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Abstract: This article presents the results of a study on the oestrogenicity and androgenicity of urban
wastewater in Lodz, and the possibility of their removal by the Group Wastewater Treatment Plant
(GWWTP). Wastewater samples were taken at five points of the sewer system in the city and at the
inlet and outlet of the GWWTP. The study was conducted using Yeast Oestrogen Screen (YES)/Yeast
Androgen Screen (YAS) tests, which allow a general assessment of the content of compounds with
(anti-)oestrogenic and (anti-)androgenic effects in wastewater, without identifying specific substances.
Wastewater samples taken from the sewage network did not show (anti-)oestrogenic activity, while
oestrogenic and antagonistic properties to androgens were detected in most of them. In the influent
of the treatment plant, oestrogen agonistic activity was detected only in one sample (oestrogen
equivalent—EEQ equal to 1.31 × 105 ng 17 β–oestradiol/L) and was 100% removed. The purifi-
cation efficiencies in GWWTP for oestrogen and androgen antagonistic activity were 51.5–99.2%
and 39.4–47.1%, respectively. Although no oestrogenic activity was detected in general wastewa-
ter in Lodz, observed high-antagonistic–androgenic activities may adversely affect the water body
and cause, among others, the feminization of fish, especially in the case of discharge of untreated
wastewater by combined sewer overflows.

Keywords: YES/YAS assay; (anti-)oestrogenicity; (anti-)androgenicity; urban wastewater; wastewater
treatment plant

1. Introduction

Currently, the water crisis has become a global problem, and the reuse of water is one of
the elements of its mitigation. In addition, the development of various branches industries,
including the pharmaceutical industry, are a source of surface water pollution with toxic
and dangerous substances not only for human health but also for wildlife (fishes, mammals,
birds, reptiles, amphibians, and invertebrates). Micropollutants are continuously entering
into the environment and can be highly recalcitrant causing acute and/or long-term harmful
effects to inter alia water organisms [1–5]. Medications containing oestrogens are used
for various health reasons, including contraception, treatment for menopausal symptoms
and osteoporosis prevention [6], and its concentration in surface waters still increases [7].
Sex hormones cause extremely unfavourable effects on living organisms, including fish
at an exceptionally low concentration of 0.1 ng/L [8–11]. These compounds can cause
various adverse biological effects on organisms, such as its feminisation, dysregulation
of natural processes related to reproduction, lowering the physiological condition of the
organisms [12], and even the occurrence of neoplastic processes, thus drastically decreasing
animal welfare [13–15]. Oestrogens contained in food and water can cause premature
menopause in women and affect the decline of fertility and feminisation of men [16,17].
The feminisation of fish can also be caused by anti-androgenic substances that may be
present in treated sewage discharged into surface waters [18].

The analysed literature shows that oestrone (E1), oestradiol (E2), oestriol (E3), and
synthetic 17α-ethinylestradiol (EE2) are the most significant in terms of environmental

Water 2023, 15, 2454. https://doi.org/10.3390/w15132454 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w15132454
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0001-5809-1214
https://doi.org/10.3390/w15132454
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w15132454?type=check_update&version=1


Water 2023, 15, 2454 2 of 15

impact [19–21]. Studies of these hormones conducted in China, in the rivers of south-
ern Jiangsu, showed significant differences in their concentrations (ranging from 1.96 to
143.29 ng/L), together with the observation of their seasonality. Higher concentrations in
waters were observed in winter than in spring and autumn periods [22,23]. These results
indicate that different anthropogenic activities and hydrological regimes will lead to differ-
ences in the distributions of oestrogenic compounds. Research conducted by Barel–Cohen
et al. [24] suggest that hormones in readily measured quantities can be transported con-
siderable distances from the source of pollution. In recent years, increasing efforts have
been made to investigate the presence of natural hormones and drug-derived synthetic
hormones in the aquatic environment [25].

Nowadays, wastewater has been recognised by scientists around the world as a major
source of oestrogenic contaminants because humans excrete oestrogen daily [16,26], and
the ability of wastewater treatment processes to mitigate current and future environmental
risks from those compounds is being investigated [4,27,28]. Currently, there is no standard
for safe levels of oestrogen to be discharged into surface waters from wastewater treatment
plant (WWTP) effluents. The quality of the effluent discharges depends on the quality of
the raw wastewater received and the treatment process performed by the WWTP. Study on
oestrogen load directed to wastewater treatment plants conducted by [29] indicated that its
level depends primarily on population data, demographic profiles, consumption rates (only
for EE2), and excretion rates. Pregnant women excrete between 260–790 µg/day of oestrone,
280–600 17β-oestradiol, and form 6000 to nearly 10,000 µg/day of oestriol [30]. In addition,
there is the consumption of hormonal drugs, which additionally increases the oestrogenicity
of wastewater. WWTPs do not completely remove oestrogens in the effluent and, therefore,
biosolids and wastewater effluents containing significant concentrations of oestrogens are
sometimes discharged into the natural environment [31,32]. This is due to the fact that
most conventional treatment plants do not have advanced treatment technologies, such as
ozonation [33], advanced oxidation [34–36], activated carbon adsorption [37] or membrane
filtration [38,39]. Therefore, residues of micropollutants are still found in effluents, and
it is necessary to modernise the existing treatment plants by implementing additional
advanced wastewater treatment technologies to reduce or eliminate them [40]. In addition
to WWTPs, hospitals have also been identified as another major source of steroidal oestro-
gen contamination, and several studies have shown that steroidal oestrogens, especially
high levels of oestriol, have been found in all hospital wastewater samples [41]. Livestock
farms, slaughterhouses, and large urban agglomerations are also important sources of
oestrogen. [30,42,43]. According to [44] the world’s human population, about seven billion
people approximately discharge 30,000 kg/yr. of natural steroidal oestrogens (E1, E2, and
E3) and an additional 700 kg/yr. of synthetic oestrogens (EE2) solely from birth control
pill practices. It should be noted that higher concentrations of oestrogen are discharged
into the environment by livestock. In the United States and countries under the European
Union, the annual oestrogen discharge via this way, at 83,000 kg/yr., is more than twice the
rate of human discharge. According to a National Sewage Sludge Survey of the US EPA,
76 tons of oestrogen was released into the environment form solid waste, especially animal
manures [19].

Much of the literature focuses primarily on detecting agonist activity in water and
wastewater, but some environmental contaminants can act as antagonists. If they are present
in the sample, they can reduce the agonist response in vitro [45], highlighting the impor-
tance of assessing both agonism and antagonism in wastewater samples. (Anti-)androgenic
activities have been reported in aquatic environments in many countries [46–49], but
compounds responsible for those activities often remain unidentified [50–52].

Despite more research conducted around the world on the occurrence and concen-
tration of oestrogens in surface waters and wastewater, the number of these data is still
limited. Some oestrogenic hormones (including, for example, 17β-estradiol, EE2) have
been included in the updated watch list of 10 other substances [53], but according to Article
8b (2) [54], the Commission is to update the watch list every two years. When updating
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the list, the Commission is to remove any substance for which a risk-based assessment,
as referred to in Article 16 (2) [55], can be concluded without additional monitoring data.
Currently, according to the last Commission Implementing Decision [56], these compounds
are no longer observed, but they still remain unregulated pollutants.

The aim of this paper was to determine both the oestrogenic and androgenic properties
of wastewater in the Lodz sewage system, and the possibility of reducing those properties
at the wastewater treatment plant. The research was carried out using YES/YAS assay,
which enable, at the same time, a general assessment of the content of compounds with
(anti-)oestrogenic and (anti-)androgenic activity in wastewater, without the need to identify
specific substances. Studies using both (anti-)oestrogenic and (anti-)androgenic assays are
necessary for the assessment of threats to receiving water, but the results of such studies
are still lacking. They are usually carried out in wastewater after the treatment process,
possibly flowing to the wastewater treatment plant. However, there are no studies of this
type carried out in the combined sewer system, where untreated wastewater is periodically
discharged into surface waters through combined sewer overflows (CSOs). In this case,
a significant amount of pollutants, including hormonal substances, enters directly into
surface waters.

2. Materials and Methods
2.1. Characteristics of the Studied Catchment—Lodz City

Lodz is the fourth city in Poland in terms of population (about 690,000 inhabitants in
2021) and the fourth in terms of area 293.25 km2 (Statistical Office in Lodz, 2022 [57]. The
city is located in the centre of the country (Poland) and due to the presence of larger or
smaller rivers and streams (18 rivers) was, in the past, a large centre of the textile industry.
Currently, these are small watercourses in the city centre, mostly hidden in underground
channels. Unfortunately, since the nineties of the twentieth century, mainly due to the
collapse of the textile industry, a gradual decrease in the number of people in the city has
been observed. In addition, with the increase in age, there is a change in the proportions
between women and men in Lodz. In the total number of inhabitants over thirty, women
start to dominate (Figure 1, Table 1). Such differences in reproductive age may affect the
concentration of these hormones in the wastewater. The percentages shown in Figure 1
refer to the proportions of women and men, respectively, in a given age group.
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2.2. Wastewater System of Lodz

Lodz is equipped with a hybrid sewage system (Figure 2). A combined sewer system
exists in the central part of the city, whereas in the remaining districts, there is a separate
sewer system. The first of them is equipped with 18 CSOs operating during heavy rainfall
and discharging excess wastewater into four urban rivers. The Ner River is the main
receiver of all wastewaters generated in Lodz (discharge form wastewater treatment plant,
CSOs and drainage system).
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2.3. Group Wastewater Treatment Plant of Lodz

The Group Wastewater Treatment Plant (GWWTP) in Lodz serve a population of about
700,000 inhabitants and treats on average about 170,000 m3/day of combined wastewater
coming from the city. Additionally, wastewater from three nearby small towns flows into
the treatment plant. The biological stage of the GWWTP works in the MUCT (Modified
University of Cape Town) system (Figure 3).
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2.4. Sample Collection

Wastewater sampling points were located in several parts of the city, both on a sanitary
and combined sewer system. Wastewater was also collected at the inflow and outflow of
the treatment plant. Determination of oestrogenicity is part of a large 3-year measurement
campaign on the extensive urban sewage system of Lodz. Samples for testing were collected
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at each point of sewerage during dry weather (D), and in two cases (sampling point 2 and
5) during wet weather (W), using an automatic sampler Teledyne ISCO 6712 every hour
around the clock. Samples were prepared for analysis as cumulative samples from four
subsamples, thus obtaining six test samples in 24 h.

2.5. Methodology of Wastewater Tests

During the 2018–2021 monitoring campaign, the oestrogenic and androgenic activ-
ity, as well as a wide range of physicochemical parameters [58] and the toxicity of the
wastewater, was tested. Oestrogenic and androgenic activities were determined using
YES/YAS method (Xenometrix AG, Swiss Commitment for Bioassays) [59]. In the assay, the
genetically modified yeast (Saccharomyces cerevisiae) to identify compounds that can interact
with the human oestrogen and androgen receptors hERα and hAR were used. Oestrogens
and androgens, as well as substances with a similar effect, can form complex compounds
with receptors of modified yeast. Saccharomyces cerevisiae produce β-galactosidase, which
converts the yellow substrate chlorophenol red-β-D-galactopyranoside (CPRG) into a red
product, can be quantified colourimetrically at 570 nm.

The system can identify both activating (agonistic) and inhibitory (antagonistic) activi-
ties of tests compounds. For the determination of antagonist activities, the samples were
incubated in the presence of a fixed concentration of a reference agonist (17 β -oestradiol for
YES and 5α-dihydrotestosterone for YAS). Inhibition of the response relative to the fixed
agonist concentration is a sign of antagonist activity [59].

Results were evaluated for oestrogenic and androgenic properties, agonistic and
antagonistic, and yeast growth inhibition or possible cytotoxicity. The assay consists of four
main steps: (1) Yeast cultivation (usually 5–10 days + 1 day); (2) Proper assay, including
sample and control preparation, as well as dilution plate preparation (17β-oestradiol (E2) for
YES agonists, 4-hydroxytamoxylene. (TH) for YES antagonists, and 5α-dihydrotestosterone
(DHT) for YAS agonists and flutamide (FL). After preparation, the plates with yeast cells are
incubated for 48 h at 31 ◦C in the presence of a substrate for β-galactosidase. (3) Reading
the plates with a spectrophotometer at 570 and 690 nm to determine the colour of the CPRG
breakdown product and yeast growth, respectively. (4) Calculations and interpretation of
results. Outcomes are evaluated for oestrogenic and androgenic properties, agonistic and
antagonistic, and yeast growth inhibition or possible cytotoxicity.

The growth factor (G) and Induction Ratio (IR) were calculated as follows:

G =
A690,S

A690,N

where A570,S is the net absorbance of the sample S at 570–690 nm
A570,N is the net absorbance of the solvent control at 570–690 nm.

IR =
1
G
× A570,S

A570,N

where A570,S is the net absorbance of the sample S at 570–690 nm
A570,N is the net absorbance of the solvent control at 570–690 nm.
For all samples, the oestrogen equivalent (EEQ) was calculated. EEQ corresponds

to the concentration of 17 β–oestradiol (E2), which would provide the same activity as
a sample. Equivalents for antagonistic oestrogenic activity (aEEQ), agonistic androgenic
activity (AEQ), antagonistic androgenic activity (aAEQ) were calculated analogously. For
wastewater samples taken from the wastewater system, a higher toxicity was observed in
the tested oestrogenicity. Toxicity was determined using the ToxTrak method in accordance
with the guidelines (Toxicity ToxTrakTM Method 10017, HACH LANGE Manual). ToxTrak
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tests results—wastewater toxicity was expressed as the degree of inhibition—DI (%), which
was calculated according to the formula below:

DI = 1 − (∆A sample/∆A control) × 100 (%)

where ∆A = Initial absorbance value–Final absorbance value.
The absorbance of samples and controls was measured using a spectrophotometer DR

6000 at a wavelength of 603 nm.
The methodology of laboratory tests of physicochemical wastewater parameters was

presented in the previous article [58].

3. Results and Discussion

Results of wastewater physicochemical characteristics at sampling points of the sewage
system are presented in Table 2. Contaminant concentrations in these wastewater samples
flowing through the sewage system in Lodz were similar to those observed in other
European countries [60,61].

Table 2. Wastewater characteristic in sampling point.

SP pH BOD5
mgO2/L

COD
mgO2/L

TSS
mg/L

PC
mg/L

TOX
Degree of Inhibition—DI (%)

GWWTP 7.80 575 1093 586 0.03 40.5
1. 8.53 70 316 158 - 65.8
2. 7.50 472 790 440 0.08 31.5
3. 7.62 575 1014 438 0.038 -
4. 7.46–7.79 435–1250 937–2416 236–3264 0.055–0.125 20.7–51.8
5. 7.27–7.65 380–1000 728–1636 236–584 0.039–0.087 40.6–52.7

Limit values
for sewage

discharged into
sewer system *

6.5–9.5 600 1200 600 15 -

Notes: * Permissible values of pollutants in industrial wastewater discharged into the Lodz sewer system.

Oestrogenicity was tested in wastewater samples of higher toxicity and its results are
presented in Table 3. Wastewater toxicity, expressed as a degree of inhibition (DI), was
variable and ranged from 2.3 to 72.4%, depending on the tested point, but in the tested
samples collected for oestrogenicity analyses, it ranged from 20.7 to 65.8%. Most of these
samples showed toxicity >40% DI, which means that the effluent may have toxic properties.

However, the research conducted during the YES/YAS procedure showed that none
of the wastewater samples had a cytotoxic effect on cells of any of the genetically modified
yeast strains YES or YAS. The growth of yeast cells measured spectrophotometrically was
normal with a growth factor of G greater than 0.5. This means that the obtained results are
reliable and undisturbed by additional effects.

The oestrogenic activity via the yeast screening assay of the wastewater sample from
sewer system, can be expressed as an equivalent relative oestrogenicity and androgenicity,
as summarized in Table 3.

In most samples, the test results showed the absence of oestrogenic agonistic prop-
erties. Only at point No. 4 were oestrogenic agonistic effects detected in two out of the
three tested wastewater samples (Table 3). The first sample was collected on 05.06.2019
(EEQ = 0.9 ng/L), and the second one on 09.01.2020 (EEQ = 13.70 ng/L). In addition, it
should be noted that the first result concerns dry weather and the second wet weather,
which indicates the possibility of higher agonistic oestrogenic activity in wastewater during
wet weather. The increased values of the activity in the wastewater during wet weather may
be associated with sewer sediments washing out. The study conducted by [62,63] showed
a significant contribution of sewer deposits to the pollutant load in combined wastewater
during wet weather. The effect of sewer sediments on the concentration of endocrine com-
pounds in wastewater requires verification and further research. In collected wastewater
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samples, no agonistic properties for androgenic activity were found (Table 3). Oestrogenic
antagonistic properties (aEEQ ranged from 3.01 × 102–2.2 × 106 ng HT/L) were found in
all wastewater samples collected from the sewer system, as well as in most samples where
androgenic antagonistic properties (aAEQ = from 1.88 × 104–2.13 × 107 ng FLU/L) were
detected. The wastewater characteristic—basic physicochemical parameters and toxicity
level—at the inlet of GWWTP is shown in Table 4.

Table 3. Evaluation of (anti-)oestrogenic and (anti-)androgenic activities of wastewater from the
sewage system of Lodz, based upon the IR criterion.

Sampling
Point

Data

Oestrogenic Activity Androgenic Activity

Agonistic
Oestrogenic Activity

Antagonistic
Oestrogenic Activity

Agonistic
Androgenic Activity

Antagonistic
Androgenic Activity

EEQ,
ng E2/L IR aEEQ,

ng HT/L IR
AEQ,

ng
DHT/L

IR aAEQ,
ng FLU/L IR

1. 09.01.2019 W ND − 7.59 × 104 + ND − 1.36 × 107 +
2. 29.01.2019 D ND − 1.29 × 104 + ND − 1.57 × 107 +
3. 28.11.2019 D ND − 3.52 × 105 + ND − 9.45 × 106 +
4. 05.06.2019 D 0.90 + 3.03 × 102 + ND − ND −
4. 05.12.2019 D ND − 3.50 × 105 + ND − 1.70 × 107 +
4. 09.01.2020 W 13.70 + 8.49 × 105 + ND − ND −
5. 10.12.2020 D ND − 3.01 × 102 + ND − ND −
5. 17.12.2020 D ND − 2.20 × 106 + ND − ND −
5. 13.01.2021 D ND − 1.04 × 105 + ND − 1.88 × 104 +

Notes: D—dry weather; W—wet weather. E2—17 β-estradiol (reference agonist YES). HT—4-hydroxytamoxifene
(reference antagonist YES). DHT—5α-dihydrotestosterone (reference agonist YAS). FLU—flutamide (reference
antagonist YAS). IR “+”—means that the sample shows the given property; for agonists, the induction factor (IR)
of the assay is greater than or equal to IR10, where IR10 is defined as an IR that is 10% (IR max − solvent IR)
above the solvent IR.; for antagonists, the IR of the sample is less than or equal to the IR50 and the IR50 is defined
as 50% (Control IR − Solvent IR), where the Control IR is the corresponding fixed concentration of the agonist
used. IR “−”—means that the sample does not show the given property; for agonists, the induction factor (IR) of
the assay is less than IR10; for antagonists, the IR of the sample is greater than the IR50. ND—means that the
concentration of oestrogenic or androgenic substances was below 10−10 M for oestrogens (YES) or below 10−9 M
for androgens (YAS) in terms of the standard.

Table 4. Wastewater characteristic at the inlet of GWWTP (samples used for the YES/YAS assay).

Parameter pH BOD5
mgO2/L

COD
mgO2/L

TSS
mg/L

PC
mg/L

TOX
Degree of Inhibition—DI (%)

Inflow 7.41–7.66 186–700 442–1742 212–828 0.01–0.051 5.4–40.5
Limit values for

treated sewage ** - 15 125 35 - -

Notes: ** Regulation of the Minister of Maritime Economy and Inland Navigation of 12 July 2019 on substances
particularly harmful to the aquatic environment and the conditions to be met when introducing sewage into
waters or into the ground, as well as when discharging rainwater or meltwater into waters or to devices water.

The range of oestrogenic and androgenic activities in the inlet to GWWTP is shown
in Table 5. Comparing the results from the sampling points located on the sewer system
(Table 3) and on the inflow to the GWWTP (Table 5), one can notice a slightly greater
variation in the first case. This may be due to, among others, the differentiation of land
use. Higher local values of oestrogenic and androgenic activity are important in the case
of the CSOs operation, when untreated wastewater are discharged into surface waters
without treatment.
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Table 5. (Anti)oestrogenic and (anti)androgenic activities of wastewater at the inlet of GWWTP.

Oestrogenic Activity Androgenic Activity

Agonistic
Oestrogenic Activity

Antagonistic
Oestrogenic Activity

Agonistic
Androgenic Activity

Antagonistic
Androgenic Activity

EEQ,
ng E2/L IR aEEQ,

ng HT/L IR AEQ,
ng DHT/L IR aAEQ,

ng FLU/L IR

Min. ND − 2.20 × 102 + ND − 7.53 × 105 +

Max. 1.31 + 8.49 × 105 ND − 2.32 × 107 +

Conducted research indicated that the oestrogenic and androgenic properties of
wastewater at the inlet to GWWTP may undergo some changes even during the day
(Figure 4). For example, on 11.09.2019, samples from 9 a.m. and 1 p.m. showed ago-
nistic oestrogenicity of 1.31 ng E2/L and 0.9 ng E2/L (this value, due to the logarithmic
scale, is not visible on the figure), respectively (Figure 4). In samples from 5 p.m. and
9 p.m., wastewater did not show these properties. Antagonistic oestrogenic activity was
significantly higher in the 9 a.m. sample (8.49 × 105 ng HT/L) than in the other samples
2.20–3.01 × 102 ng/L). No AEQ property was detected in any sample and the aAEQ was
relatively constant.
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The results of oestrogenicity and androgenicity tests of raw and treated wastewater
are presented in Table 6. The tests were carried out twice, collecting wastewater at the inlet
and outlet with the time delay resulting from the wastewater treatment processes.

Table 6. Evaluation of (anti)oestrogenic and (anti)androgenic activities of wastewater at the inlet and
outlet of WWTP, based upon the IR criterion.

Sample/Date
Oestrogenic Activity Androgenic Activity

Agonistic
Oestrogenic Activity

Antagonistic
Oestrogenic Activity

Agonistic
Androgenic Activity

Antagonistic
Androgenic Activity

EEQ
ng E2/L IR aEEQ,

ng HT/L IR AEQ
ng DHT/L IR aAEQ,

ng FLU/L IR

Inlet 11.09.2019 1.31 + 8.49 × 105 + ND − 7.33 × 106 +
Outlet 11.09.2019 ND − 6.73 × 104 + ND − 3.88 × 106 +

Reduction (%) 100 99.2 47.1

Inlet 10.03.2021 ND − 4.66 × 105 + ND − 2.03 × 107 +
Outlet 10.03.2021 ND − 2.26 × 105 + ND − 1.23 × 107 +

Reduction (%) 51.5 39.4

Wastewater treatment processes have an impact on reducing the oestrogenic and
androgenic activities. In the case of GWWTP on 11.09.2019, oestrogenic agonistic properties



Water 2023, 15, 2454 9 of 15

were identified in the inflow but not in the outflow, which corresponds to 100% reductions.
In the sample dated 10.03.2021, no agonistic oestrogenic activity was identified either in the
inflow or outflow from the treatment plant.

In treated wastewater samples, the agonistic properties for oestrogenicity and andro-
genicity were not detected during the study (Table 6). Similar results were obtained by [64]
in the determination of these properties in wastewater discharged from several treatment
plants into the Gdansk bay (Poland). Oestrogenic and androgenic antagonistic properties
were identified in each sample of wastewater from GWWTP with higher values observed at
the treatment plant inlet. The reduction was 99.2 and 51.5% for the antagonistic oestrogenic
properties, and 47.1 and 39.4% for the antagonistic androgenic properties, respectively. The
obtained results of antagonistic oestrogenic and androgenic activity in treated wastewater
were similar to the values provided by [65]—for aEEQ between 104–105 ng/L and for
aAEQ between 106–107 ng/L, respectively. According to [12], in the influent to the four
tested WWTPs, agonistic androgenic activity (AEQ) ranged from 47 to 59 ng DHT/L,
and the treated wastewater was between 0.34–0.79 ng DHT/L. Anti-androgenic activity
in the influent to WWTP and effluent from WWTP showed a level between 5.2 × 103 to
2.6 × 104 ng FLU/L and 3.5–8.9 × 103 ng FLU/L, respectively. Research conducted during
3 years by [66] showed that the average EEQ concentrations of treated wastewater dis-
charged by investigated treatment plants were estimated as 23, 33.9 and 24.2 ng/L for 2005,
2006 and 2007, respectively, and were significantly lower than in raw wastewater coming
to those treatment plants. This indicated that treatment processes remarkably reduced the
oestrogenic activity of oestrogenic compounds before being discharged into river waters.
Usually, reduction rates of oestrogenicity at conventional WWTPs with tertiary treatment
are high—from about 80% to more than 90% [67,68]. Although, high reductions during the
treatment process residual concentrations occurring in WWTP discharges may still pose a
risk to aquatic fauna and flora [69]. Especially in crowded and development urban areas,
the wastewater treatment systems might be insufficient to eliminate all oestrogenic activity
from municipal wastewaters [70].

During the study in Lodz, the correlations between the hormonal activity of wastewa-
ter and their main physicochemical parameters, listed in Table 2, were also analysed. Strong
correlations between hormonal activity and easily measurable wastewater indicators would
facilitate the identification of potential hazards resulting from the presence of substances,
which caused possible endocrine disruption. Unfortunately, no correlation was found with
pH, BOD5, COD, TSS and PC. There was only a negative medium correlation between toxic-
ity and antagonistic activity for oestrogenicity (r = −0.31) and a strong negative correlation
between toxicity and antagonistic activity for androgenicity (r = −0.53) (Figure 5).
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The studies of the wastewater hormonal activity, with the use of YES/YAS tests car-
ried out in Lodz, allowed estimated values only. According to studies conducted by other
researchers [71,72], the use of yeast-based assays can be effective in the first assessment
of oestrogenic activity of waters. It should be noted, however, that the data of methods
depends mainly on the matrix; that effect is very important in the real samples. According
to [73] and previous studies [74–77], bioassays are promising tools for environmental moni-
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toring and risk assessment of chemical substances, allowing the evaluation of biological
responses to a given complex sample, including possible interactions of different pollu-
tants. Nevertheless, for example, cytotoxicity and anti-oestrogenic activity found in the
sample tested might mask the oestrogenic activity of dissolved and particulate fractions of
samples, leading in this case to possibly underestimated results. Bioassays are less affected
by the sample matrix and can detect the oestrogenic effects of water samples at ng or pg
level, therefore they could be used as screening methods to complement chemical analy-
sis [78]. The observed difference in responsiveness among bioassays—based on mixture
composition—is probably due to biological differences between them, suggesting that
panels of bioassays with different characteristics should be applied according to specific
environmental pollution conditions. According to [79], the YES assay was less sensitive
than other tests, which may result in a higher number of undetected results. Perhaps for
this reason, with the low hormonal activity occurring in the tested wastewater in Lodz, the
tests provided a negative response.

Current in vitro bioassays are sufficiently sensitive to detect the presence of endocrine
disrupting chemicals, which have a potential risk on human and ecosystem health [65];
however, due to the high purchase price, they are unlikely to be included in monitoring
wastewater in sewer systems. Therefore, other simplified methods are being sought to iden-
tify potential threats. In the case of oestrogens, it is possible to estimate their concentrations
on the basis of excretion rates of demographic groups, flows and of the wastewater treat-
ment plant’s operation [29,80]. However, due to the negative impact of these compounds
on living organisms [81], even at very low concentrations, possible predictions should be
verified by testing samples in a laboratory environment.

It should be noted that inhibitory effects may also be caused by non-specific effects,
which can lead to a reduction of the response inducted by the fixed concentrations of E2 and
DHT. Parallel inhibition in the YES and YAS assay may be indicative of such non-specific
inhibition, which is not a true oestrogen or androgen antagonistic effect.

The use of YES/YAS assays to assess the occurrence of oestrogenicity and androgenic-
ity allows, among others, to identify areas in the city where endocrine substances may
appear in wastewater transported through the sewer system. In case of a combined sewer
system, those substances can be discharged with raw wastewater to the receiving water
through combined sewer overflows. Therefore, it is necessary to identify the sources of
their emission in the catchment area, such as hospitals, pharmaceutical manufactories, etc.,
and then modernise the wastewater management. The dynamically developing industry
and the pharmaceutical market may cause an intensification of problems related to the
increased emission of hormonal compounds into the aquatic environment. In Lodz, the
risk of polluting water bodies with these compounds is additionally increasing due to the
population aging and the increasing women percentage in the population. A separate issue
is the modernisation of old, combined sewer systems in cities, so as to eliminate or limit the
combined sewer overflow activity. The new proposal for amendments to the Wastewater
Directive on urban wastewater treatment form [82], emphasizes the need to reduce the
pollutant load discharged through combined sewer overflows to collect a 1% load of urban
wastewater, calculated in dry weather conditions, and to introduce the fourth stage of
treatment in wastewater treatment plants, thus enabling the removal of micropollutants,
including pharmaceuticals.

4. Conclusions

• YES/YAS bioassays may be used to assess general levels of endocrine disrupting
chemicals and, therefore, could be included, either as an alternative method or comple-
mentary to the chemical analysis of wastewater, surface water, as well as for assessing
the removal those substances in WWTP.

• The samples of wastewater from the sewer system in Lodz did not exhibit agonistic
oestrogenic activity with two exceptions (EEQ = 0.9 and 13.7 ng E2/L). No agonistic
androgenic activity was found in any of the tested samples. Oestrogenic antagonistic
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properties (aEEQ) were found in all wastewater samples collected from the sewer
system (max = 8.49 × 105 ng HT/L), as well as in most samples, where androgenic
antagonistic properties (aAEQ) were detected (max = 1.70 × 107 ng/L).

• Oestrogen and androgen agonist activity was not found in wastewater from the treat-
ment plant. Both oestrogenic and androgenic antagonistic properties were identified
in the inflow and outflow from the treatment plant. In the treatment process, they
were reduced from 39.4 to 99.2%, depending on the type of activity. Those results
confirm that in the case of conventional wastewater treatment plants, a constant high
reduction of hormonal pollutants is not guaranteed.

• YES/YAS bioassays used to analyse wastewater containing mixtures of both ago-
nists and antagonists provided general information about the presence of all active
chemical compounds with oestrogenic and androgenic effects. No correlation was
found between the hormonal activity of wastewater and their basic physicochemical
parameters, which could facilitate the identification of oestrogenic and androgenic
contaminates that pose a threat to the aquatic environment.

• The results of the YES/YAS assay indicate that due to the CSOs activity in Lodz, with
discharge of untreated wastewater into small urban rivers, there is the possibility of
threats to the aquatic ecosystem, resulting from the presence of endocrine disrupt-
ing chemicals. Reducing the risk to the receiving waters from endocrine disruptors
contained in wastewater can be achieved both by eliminating/reducing significant
point sources of pollution in the catchment, and by reducing CSO activities and the
modernisation of existing wastewater treatment plants to increase their micropollutant
removal efficiency.
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