takara [48] probably affected the MLIT flow chart the most.
Tanaka and Takara mentioned that “if SLSC is less than 0.04, we regard that the
probability distribution’s goodness-of-fit as sufficient. If using 0.03 for the threshold,
most probability distributions are evaluated as inappropriate from the viewpoint of
the goodness-of-fit. Then, we use 0.04 as the threshold”. The authors have criticized
this rationale as it is not scientific. It is for the convenience of administration—the
Japan MLIT.

3.8. Current Best Practice

We think that consistency is extremely important between the processes of parameter
estimation and choosing the probability distribution. In this context, “consistency” means
using the same or similar criterion for parameter-estimation and evaluation of goodness-of-
fit. Moreover, we believe that “evaluating variability in MLIT flow chart” is not necessary.
Let us explain the reason in detail. The most important is that the criterion for evaluating the
goodness-of-fit is a fair criterion from the perspective of comparing probability distributions.
Because we compare a goodness-of-fit-measure of each probability distribution and select
the optimal probability distribution, fairness is most important. From this perspective,
SLSC is not a fair measure at all.

Suppose that an analyst uses the maximum likelihood method for parameter estima-
tion and that they estimate parameters of an A-probability distribution and a B-probability
distribution. Moreover, suppose that the analyst chooses Takasao–Takara’s criterion (SLSC)
for selecting the optimal probability distribution. Parameters are selected to maximize
the likelihood. Then, the A-probability distribution and B-probability distribution are
compared. If the SLSC of the A-probability distribution is smaller than that of the B-
probability distribution, the A-probability is selected as the optimal distribution. This poses
a big problem since there is a possibility that other parameter sets are selected, and the
B-probability distribution is selected as the optimal distribution if parameters are selected
to minimize SLSC. This is the reason why we insist that the consistency of measure for
parameter-estimation and evaluating goodness-of-fit is quite important.

According to the arguments presented above, using the maximum likelihood method
for parameter estimation and using AIC for testing goodness-of-fit are recommended pro-
cedures. The main reason is that both are related to Kullback–Leibler divergence [46]. As
described in Section 3.7, Tanaka and Takara’s explanation [47] for the threshold (=0.04)
is inappropriate. However, one can understand the difficulty of policymakers in govern-
ment agencies in changing their methods quickly to align with an academic perspective.
Therefore, we presented some issues related to the conventional method in earlier re-
ports [35,44,45].

A. We recommend using the maximum likelihood method and AIC (or TIC, etc.).
B. If an analyst prefers using SLSC, then we recommend not using SLSC itself but

SLSC’s non-exceedance probability F(SLSC). For calculating F(SLSC), one must
know SLSC’s probability distribution function. Hayashi et al. [43] and Kuzuha and
Mizuki [35,44] demonstrated how to obtain the SLSC’s probability density function
using Monte Carlo simulation.

C. If an analyst uses the SLSC’s non-exceedance probability, then they can evaluate the
goodness-of-fit of each probability distribution, even if SLSC is not a fair criterion.
That procedure can be applied to any criterion, even if the criterion is not a fair one
from the viewpoint of comparing the degrees of goodness-of-fit.

4. Novel Techniques and Future Perspectives

In 2004, Gelder [49] described some well-known techniques for parameter estimation:
the method of moments (MOM), maximum likelihood estimation (MLE), least squares,
Bayesian estimation, minimum cross-entropy, probability weighted moments (PWMs), and
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L-moments. More recent reports, such as that by Yuan et al. (2018) [50], described the
adoption of the so-called MOM for parameter estimation. Langat et al. (2019) [51] adopted
MLE after reviewing some techniques. Those are MOM, L-moments, LH moments [52], and
the expected moments algorithm (EMA). Anghel and Ilinca (2022) [53] used both MOM
and L-moments for parameter estimation.

Coles [54] and Hayashi et al. [43] considered non-stationary hydrological models.
Hayashi et al. discussed non-stationary hydrological frequency models introducing time-
dependent parameters. Their report recommended the use of MLE for parameter estimation.
Langat et al. commented on the method of Bayesian estimation: “although there are drawbacks
of complexity in its implementation in present time, it might become a useful non-stationarity
flood frequency analysis model in the future, with advancements in technology”.

Yuan et al. (2018) [50] described that “the choice of an appropriate PDF is still one of
the major issues in engineering practice because there is no general agreement as to which
distribution could be used for the frequency analysis of extreme rainfalls”. They adopted
the chi-square test for selecting the optimal probability distribution. Langat et al. [51]
introduced the Kolmogorov–Smirnov, Anderson–Darling, and Cramer–Von Mises tests in
addition to the chi-square test.

Most techniques described above have a long history; quite attractive and novel tech-
niques that have become a new international standard have not been proposed in recent years.
Nevertheless, because hydrological frequency analyses that use non-stationary hydrological
data have become increasingly important in light of drastic climate change, non-stationary
analyses have become ever more necessary. Some techniques are useful for non-stationary
analyses. The maximum likelihood method and AIC, TIC, or BIC, which are related to
Kullback–Leibler divergence [47], are expected to be crucially important in the research area.
In addition, the method of Bayesian estimation might be particularly effective.

5. Conclusions

We reviewed statistical hydrological studies, especially those conducted in Japan.
Many Japanese government analysts often use procedures developed in Japan, which have
been recommended by Japanese MLIT. We criticized the use of those procedures. Some
consistency between parameter estimation and evaluation of goodness-of-fit is necessary.
From this perspective, we recommend using the maximum likelihood method and AIC,
both of which are related to Kullback–Leibler divergence. If one prefers using SLSC, we
recommend not SLSC itself but SLSC’s non-exceedance probability.

Techniques for parameter estimation and selecting the optimal probability distribution
should be discussed from an international viewpoint. Some techniques related to Kullback–
Leibler divergence or Bayesian estimation might be candidates for the solution of non-
stationary flood frequency analyses.
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