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Abstract: Global climate change is anticipated to have a profound impact on drought occurrences,
leading to detrimental consequences for the environment, socioeconomic relations, and ecosystem
services. In order to evaluate the extent of drought impact, a comprehensive study was conducted
in the Hyderabad–Karnataka region, India. Precipitation data from 31 stations spanning a 50-year
period (1967–2017) were analyzed using the standardized precipitation index (SPI) based on gamma
distribution. The findings reveal that approximately 15% of the assessed years of experienced drought
conditions, with a range of influence between 41% and 76% under SPI_3, and between 43% and 72%
under SPI_6. Examining the timescale magnitude frequency provided insights into variations in
the severity of drought events across different locations and timescales. Notably, the Ballari (−8.77),
Chitapur (−8.22), and Aland (−7.40) regions exhibited the most significant magnitudes of drought
events for SPI_3 with a 5-year return period. The heightened risk of recurrent droughts in the study
area emphasizes the necessity of integrating SPI in decision-making processes, as such integration can
markedly contribute to the development of reliable and sustainable long-term water management
strategies at regional and national levels.

Keywords: SPI; drought; return period; magnitude and severity

1. Introduction

The hydrological cycle is profoundly altered by atmospheric circulation patterns
driven by climate change [1]. Climate change has substantial impacts on droughts and
their spatial distribution, consequently affecting various environmental and socioeco-
nomic factors [2]. Drought can be defined as a prolonged period of abnormally dry
weather or water scarcity, resulting in a lack of sufficient water resources to meet the
need of a particular region or ecosystem [3]. Droughts, characterized by low precipita-
tion and reduced water availability, have significant impacts on agriculture, ecosystems,
and human activities [3–5]. They can vary in severity, duration, and spatial extent, caus-
ing water shortages, agri-food losses, and an elevated risk of wildfires and ecological
imbalances [6–8]. However, with the ongoing climate change, the frequency and intensity
of droughts are expected to escalate, particularly in arid and semi-arid regions. In addition,
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it is projected that the global extent affected by extreme droughts, currently ranging from
1% to 3%, will surge to 30% by the 2090s [8]. Furthermore, according to the same source,
projections indicate that by 2025, approximately 4 billion people will experience severe
water stress, with particularly severe conditions expected in Africa, the Middle East, and
South Asia. Such scenarios highlight the urgent need to address the escalating frequency
of droughts, as well as accompanying water-related disruptions. Thus, maintaining op-
timal and more efficient water management has become increasingly challenging and
demanding [9,10].

India has witnessed a marked increase in both the frequency and severity of prolonged
multi-year droughts in recent decades. Notably, from 1891 to 2009, India experienced
23 large-scale droughts, with their occurrence on the rise [11]. The primary causes of
droughts in India are deviations in the total volume and pattern of rainfall during the
southwest monsoon, coupled with the effect of rising air temperatures [12,13]. Droughts in
the Karnataka state, characterized by spatiotemporal variations in rainfall, reflect the esca-
lating trend of increasing drought severity and frequency observed throughout India [14].
This state exhibits a wide oscillation in rainfall levels, ranging from 4747 mm in the coastal
region, 3500 mm in the Malnad region, to as low as 477 mm in the south interior Karnataka.
The northern part of Karnataka is particularly susceptible to droughts due to semi-arid
climate and low and erratic rainfall patterns, causing both meteorological and hydrolog-
ical droughts [15]. This region experiences an average annual rainfall of approximately
503 mm, distributed across only 35 rainy days. In this region, the analysis of drought
reveals that approximately five droughts with varying degrees of severity occur within a
span of ten years. As a result, the region faces challenges due to low rainfall and a short
growing season, which typically lasts only 8 to 14 weeks. These factors impose limitations
on the choice of crops that can be cultivated in this area. Moreover, insufficient rainfall has
a negative impact on replenishing groundwater resources, exacerbating the issue of water
scarcity [16]. Thus, understanding the dynamics of droughts in regions like this is crucial
for effective water resource management and agricultural resilience.

To evaluate the severity of drought in regions affected by drought, a range of in-
dices have been developed and applied. These indices consider the specific characteristics
of the natural hazard, the sectors impacted by drought, and utilize robust scientific ap-
proaches and methods [17–19]. For instance, the groundwater drought index developed
by Goodarzi et al. [20] and the normalized difference vegetation index (NDVI) [21] are
two examples of recently developed indices. Brown et al. [22] proposed the vegetation
drought response index (VegDRI), which combines NDVI datasets derived from NOAA-
AVHRR with climate-based SPI and PDSI drought indices, derived from selected synoptic
stations. However, the main drawback of VegDRI is (i) its limited record period due to
reliance on remotely sensed data, (ii) it is not applicable outside the vegetation season or
during periods when vegetation is minimal. The standardized precipitation index (SPI),
developed by Mckee et al. [23], is recognized as the most robust index for analyzing drought
severity. Unlike other indices that incorporate additional factors such as the surface water
supply index (SWSI), normalized difference vegetation index (NDVI), crop moisture index
(CMI), and vegetation condition index (VCI), SPI solely relies on rainfall data. This sim-
plicity and focus on precipitation make SPI highly popular and widely used in drought
analysis [13,24–26]. For instance, in a study conducted by Spinoni et al. [27], SPI was
applied with the standardized precipitation evapotranspiration index (SPEI) and the recon-
naissance drought indicator (RDI) in assessing droughts at the EU level. In addition, Meresa
et al. [28] studied hydro-meteorological drought in ten Polish catchments by computing
SPI, SPEI, and runoff standardized indices for the period of 1971–2100. Thus, the use of
SPI can be a valuable approach for water resource management in (agro)ecosystems. The
computation of SPI values was considered for the time scales of 3 and 6 months. This will
be useful for intermediate and long-term assessments of hydrologic droughts, specifically
those affecting, for example, groundwater recharge ability in the country, thus increasing
the risk of water shortage [29].
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The objective of this study was to enhance our understanding of droughts by analyz-
ing their severity, duration, and frequency, as well as the recurrence intervals at various
time scales. In the current study, SPI_3 and SPI_6 were considered because these time
scales are often considered relevant for assessing drought in agriculture, as they reflect both
short-term fluctuations and longer-term moisture deficits that can affect crop productivity.
Furthermore, the application of SPI in this study is deemed essential for sustainable water
resource utilization, mitigating the effects of drought on food security and local economies,
and adapting to climate change. By incorporating the SPI into decisionmaking, policy-
makers can formulate resilient and sustainable long-term action plans and strategies for
effective water management. The findings from this study can serve as a reliable reference
point for the national and/or inter(regional) authorities in identifying drought-prone areas
and prioritizing ecological protection measures in the future.

2. Materials and Methods
2.1. Study Area

Hyderabad Karnataka (HK) region is located in the northeastern part of the Karnataka
state (14◦60′ to 18◦30′ N; 75◦60′ to 77◦70′ E). For this study, a total of 31 stations were
considered for drought characterization and modeling. The rainfall data (1967–2017) were
collected from the Karnataka State Remote Sensing Applications Centre (KSRSAC) and
the Dept. of Economics and Statistics, Bangalore, Karnataka, with the workflow presented
in Figure 1.
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Figure 1. Study flow chart.

2.2. Standardized Precipitation Index (SPI)

SPI values were determined by fitting the long-term precipitation datato a probability
distribution, specifically the Gamma distribution [30,31]. This technique has been applied
to rainfall data by Sonmez et al. [32] since the Gamma distribution is well-suited for this
type of data.

f(x,α,β) =
1

βαΓ(α)
xα−1e−(

x
β ) for x,α,β > 0 (1)

where α and β represent the shape and scale parameters, respectively; x is the rainfall
depth; and Γ(α) is the gamma function. The parametersαand β were estimated using the
maximum likelihood method using Equations (2) and (3), respectively.

α =
1

4A

(
1 +

√
1 +

4A
3

)
(2)

β =
X
α

(3)
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A = ln(X)−

n
∑

i=1
ln(x)

n
(4)

Integrating the probability density function (PDF) with respect to x and attach α and
β parameters yields the cumulative probability distribution function (CDF) F(x)

F(x,α,β) =
x∫

0

f(x,α,β) =
1

βαΓ(α)

x∫
0

xα−1e−(
x
β )dx (5)

which can be expressed by Equation (6)

F(x,α,β) =
1

Γ(α)

x∫
0

tα−1e−tdx (6)

where t = x
β .

Asthegamma function is undefined for x = 0 and the time series of rainfall data may
have zero rainfall values, the cumulative probability of zero and non-zero rainfalls, H(x)
was calculated using Equation (7).

H(x) = q + (1 − q)F(x,α,β) (7)

where q represents the probability of zero rainfall events.
The cumulative probability was then transformed into a standardized normal distri-

bution so that mean and variance of SPI are set to 0 and 1, respectively [30].
In order to convert the cumulative probability distribution into a standardized normal

distribution, the current study used the approximations offered by [33], which are provided
in Equations (8) and (9):

SPI = −
(

k− c0 + c1k + c2k2

1 + d1k + d2k2 + d3k3

)
(8)

SPI = +

(
k− c0 + c1k + c2k2

1 + d1k + d2k2 + d3k3

)
(9)

where

k =

√√√√ln

(
1

(H(x))2

)
for 0 < H(x) ≤ 0.5

k =

√√√√ln

(
1

(1 −H(x))2

)
for 0.5 < H(x) ≤ 1

C0 = 2.515517, C1 = 0.802583, C2 = 0.010328, d1 = 1.432788, d2 = 0.189269 and d3 = 0.001308.
In this study, SPI values were calculated on a different timescale. The SPI threshold

ranges that are used to define drought conditions are presented in Table 1.
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Table 1. Drought classification based on SPI [23].

Drought Classes SPI

≥2.0 Extremely wet (EW)

1.99 to 1.50 Severe wet (SW)

1.49 to 1.00 Moderately wet (MW)

0.99 to −0.99 Near normal (N)

−1.0 to −1.49 Moderate drought (MD)

−1.50 to −1.99 Severe drought (SD)

≤−2.0 Extreme drought (ED)

The regional monthly drought index (DI), derived from mean rainfall data, was used
for conducting temporal drought analysis. The run theory was utilized to define drought
characteristics such as: the most intense drought (Ie), initiation time (Ti), termination time
(Te), duration (Dd), severity (Sd), and intensity (Id) (Figure 2). Yevjevich [34] and Mishra
and Singh [11] proposed the use of run theory to define hydrologic drought (Figure 2). The
run theory refers to the occurrence of another type of event in the process of continuous
occurrence of similar events, such as droughts, continuous rain-free days, rainy days,
alternating natural water occurrence, etc. [35].
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2.3. Areal Extent of Drought Severity at Different Timescales

The study area was bifurcated using the Thiessen Polygon [36] tool in ArcGIS v. 10.2.2
software into 31 polygons, corresponding to 31 rain gauge stations. Each polygon in the
study area represents the spatial extent of influence of a rain gauge station, measured in
square kilometers and expressed as a fraction of the total study area. The timescale of
3 (SPI_3) and 6 (SPI_6) months were selected for the determination of areal drought events.

2.4. Spatial Drought Analysis

Spatial analysis of drought was conducted using station DI values derived from
monthly rainfall data (SPI_3 and SPI_6) within the same ArcGIS interface, employing
the inverse distance weighing (IDW) technique to spatially visualize drought values over
the study area. A similar approach was applied by Subedi et al. [37] in studying spatio-
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temporal changes during a drought in Texas, USA, based on the SPEI index. The general
form of the IDW approach [38] is given by:

Zni =

m
∑

j=1

(
zj

dp
j

)
m
∑

j=1

(
1

dp
j

) (10)

Zni represents the new value for given grid j; Zj represents the value of the m nearest
neighbors; dj represents the distance to m—nearest neighbors; p is the exponent of distance,
whereas the exponent of distance was set as 2 for spatial interpolation of DI values.

2.5. Development of Time Scale Magnitude Frequency (TMF)

In order to describe the statistical characteristics of droughts in the study area, a
thorough review was conducted to select an appropriate theoretical distribution function,
ultimately choosing the Extreme Value type 1 (EV1) distribution function [39]. The EV1
was selected because (i) it is easy to apply as a two-parameter frequency distribution
function, and (ii) visual inspection of EV1vs. other frequency distribution functions (the
generalized extreme value—GEV, the three-parameter lognormal distribution—LN3 or
the Log-Pearson distribution—LP3) suggests that EV1 gives more accurate estimation for
dry and wet periods [40,41]. The next step involved fitting and testing the distribution
function against the cumulative severity values of the DI at different time scales by using
next equations:

F(x) = exp(− exp(− α(x − µ))) (11)

where

α = Shape parameter
u = Location parameter

These parameters were determined from the relations:

α =
1.283
σ

(12)

u = x + Kσ (13)

x = mean
σ = standard deviation

K = −0.78
[

0.577 +
(

ln
(

ln
T

T− 1

))]
(14)

where

T = return period (years) of the event of a defined duration.

Based on Equation (14) [41] the drought severities corresponding to selected return
periods of 2, 5, 10, 20, 30, 50 and 100 years were computed for each event.

3. Results and Discussion
3.1. Spatiotemporal Variation of Drought Events

Figure 3 illustrates the spatial distribution of the most severe droughts across dif-
ferent timescales. For the SPI_3 timescales, the longest drought event occurred during
1992 (April–December) and 1984–1985 (May–January) in Jeevargi and Aland, lasting 9
months with severity values of −21.68 and −14.33, respectively. Furthermore, an intense
drought event was observed in Ballari in June 2003, with a severity value of −4.66 (Table 2).
Regarding the SPI_6 timescales, the longest events were identified as 1984–1985 (June–
September) and 1991–1993 (December–March) in Aland and Jeevargi, lasting 16 months
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with a severity value of −29.38 and −43.48, respectively. Additionally, an intense drought
event was recorded in February 1993 in Jeevargi under SPI_6, with a severity value of−4.67
(Table 3). It is crucial to effectively utilize this information to address the challenges posed by
drought disasters.
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for SPI_3 (Left) and SPI_6 (Right).

Based on a 48-year analysis (1961 to 2008), it was found that significant areas of the
district faced severe drought conditions in 1972 and 2003 [42]. In the Bellary region, SPI_1,
SPI_6, and SPI_12 were employed as drought indicators, indicating the occurrence of
moderate, severe, and extreme droughts at a high frequency [43]. For SPEI-1, the highest
intensity that occurred in geophysics station Lembang –Bandung about −2.931 in October
2012 with a value of severity −2.931 with a month duration. And thehighest intensity
for SPEI-3 was recorded in meteorology station Selaparang–Mataram about −2.485 with
severity −7.455 and duration of 3 months occurred in June–August 2009 [44].

Table 2. Magnitude and duration of the longest, strongest, and intense drought events in HK region
using SPI_3 [44].

Station
Longest Strongest Highest

Year D Year S Year I

Afzalpur 1972 (June–November) 6 1972
(June–November) −13.33 1976 (June) −3.28

Aland 1984–1985
(May–January) 9 1984–1985

(May–January) −14.33 2003 (December) −3.75

Aurad 1980 (July–December) 6 1980
(July–December) −8.13 1966 (July) −3.08
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Table 2. Cont.

Station
Longest Strongest Highest

Year D Year S Year I

Ballari 1976 (May–December) 8 1976
(May–December) −14.55 2003 (June) −4.66

Basavakalyan 1972 (July–October) 6 1972 (July–October) −10.98 1984 (July) −2.65

Bhalki 1972 (July–November) 2 1972
(July–November) −10.93 1972 (September) −2.8

Bidar 1979 (April–August) 5 1979
(April–August) −7.36 1972 (August) −2.78

Chincholli 1971 (June–November) 6 1971
(June–November) −11.54 1972 (September) −2.83

Chitapur 1972 (May–December) 8 1972
(May–December) −15.5 1994 (July) −3.07

Deodurga 1971 (June–September) 4 1972 (September–
November) −7.23 2011 (November) −2.94

Gangavathi 2016
(October–December) 3 2016 (October–

December) −6.88 2003 (June) −3.22

Hoovinahadagali

1965 (April–July),
2002
(August–November)
and 2008
(June–September)

4 2008
(June–September) −7.24 1976 (October) −2.96

Hagaribommanahalli 2003 (May–November) 7 2003
(May–November) −14.72 2003 (July) −3.72

Hospet

2001 (April–July),
2004 (September–
December)
and 2016 (September–
December)

4 2016 (September–
December) −8.59 2016 (December) −2.92

Humnabad 2001 (March–August) 6 2001
(March–August) −10.68 1965 (May) −3.47

Jeewargi 1992 (April–December) 9 1992
(April–December) −21.68 1992 (November) −4.55

Kalburgi 1972 (July–October) 4 1972 (July–October) −10.06 1965 (June) −3.77

Koppal
2003 (May–September)
and 2016
(August–December)

5 2003
(May–September) −11.35 2003 (July) −3.9

Kudligi 1970 (June–November) 6 1970
(June–November) −12.51 1976 (July) −3.92

Kustigi 2003 (May–November) 7 2003
(May–November) −12.69 2011 (November) −2.85

Lingasugur 2001 (May–August) 4 2014 (May–July) −8.03 2014 (June) −3.34

Manvi 1994 (June–September) 4 1994
(June–September) −7.25 2015 (July) −3.06

Raichur 1994 (May–September) 5 1994
(May–September) −10.49 2011 (November) −3.67

Sandur 1976 (June–December) 7 1976
(June–December) −10.68 2003 (July) −2.89
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Table 2. Cont.

Station
Longest Strongest Highest

Year D Year S Year I

Sedam 1972 (July–December) 6 1972
(July–December) −10.96 1979 (August) −2.71

Shahpur
1992 (Junee–October)
and 1994
(May–September)

5 1994
(May–September) −8.31 1972 (August) −2.44

Shorapur 1986 (July–November) 5 1986
(July–November) −7.5 2011 (November) −2.64

Sindhanur 1997 (June–October) 5 2006 (August–
November) −7.97 1989 (May) −3.18

Sirguppa 1972
(August–December) 5 1972 (August–

December) −6.37 2008 (June) −4.31

Yadgir

1971 (July–November),
2014 (April–August)
and
2015(June–October)

5 2014
(April–August) −9.61 2015 (August) −2.96

Yalburga

1985 (September–
December),
1991 (September–
December) and 2001
(May–August)

4 2001 (May–August) −8.08 1984 (June) −3.58

Table 3. Magnitude and duration of the longest, strongest and intense drought events in HK region
using SPI_6 [44].

Station
Longest Strongest Highest

Year D Year S Year I

Afzalpur 1972–1973
(April–March) 12 1972–1973

(April–March) −27.64 1972 (October) −3.4

Aland 1984–1985
(June–September) 16 1984–1985

(June–September) −29.38 2004 (March) −3.81

Aurad 1965–1966
(October–August) 11 1965–1966

(October–August) −20.21 1971 (March) −3.41

Ballari 1976–1977
(May–March) 11 1976–1977

(May–March) −25.25 2003 (September) −3.72

Basavakalyan 1972–1973
(July–March) 9 1972–1973

(July–March) −20.02 1972 (December) −2.98

Bhalki 1972–1973
(July–February) 8 1972–1973

(July–February) −20.14 1972 (October) −3.08

Bidar 1971
(March–December) 10 1972–1973(June–

Jan) −17.15 1972(October) −2.71

Chincholli 1971–1972
(January–February) 9 1971–1972 (January–

February) −19.57 1971 (September) −2.7

Chitapur 1972–1973
(June–March) 10 1972–1973

(June–March) −24.7 1972 (August) −3.36

Deodurga 1972–1973
(August–February) 7 1972–1973

(August–February) −13.7 1971 (July) −3.03

Gangavathi 1972 (June–Jan) 8 1972 (June–Jan) −13.29 1963 (July) −3
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Table 3. Cont.

Station
Longest Strongest Highest

Year D Year S Year I

Hoovinahadagalli

2002–2003
(August–March)
and 2003
(May–December)

8 2003
(May–December) −15.57 2000 (May) −3.13

Hagaribommanahalli 2003–2004
(April–February) 11 2003–2004

(April–February) −27.45 2003 (July) −4.3

Hospet 1997 (May–November) 7 1997
(May–November) −12.13 2017 (March) −2.91

Humnabad 1972–1973
(June–February) 9 1972–1973

(June–February) −21.59 1965 (May) −3.61

Jeewargi 1991–1993
(December–March) 16 1991–1993

(December–March) −43.48 1993 (February) −4.67

Kalburgi 1972–1973
(July–March) 9 1972–1973

(July–March) −21.61 1965 (June) −3.73

Koppal 2016–2017
(August–March) 8 2003

(May–November) −15.86 2003 (July) −3.78

Kudligi 1976–1977
(June–February) 9 1976–1977

(June–February) −19.81 1990 (March) −3.51

Kustigi 1985–1988
(June–March) 10 1985–1988

(June–March) −21.35 2017 (March) −3.02

Lingasugur 2011–2012
(October–April) 7 2011–2012

(October–April) −11.96 2014 (June) −3.36

Manvi 2002
(April–November) 8 1994

(June–November) −11.23 1994 (September) −2.94

Raichur 2012–2013 (May–June) 9 2012–2013
(May–June) −15.4 2012 (February) −3.76

Sandur 1976–1977
(June–March) 10 1976–1977

(June–March) −19.08 2003 (July) −3.03

Sedam 1972–1973
(July–March) 9 1972–1973

(July–March) −20.06 1972 (December) −2.72

Shahpur

2002–2003 (June–Jan),
2000–2004
(September–April)
and 2014
(April–November)

9 2014
(April–November) −15.37 2016 (March) −2.87

Shorapur 1967–1968
(May–March) 11 1967–1968

(May–March) −17.48 2012 (February) −2.72

Sindhanur 2016–2017
(November–August) 10

2016–2017
(November–
August)

−19.59 1989 (May) −3.27

Sirguppa 2002–2003 (June–Jan) 8 2002–2003
(June–Jan) −17.12 2002 (September) −3.28

Yadgir 2014 (April–December) 9 2014
(April–December) −17.38 1981 (March) −3.14

Yalburga 2012–2013
(May–February) 10 2012–2013

(May–February) −15.26 2001 (July) −3.35
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3.2. Areal Extent of Drought Severity in the Hyderabad Karnataka Region Based on
Different Timescales

To assess the spatial extent of drought, the study area was examined using SPI_3 for
September (Figure 4) and SPI_6 for October (Figure 5). There was no significant trend in
the drought area over time period, as the fitted lines in Figures 4 and 5 are straight with no
significant slope. The Thiessen polygon method, employed in ArcGIS was also used by
Wambua et al. [45] across drought-affected areas in the central highland region of Vietnam
to determine contributing areas of each rain gauge station. The analysis of the areal extent
of drought under SPI_3 for September (Figure 4) confirmed that drought has impacted
more than 41 percent of the study area during the years 1971, 1972, 1977, 1985, 1991, 1994,
1997, 2002, and 2006 with percentages of 63.33, 64.12, 42.34, 41.41, 42.45, 76.40, 48.73, 56.75,
and 46.02, respectively. Such results indicate that approximately 15 percent of the examined
period experienced agricultural drought, encompassing an area of more than 40 percent
under SPI_3 September. Additionally, the years 1971, 1972 and 1994 were particularly
critical, with an area of influence exceeding 60 percent. Overall, 1994 was identified as the
year with the highest drought impact (Figure 4).

Based on the analysis of the areal extent of drought under SPI_6 for October (Figure 5),
it was observed that during 1972, 1976, 1997, 2003, 2011, and 2012, drought conditions
affected more than 40 percent of the examined area, with percentages ranging from 43.38 to
72.01. Throughout the entire study period, 1972 emerged as the year with the most severe
drought conditions (Figure 5). There was no significant trend in the drought area over time
period, as the fitted lines in Figures 4 and 5 are straight with no significant slope.
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Figure 4. Temporal variation and linear trends of dry area (SPI_3 September) in the Hyderabad-
Karnataka region.
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Figure 5. Temporal variation and linear trends of dry area (SPI_6 October) in the Hyderabad–
Karnataka region.

3.3. Timescale–Magnitude–Frequency (TMF) for Different Timescales in the
Hyderabad–Karnataka Region

The historical record of droughts for each rain gauge station and different timescales
were identified and tabulated based on the computed SPI time series. These successive
drought events were summed up annually and fitted to Extreme value type-I (EV1) dis-
tribution. Return periods at various intervals, including 2, 5, 10, 20, 30, 50, and 100 years,
were estimated for all 31 stations after fitting the data to EV1 ( Table 4). Analysis of the
timescale–magnitude–frequency (TMF) results revealed variations in the magnitude of
drought events across different locations and timescales for a 5-year return period. Specif-
ically, for Raichur, the magnitude values were −5.45 and −8.50 for SPI_3 and SPI_6,
respectively (Table 4). In Ballari, the magnitudes were −8.77 and −10.26 for SPI_3 and
SPI_6, respectively. Kalburgi exhibited magnitudes of −6.42 and −11.01 for SPI_3 and
SPI_6, respectively. For Bidar, the magnitudes were −6.01 and −11.57 for SPI_3 and SPI_6,
respectively. Koppal experienced magnitudes of −7.41 and −9.01 for SPI_3 and SPI_6,
respectively, while Yadgir had magnitudes of −5.82 and −9.68 for SPI_3 and SPI_6, respec-
tively (Table 4). These findings align with the observations made by Juliani and Okawa [36],
who stated that higher return periods and longer timescales generally correspond to greater
durations and magnitudes of drought events.

Table 4. Severity and return periodfor SPI_3 and SPI_6 timescalesover the Hyderabad–Karnataka
region.

Stations
Return Period (SPI_3) Return Period (SPI_6)

2 5 10 20 30 50 100 2 5 10 20 30 50 100

Afzalpur −4.33 −6.88 −8.56 −10.18 −11.11−12.28−13.85 −4.88 −10.05−13.47 −16.76−18.64 −21.00−24.19

Aland −4.55 −7.40 −9.29 −11.10 −12.14−13.45−15.20 −6.02 −12.18−16.26 −20.18−22.43 −25.24−29.04
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Table 4. Cont.

Stations
Return Period (SPI_3) Return Period (SPI_6)

2 5 10 20 30 50 100 2 5 10 20 30 50 100

Aurad −4.52 −6.59 −7.96 −9.27 −10.03−10.98−12.25 −5.68 −10.21−13.20 −16.07−17.72 −19.79−22.57

Ballari −5.24 −8.77 −11.11 −13.36 −14.65−16.26−18.44 −5.89 −10.26−13.16 −15.94−17.54 −19.54−22.24

Basavakalyan −4.12 −5.99 −7.23 −8.42 −9.10 −9.96 −11.11 −4.82 −8.71 −11.29 −13.76−15.18 −16.96−19.36

Bhalki −3.90 −5.79 −7.04 −8.24 −8.93 −9.80 −10.96 −4.62 −8.29 −10.72 −13.06−14.40 −16.07−18.34

Bidar −4.11 −6.01 −7.28 −8.49 −9.19 −10.06−11.23 −5.88 −9.57 −12.01 −14.35−15.70 −17.38−19.65

Chincholli −4.19 −6.37 −7.82 −9.20 −10.00−10.99−12.33 −4.75 −8.59 −11.13 −13.57−14.97 −16.73−19.09

Chitapur −5.13 −8.22 −10.26 −12.22 −13.35−14.76−16.66 −5.23 −10.13−13.37 −16.49−18.28 −20.51−23.53

Deodurga −4.09 −5.43 −6.32 −7.17 −7.66 −8.27 −9.09 −4.90 −7.77 −9.68 −11.50−12.55 −13.87−15.64

Gangavathi −4.24 −5.44 −6.23 −7.00 −7.43 −7.98 −8.72 −5.23 −8.09 −9.98 −11.80−12.84 −14.15−15.91

Hoovinahadagalli −3.88 −5.28 −6.21 −7.10 −7.61 −8.25 −9.11 −5.07 −8.18 −10.24 −12.21−13.35 −14.77−16.68

Hagaribommanahalli−4.70 −7.52 −9.40 −11.19 −12.22−13.52−15.26 −6.22 −11.67−15.28 −18.75−20.74 −23.23−26.59

Hospet −3.95 −5.43 −6.41 −7.36 −7.90 −8.58 −9.49 −4.89 −7.68 −9.52 −11.29−12.31 −13.58−15.29

Humnabad −4.46 −6.79 −8.34 −9.82 −10.67−11.74−13.18 −5.63 −9.87 −12.67 −15.36−16.91 −18.84−21.45

Jevargi −4.11 −6.39 −7.89 −9.34 −10.17−11.21−12.61 −5.42 −10.44−13.77 −16.96−18.79 −21.09−24.18

Kalburgi −4.46 −6.42 −7.71 −8.96 −9.67 −10.57−11.77 −5.96 −11.01−14.35 −17.56−19.40 −21.71−24.82

Koppal −5.17 −7.41 −8.89 −10.31 −11.12−12.15−13.52 −5.41 −9.01 −11.39 −13.68−15.00 −16.64−18.86

Kudligi −3.43 −4.73 −5.60 −6.43 −6.91 −7.50 −8.31 −4.99 −8.56 −10.92 −13.18−14.48 −16.11−18.31

Kustigi −4.02 −6.12 −7.52 −8.86 −9.63 −10.59−11.89 −5.63 −9.84 −12.62 −15.28−16.82 −18.74−21.33

Lingasugur −4.53 −6.02 −7.02 −7.97 −8.51 −9.20 −10.12 −5.11 −8.03 −9.97 −11.82−12.89 −14.23−16.03

Manvi −3.68 −5.04 −5.94 −6.80 −7.30 −7.92 −8.76 −5.66 −8.13 −9.76 −11.33−12.23 −13.36−14.88

Raichur −3.60 −5.45 −6.67 −7.85 −8.53 −9.37 −10.51 −5.08 −8.50 −10.76 −12.93−14.17 −15.73−17.84

Sandur −4.36 −6.93 −8.63 −10.26 −11.20−12.37−13.96 −4.88 −9.57 −12.67 −15.65−17.36 −19.50−22.38

Sedam −4.57 −6.38 −7.58 −8.74 −9.40 −10.23−11.35 −5.38 −9.12 −11.59 −13.97−15.33 −17.04−19.34

Shahpur −3.74 −5.16 −6.09 −6.99 −7.51 −8.16 −9.03 −5.44 −8.72 −10.88 −12.96−14.16 −15.66−17.68

Shorapur −4.17 −5.52 −6.41 −7.26 −7.75 −8.36 −9.19 −6.38 −10.01−12.41 −14.72−16.05 −17.71−19.94

Sindhanur −4.37 −6.02 −7.11 −8.16 −8.76 −9.51 −10.53 −5.73 −9.81 −12.52 −15.12−16.61 −18.48−21.00

Sirguppa −4.29 −5.99 −7.12 −8.20 −8.83 −9.61 −10.66 −4.94 −8.37 −10.64 −12.83−14.08 −15.65−17.77

Yadgir −4.01 −5.82 −7.02 −8.17 −8.83 −9.66 −10.78 −6.07 −9.68 −12.07 −14.36−15.68 −17.33−19.55

Yalaburga −4.00 −5.44 −6.38 −7.30 −7.82 −8.47 −9.36 −6.14 −9.22 −11.26 −13.21−14.33 −15.74−17.63

Figure 6 shows drought events with a 5-year return period at different locations,
confirming that Ballari, Chitapur, and Aland had the most significant magnitude drought
events. Sarvi et al. [46] further support this observation by stating that greater durations
and magnitudes are expected to occur in higher return periods and timescales.
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4. Conclusions with Future Research Remarks

The analysis revealed that the longest drought events occurred in Jevargi and Aland
in 1992 (April–December) and 1984–1985 (May–January) with a duration of 9 months
and severities of −21.68 and −21.58, respectively. The most intense drought event took
place in Ballari in June 2003, with a severity value of −4.66. In terms of SPI 6, Aland and
Jeevargi experienced the longest event lasting 16 months, with severe drought conditions of
−43.48 observed in 1984–1985 (June–September) and 1991–1993 (December–March). The
most intense SPI 6 event occurred in February 1993, with a severity of −4.67. The study
revealed that more than 41% of the study area experienced drought in specific years, with
1971, 1972, and 1994 identified as the most critical years, with over 60% of the area affected
by drought. TMF results showed that drought magnitudes ranged from −5.45 to −8.50 for
SPI_3 and from −8.77 to −11.57 for SPI_6 across Raichur, Ballari, Kalburgi, Bidar, Koppal,
and Yadgir regions.

The results highlight the high risk of frequent droughts in the study area, emphasizing
the need for policy measures such as watershed development and natural resource man-
agement programs. These measures should include surface and groundwater monitoring
to improve in situ water use and extend the growing season in agroecosystems. The use
of SPI is crucial for sustainable and effective water resource management, mitigating the
impact of droughts on food security and local economies, and adapting to climate change
conditions. The inclusion of SPI indecision-making processes will enable the formula-
tion of reliable and sustainable long-term water management strategies at regional and
national levels.
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Finally, to promote resilience, mitigate the impacts of drought, and foster sustain-
able water management practices in the study area, future research should prioritize the
following areas:

(1) Understanding the relationship between climate change and drought: Thorough
investigation is needed to assess how climate change influences drought events,
including their frequency, intensity, and duration. This research will provide critical
insights into the mechanisms driving drought under changing climatic conditions.

(2) Advancing drought mitigation strategies: The development of innovative and targeted
strategies is essential to effectively mitigate the adverse effects of drought. These
strategies should consider local contexts and incorporate a range of measures such as
water conservation, demand management, infrastructure improvements, and more
efficient irrigation systems.

(3) Socioeconomic consequences of drought: Comprehensive studies should be conducted
to understand the socioeconomic impacts of drought on communities, economies,
and livelihoods. This research will aid in identifying vulnerable groups, assessing
economic losses, and formulating appropriate policies and support mechanisms.

(4) Integrated water resources management: The implementation of integrated ap-
proaches to water resources management is crucial for drought resilience. This
involves coordinated planning, efficient allocation, and sustainable use of water re-
sources across different sectors, considering environmental, social, and
economic factors.

(5) Enhancing drought forecasting and early-warning systems: Research efforts should
focus on improving the accuracy and lead time of drought forecasting models and
developing robust early-warning systems. Timely and reliable information will enable
proactive drought preparedness and effective response measures.

(6) Climate-resilient agricultural practices: Promoting and adopting climate-resilient
agricultural practices, such as drought-tolerant crop varieties, precision irrigation,
agroforestry, and soil-conservation techniques, can enhance agricultural productivity
and reduce vulnerability to drought.

(7) Evaluating ecological impacts: Comprehensive studies are needed to evaluate the eco-
logical consequences of drought on ecosystems, including biodiversity loss, changes
in vegetation patterns, and impacts on water-dependent habitats. This research will
help guide conservation and restoration efforts.

(8) Designing and developing regional water plans: Developing robust and adaptable
water management plans at the regional level is essential for ensuring water availabil-
ity during droughts. These plans should incorporate diverse water sources, demand
management strategies, and consider potential climate change scenarios.

(9) Long-term drought monitoring: Establishing and maintaining long-term drought
monitoring networks and data collection systems is vital for the accurate and con-
tinuous assessment of drought conditions. This data can support decision-making
processes and inform proactive drought management strategies.

(10) Stakeholder engagement and capacity building: Engaging stakeholders, including
local communities, policymakers, water managers, and relevant organizations, in
capacity building and awareness campaigns are crucial for fostering a shared under-
standing of drought risks, promoting sustainable water practices, and facilitating
effective drought management.
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