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Abstract: The deficit irrigation strategy is a well-known approach to optimize crop water use through
the estimation of crop water use efficiency (CWUE). However, studies that comprehensively reported
the prediction of crop evapotranspiration (ETc) and CWUE under deficit irrigation for improved
water resources planning are scarce. The objective of the study is to predict seasonal ETc and CWUE
of maize using multiple linear regression (MLR) and artificial neural network (ANN) models under
two scenarios, i.e., (1) when only climatic parameters are considered and (2) when combining crop
parameter(s) with climatic data in amended soil. Three consecutive field experimentations were
carried out with biochar applied at rates of 0, 3, 6, 10 and 20 t/ha, while inorganic fertilizer was
applied at rates of 0 and 300 Kg/ha, under three water regimes: 100% Full Irrigation Treatment (FIT),
80% and 60% FIT. Seasonal ETc was determined using the soil water balance method, while growth
data were monitored weekly. The CWUE under each treatment was also estimated and modelled.
The MLR and ANN models were developed, and their evaluations showed that the ANN model was
satisfactory for the predictions of both ETc and CWUE under all soil water conditions and scenarios.
However, the MLR model without crop data was poor in predicting CWUE under extreme soil water
conditions (60% FIT). The coefficient of determination (R2) increased from 0.03 to 0.67, while root
mean-square error (RMSE) decreased from 4.07 to 1.98 mm after the inclusion of crop data. The
model evaluation suggests that using a simple model such as MLR, crop water productivity could be
accurately predicted under different soil and water management conditions.

Keywords: modelling; soil amendment; water management; crop evapotranspiration; leaf area
index maize
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1. Introduction

The increasing global population, estimated to be 9.5 billion in 2050, requires commen-
surate agricultural productivity (about 70%) to avoid hunger. An increase in agricultural
productivity can be achieved by improved crop yield through improved farm management
practices, particularly proper soil and water management. This is because crop growth,
development and yield tremendously depend on adequate water supply, thus making
the agricultural sector world’s largest consumer of water. In Nigeria and many other
sub-Saharan African countries, agricultural production is mainly rainfed, and subject to
unpredictable factors such as seasonal variations in climate. These seasonal variations
in available water could negatively affect the growth and yield of crops, thus making
the conservation and effective use of water a priority [1], hence the need to adopt an
irrigation strategy.

Effective water use for agricultural crop production, especially during the off/dry
season, may entail adopting an appropriate irrigation strategy such as deficit irrigation.
Adopting a deficit irrigation strategy requires the proper understanding of how crops
respond to a limited amount of water supplied with the purpose of optimizing water
use by crop and increasing crop water use efficiency. Crop water use efficiency is the
ratio of crop yield to the water used by the crop from planting to the time of harvest.
This is dependent on several factors, including water management [2–4], soil amendment
with organic/inorganic fertilizer [5–7] and the type of irrigation system [8–10]. Amongst
many irrigation system options, the drip system has been credited with higher application
efficiency, thus saving water [11]. Therefore, aligning with the objective of irrigation
systems and soil amendment application to soils, which is aimed at improving crop water
use and water use efficiency, there is a need to add biochar to soils, which has been proven
to be a sustainable solution [11].

Biochar, a soil conditioner that is produced from the pyrolysis of crop residue and
biomass, has been widely reported to improve soil hydro-physical and chemical properties
such as soil water holding capacity and hydraulic conductivity [12–15]. It also improves the
retention of soil nutrients [16]. Several researchers reported that biochar is more effective
in improving crop yield when combined with a mineral fertilizer than when applied to soil
alone [17–19]. The positive effects of biochar on crop growth and yield, including maize
crop, are attributed to its positive effects in soils highlighted above.

Maize is a widely cultivated and consumed staple in several sub-Saharan African
countries. Therefore, accurate prediction of the expected water use by a vital crop such as
maize in areas with sufficient and limited water supply is essential. This will help improve
the water budget in agricultural production in such regions. Moreover, this is imperative
since maize has been noted to be a water-demanding crop [20,21]. Recently, [22] showed
that maize, even when planted on biochar-amended soil, is responsive to water stress,
suggesting the need to accurately predict crop evapotranspiration and crop water use
efficiency of maize under both full (standard soil water conditions where irrigation demand
is met) and limited water supply (deficit irrigation) for proper planning of water resources.

Crop evapotranspiration (ETc) can be computed using direct methods, such as lysi-
metric soil water budget methods, or with indirect methods, including remote sensing
techniques [19,23]. Although the direct method is very reliable, it is usually laborious
and energy-tasking. Therefore, alternative methods such as multiple linear regression and
artificial intelligence technique modelling methods have often been successfully employed
to estimate crop evapotranspiration under standard conditions of water supply using only
meteorological data as inputs [24–26]. In addition, recently, [23] integrated crop-specific
characteristics like leaf area index (LAI) with climatic data and obtained improved pre-
diction of crop evapotranspiration using both linear and artificial intelligence modelling
approaches under standard water management conditions. However, to date, studies that
investigated the prediction of crop evapotranspiration and water use efficiency of maize
under both full and stress irrigation conditions are scarce. Moreover, it is unknown if the
prediction of crop evapotranspiration and water use efficiency of maize could be improved
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with the inclusion of crop data in the inputs into linear and artificial intelligence (artificial
neural network–ANN) models.

In previous studies, some researchers successfully used ANN to predict ETc for differ-
ent crops such as barley, garlic, maize, potato and wheat. For example, [27] used adaptive
neuro-fuzzy inference system (ANFIS) and artificial neural network (ANN) models to
predict the ETc of garlic and compared the result with lysimetric ETc data and reported that
both models were suitable for estimating ETc. Similarly, [28] evaluated the performance
of the ANN model and FAO-PM equation for the estimation of barley ETc and found that
the ANN model performs better than the FAO-PM equation. In addition, several other
artificial intelligence models, such as fuzzy-genetic (FG) and regularization random forest
(RRF) methods, have been used to predict the ETc of maize and wheat accurately [29]. Nev-
ertheless, the studies mentioned above only focused on crop evapotranspiration without
considering crop water use efficiency prediction, which is vital for policy decision-making.
Studies that comprehensively investigate the prediction of both crop evapotranspiration
and CWUE under different soil and water conditions are scarce, particularly when crop
data are included in the prediction.

Therefore, this study seeks to evaluate the performance of two models: an artificial
neural network and a multiple linear regression model (MLR) for predicting ETc and
CWUE for maize under different soil and water management conditions. The objectives
of the study are to (i) evaluate and compare the performance of multiple linear regression
and ANN in predicting ETc and CWUE of maize crop under different soil and water
management conditions; and (ii) evaluate and compare crop evapotranspiration and water
use efficiency of maize prediction when only climatic parameters are considered and
when integrated with crop parameters (LAI and plant height), particularly under water
stress conditions.

2. Materials and Methods
2.1. Experimental Site Description and Biochar Characterization

Field experiments were conducted during three consecutive dry seasons of 2016
(January–April), 2017 (February–May) and 2017/2018 (November–February) at the Teach-
ing and Research Farm of the Department of Agricultural and Environmental Engineering,
Federal University of Technology, Akure. The site is located at latitude of 7◦16′ N and
longitude 5◦13′ N. A map describing the experimental site location is shown in Figure 1.

Daily climatic data were collected from a meteorological station near the experimental
site during the growing seasons. This set of climatic data was further processed into
monthly data. The average monthly maximum air temperature ranged from 26.31 ◦C to
30.85 ◦C, while the minimum air temperature ranged from 20.98 ◦C to 23.27 ◦C (Table 1).
The average monthly relative humidity ranged from 58 to 87.05%, while the sum of the
rainfall total was 118.43, 304.3 and 3.13 mm for the 2016, 2017 and 2018 growing seasons,
respectively (Table 1). Initial soil samples were collected randomly from different points in
the site at the soil depth of 0–20 cm up to a depth of 60 cm. The soil texture of the 0–60 cm
depth at the experimental site is classified as sandy clay loam [30]. The field capacities
were 0.17, 0.17 and 0.18 g/g at soil depths of 0–20, 20−40 and 40–60 cm, respectively.
The field capacity was determined using tensiometer readings at 10 kPa, as reported
by [11]. Biomass procurement, biochar production and characterization are reported in
our previously published papers [11,15,19]. After the pyrolysis process, the biochar was
crushed and sieved through a mesh so that it would have the same particle size as the
soil texture in the experimental site. The properties of the biochar used for this study are
shown in Table 2. The biochar properties were determined using the International Biochar
Initiative (IBI) approach.
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Table 1. Climatic data of the study area during the growing seasons.

Solar
Radiation
(MJ/day)

Max. Air
Temp (◦C)

Min. Air
Temp (◦C)

Precipitation
(mm)

Wind Speed
(m/s)

Mean Rel.
Humidity
(%)

Reference
Evapotran-
spiration

2017/2018
November 19.26 29.55 21.80 1.03 0.37 83.18 3.7
December 17.95 30.14 20.57 2.10 0.39 75.39 3.6

January 19.25 30.32 18.07 0.00 0.48 60.48 3.8
February 18.18 28.87 22.25 0.00 0.39 88.31 3.7

2017
February 19.26 30.52 21.45 23.50 0.44 75.70 3.7

March 18.45 30.80 23.02 72.50 0.61 83.25 3.7
April 19.14 30.00 23.28 110.50 0.51 86.06 3.8
May 18.28 29.29 22.96 98.00 0.47 88.15 3.6
2016

January 18.73 35.32 19.10 0.00 0.54 54.14 3.8
February 18.95 36.61 22.05 0.00 0.58 64.23 3.6

March 17.35 34.43 23.39 104.94 0.62 77.65 3.7
April 18.80 34.22 23.26 38.69 0.52 78.99 3.6
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Table 2. Initial soil at soil depth 0–20 cm and maize cob-residue biochar properties used for the
3-year experiment.

Properties Soil 1 B1 Soil 2 B2 Soil 3 B3

Mg (cmol/kg) 1.88 ± 0.26 2.08 ± 0.03 2.78 2.50 2.44 2.50
Ca (cmol/kg) 3.33 ± 0.32 2.17 ± 0.01 4.15 2.81 3.65 2.81
Na (cmol/kg) 0.10 ± 0.02 1.65 ± 0.19 0.69 1.76 0.77 1.76
K (cmol/kg) 0.41 ± 0.08 10.41 ± 1.64 0.53 10.05 0.56 10.05
P (mg/kg) 4.12 ± 0.36 6.40 ± 0.24 7.21 8.24 5.34 8.24
Total nitrogen (%) 0.15 ± 0.01 0.99 ± 0.04 4.60 10.09 1.80 10.09
CEC (cmol/kg) 4.32 ± 0.52 16.66 ± 1.63 8.26 16.26 7.26 16.26
pH(H20) 1:10 4.43 ± 0.39 9.45 ± 0.30 5.12 9.42 4.99 9.42
Total organic carbon (%) 1.73 ± 0.17 67 ± 1.41 0.94 69 1.18 69
Total organic matter (%) 2.99 ± 0.29 - - - - -
Exchangeable acidity
(cmol/kg) 3.58 ± 0.42 1.37 ± 0.01 - - - -

Bulk density 1.34 g/cm3 0.35 ± 0.02 1.35 ± 0.04 0.4 ± 0.01 1.35 ± 0.04 0.4 ± 0.01

Note(s): B1, B2 and B3 are characteristics of biochar used in 2016, 2017 and 2018, respectively; soil 1, soil 2 and
soil 3 are soil properties prior to experiments of 2016, 2017 and 2018 growing seasons, respectively.

2.2. Field Experimentation

Three consecutive dry seasons of field research were conducted. Before each experi-
ment began, the fields were conventionally tilled (plowed and harrowed). Seedbeds were
formed, the Suwan-Sr variety of maize was planted and irrigation water was applied. A de-
tailed description of irrigation scheduling and agronomic practices are reported by [11,19].
During the three-year growing seasons, biochar was mixed with the soil at four rates, 0,
3, 6, 10 and 20 t/ha, while an inorganic fertilizer (NPK) was applied at the rates of 0 and
300 kg/ha (15:15:15). In the first season (2016 growing season), these factors (biochar and
inorganic fertilizer) were factorially combined, resulting in seven fertilized treatments and
a non-fertilized plot (unamended—F0B0): (1) F0B0, (2) F0B3, (3) F0B6, (4) F0B10, (5) F300B0,
(6) F300B3, (7) F300B6 and (8) F300B10 (Table 3).

Table 3. Experimental treatments for 2016, 2017 and 2018 growing seasons.

S/N Treatments Definition

2016

1 F0B0I100 No fertilizer + no biochar + 100% full irrigation
2 F0B3I100 No fertilizer + 3 t/ha of biochar + 100% full irrigation
3 F0B6I100 No fertilizer + 6 t/ha of biochar + 100% full irrigation
4 F0B10I100 No fertilizer + 10 t/ha of biochar + 100% full irrigation
5 F300B0I100 300 kg/ha of fertilizer + no biochar + 100% full irrigation
6 F300B3I100 300 kg/ha of fertilizer + 3 t/ha of biochar + 100% full irrigation
7 F300B6I100 300 kg/ha of fertilizer + 6 t/ha of biochar + 100% full irrigation
8 F300B10I100 300 kg/ha of fertilizer + 10 t/ha of biochar + 100% full irrigation

2017/2018

9 F0B0180 No fertilizer + no biochar + 80% full irrigation
10 F0B0160 No fertilizer + no biochar + 60% full irrigation
11 F0B0I100 No fertilizer + no biochar + 100% full irrigation
12 F0B201100 No fertilizer + 20 t/ha of biochar + 100% full irrigation
13 F0B20180 No fertilizer + 20 t/ha of biochar + 80% full irrigation
14 F0B20160 No fertilizer + 20 t/ha of biochar + 60% full irrigation
15 F300B01100 300 kg/ha of fertilizer + no biochar + 100% full irrigation
16 F300B0180 300 kg/ha of fertilizer + no biochar + 80% full irrigation
17 F300B0160 300 kg/ha of fertilizer + no biochar + 60% full irrigation
18 F300B201100 300 kg/ha of fertilizer + 20 t/ha of biochar + 100% full irrigation
19 F300B20180 300 kg/ha of fertilizer + 20 t/ha of biochar + 80% full irrigation
20 F300B20160 300 kg/ha of fertilizer + 20 t/ha of biochar + 60% full irrigation
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In the 2017 and 2018 growing seasons, biochar application was increased to 20 t/ha.
This increase was to sustain maize growth under deficit irrigation. The growth pa-
rameters have been reported elsewhere [11,19]. Biochar (0 and 20 t/ha) and fertilizer
(0 and 300 kg/ha) at two rates were combined to form three fertilized treatments and a
non-fertilized plot (unamended). These treatments include F0B0 (unamended), F300B20,
F0B20 and F300B20. Each of these treatments was replicated thrice to form 12 experimental
plots under three water regimes (100%, 80% and 60% FIT) (Table 3) to make a total of
36 plots. The 100%, 80% and 60% FITs represent irrigation regimes where 100%, 80% and
60% of the soil water needed to bring soil to field capacity were applied, respectively. The
experimental design for the 2016, 2017 and 2018 growing seasons was a full factorial design.
The biochar application rate was increased in the 2017 and 2018 growing seasons to 20 t/ha
to sustain the crop more under deficit irrigation. Irrigation was applied when about 50% of
field capacity (FC) had been depleted in the root zone.

During the growing season, soil moisture content was determined using the gravimet-
ric method with collected field soil samples subjected to drying at 105 ◦C for 24 h. Soil crop
water use was determined for each treatment using the soil water balance method, as given
in Equation (1)

ETc = I + P + C− D− R± ∆S (1)

where ETc is crop evapotranspiration in mm; I is the irrigation water applied measured in
mm; p is precipitation in mm, measured with rain gauges installed at the experimental site;
C is capillary rise, which is assumed to be zero since the water table level is deep below the
soil surface for the experimental site; D is deep percolation and assumed to be zero, since
the amount of water applied was strictly controlled; while ∆S is the change in soil water
storage in mm. The soil water content measured in g/g was converted to a volumetric
basis by multiplying by the soil bulk density and further converting to mm by multiplying
by the soil depth.

Details of the crop evapotranspiration estimation are presented in [11,22], while the
crop water use efficiency (CWUE) was determined as the ratio of crop yield to water use
(crop evapotranspiration). In addition, measurement of the leaf area index and plant height
was carried out manually as the ratio of total leaf area to total land area (details are reported
in [11]), while the plant height was measured using a meter rule.

2.3. Artificial Intelligence Methods of Estimating Crop Evapotranspiration and Water Use
Efficiency of Maize

Several methods of applying artificial intelligence to estimate crop evapotranspiration
have been used. Among these methods is the artificial neural network (ANN) method,
which has been reported to be effective in predicting the evapotranspiration of some
crops [27,31]. Nevertheless, these artificial intelligence approaches have been scarcely
tested under different soil and water management conditions: in soils individually or
co-applied with biochar and inorganic fertilizer under full and deficit irrigation, and for the
determination of ETc and CWUE. In this study, the ANN modelling technique was used to
determine the seasonal crop evapotranspiration of maize and CWUE, and the result was
compared with a well-known multiple linear regression method (MLR). The MLR method
is one of the widely adopted approaches for predicting crop evapotranspiration due to its
simplicity, in which its prediction could be improved by integrating both crop and climatic
variables. Although using climatic variables has been the common practice, the inclusion
of LAI, with or without plant height, has not been well tested under water stress conditions
for both ETc and CWUE estimation. LAI was selected based on its good relationship with
crop evapotranspiration [20]. Similarly, plant height was used due to its incorporation into
crop coefficient estimation by [20], resulting in better crop evapotranspiration estimation.

Partitioning of Observed Data Procedure

Evapotranspiration data used for this study were observations from three field experi-
ments during the dry seasons of 2016, 2017 and 2018, respectively, while crop water use
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efficiency data were from the 2017 and 2018 growing seasons. These two seasons were
used for the CWUE prediction since deficit irrigation was practiced and the agronomic
practices were the same. The data were from 8, 12 and 12 treatments in the 2016, 2017 and
2018 growing seasons, respectively, under different weather, soil and water conditions.
Therefore, the total input and output data amounts were 32 and 24 for ETc and CWUE,
respectively. Three basic processes were adopted in developing the models (MLR and
ANN). These processes include model training, testing and validation. According to this
concept, the data set obtained in this study was grouped into three parts: training, testing
and validation. Of all the 32 and 24 data, 70% was used for model training, 15% was used
for model testing and the remaining 15% was used for validation. This grouping approach
for the model development is similar to that used in [32] and [33]. The same approach
used for developing the ANN model was also used for the multiple linear regression
model (MLR).

2.4. Artificial Neural Network Model Development

The Artificial Neural Network model development was implemented in Matrix Labo-
ratory (MATLAB) version 2013. This is a high-performance language for technical comput-
ing. MATLAB integrates computation, visualization and programming in an easy-to-use
environment, expressing problems and solutions in familiar mathematical notation. For
this work, the MATLAB artificial neural network (ANN) toolbox was used. The toolbox
provided means of importing inputs and targets. After importing all the input and target
data, other operations/tasks were performed, which consisted of the training function,
learning function, performance function, number of layers, number of neurons and transfer
function for different layers and finally resulting in the formation of network architectures
and prediction of the output.

Artificial Neural Network Training Algorithm

In this study, feed-forward back propagation (FFBP) was used among several other
training algorithms such as the Hopfield model, Perceptron, Adaptive Resonance Theory
(ART), Radial-Basis Function (RBF) and Self Organization Maps (SOM). This is due to the
advantageous use of FFBP over other training algorithms in hydrology studies [34]. In
multilayer feed-forward networks, processing elements are arranged in layers such that
they are connected. It usually has a minimum of three layers: input, hidden and output. In
the neural network toolbox, there are different training functions such as traingd, traingdm,
traingdx, trainlm and trainrp, and there is no condition for selecting a particular training
function. In this study, trainlm, the Levenberg–Marquardt algorithm, was selected and used
along with the FFBP algorithms. These combinations are commonly used in hydrology
studies to predict crop evapotranspiration [34], and the algorithm also requires learning for
accurate output prediction.

During the model development, the LEARNGDM (gradient descent with momentum
weight and bias learning function) learning function was selected, while Log Sigmoid
(Logsig) and Tan sigmoid transfer functions (Tansig) were used. These transfer functions
have been widely used in hydrological-related studies [34–36]. The sigmoid functions ap-
proach is widely used in back propagation networks. This is attributable to the relationship
between the value of the function at a particular point and the derivative value at the same
point [33]. This relationship results in the reduction in possible computational burden
during training.

2.5. Multiple Linear Regression (MLR)

Multiple linear regression through the combinations of various variables was used to
predict maize crop evapotranspiration and CWUE. MATLAB software (version 2013) was
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used to train, test and validate the model for the prediction. The multiple linear regression
developed took the form of Equation (2)

ETc/CWUE = ßo + ß1Xi1 + ß2Xi2 + ß3Xi3 + ------- + e (2)

where ETc is predicted maize crop evapotranspiration or CWUE, and Xi1, Xi2 and Xi3 are
independent variables used for the prediction.

2.6. Artificial Neural Network and MLR Modelling Strategy Adopted and Architecture

For the prediction of ETc in this study, two variables (weather and crop factor–LAI)
were considered as inputs for all the modelling methods used under different soil and water
managements. Artificial neural network Logsig and Tansig transfer functions (ANN-Logsig
and ANN-Tansig) were used for modelling. The variable combinations used took the form
below (Table 4).

Table 4. Different modelling input combination for the strategies.

Model Strategy Model Input Combinations

1 MRL1 ANN1 ANFIS1 Rs, U2, Tmean, Ws
2 MLR2 ANN2 ANFIS2 Rs, U2, Tmean, Ws, LAI
3 MLR3 ANN3 ANFIS3 Rs, U2, Tmean, Ws, LAI, PH
4 MLR4 ANN4 ANFIS4 Rs, U2, Tmean, Ws, B, F
5 MLR5 ANN5 ANFIS5 Rs, U2, Tmean, Ws, B, F, LAI
6 MLR6 ANN6 ANFIS6 Rs, U2, Tmean, Ws, B, F, LAI, PH

These combinations were to enable the capability of the artificial neural network and
MLR in predicting ETc when the crop factor is considered together with weather data and
under different soil and water management scenarios. Most importantly, incorporating
LAI into the MLR model for ETc prediction may increase interest in its use, especially when
the results are compared with ANN without LAI incorporation. This is because the MLR
is simple and easy to interpret. The weather data used for ETc prediction were based on
its correlation, which was evaluated using the correlation coefficient. A weather variable
within the moderate and perfect values (r ≥ 0.4 ≤ 1) was used

For the prediction of CWUE, the meteorological data that correlated well with the
crop water use were used for the CWUE, while the artificial neural network (either
Logsig or Tansig) that performed better for ETc prediction was used for CWUE predic-
tion. To obtain the performance of the MLR and ANN, the overall (all-data) predictions
(32 × 1 output) were further grouped into 60%, 80% and 100% Full Irrigation Treatments
(FITs) under different soil amendments, respectively.

2.7. Data Analysis
Correlation for the Adopted Modelling Strategies

The average of all data (weather and crop growth factors (LAI) and plant height)
for the growing season was entered in a Minitab version 17.0 spreadsheet to determine
the correlation between the leaf area index (LAI), weather variables and seasonal crop
evapotranspiration for maize in unamended soil and soil amended with biochar and
inorganic fertilizer. For the climatic data in particular, the average of each variable was used
in relation to the ETc across all treatments. In contrast, LAI data measured in each treatment
were related to the ETc from the same treatment. Seasonal crop evapotranspiration is
the sum total of water used by the maize crop from planting to harvest. The correlation
between seasonal crop evapotranspiration for maize and each of the variables mentioned
above was determined separately. The correlation outcome showed the variables’ relevance
and significance in predicting seasonal evapotranspiration. Different modelling strategies
were formulated by including or excluding different variables based on the coefficient of
correlation values and LAI.
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2.8. Performance Evaluation of the Models Using Accuracy and Precision Statistical Indices

The performance of the multiple linear regression and artificial neural network (ANN)
models was evaluated for ETc prediction using statistical accuracy criteria (Equations (3)–(5)).
The modelling accuracy indices used for the model evaluation include: root mean-square
error (RMSE), mean absolute error (MAE) and normalized root mean-square error (NRMSE).
In addition, the precision of the ETc prediction was determined using the coefficient of
determination, R2 (model fit).

RMSE =
√

1/n ∑ (Mi − Si)
2 (3)

NRMSE =

√
1/n ∑(Mi − Si)

2

M
(4)

MAE
1
n

n

∑
i=1
|Mi − Si| (5)

where Mi and Si are measured and predicted data, respectively. M is the mean value of Mi,
and n is the number of observations.

3. Results and Discussion
3.1. Leaf Area Index and Plant Height as Influenced by the Different Soil and Water Conditions

In the first year of planting (2016 growing season), the lowest maize LAI was recorded
in the F0B0 treatment (1.59) and the highest was in treatment F10B300 (3.57) (Supplementary
Data; Table S1). Biochar application increased average LAI by 47.8, 70, and 78.6% in
treatments F0B3, F0B6 and F0B10, respectively, while inorganic fertilizer application also
increased LAI on average by 84.3% over the control. The highest LAI was recorded when
biochar and inorganic fertilizer were co-applied (i.e., causing a synergistic effect), which
was higher than the increase in LAI resulting from the individual biochar and inorganic
fertilizer treatments. The co-application of biochar with inorganic fertilizer increased LAI
by 124% in the F300B3 treatment compared to the control. Similarly, LAI increased by
an average of 142% in treatment F300B6 when both biochar and inorganic fertilizer were
co-applied, compared to the control, while the increment was 148.4% in treatment F300B10.

The maize’s highest plant height, number of leaves, leaf area and leaf area index were
recorded at F10B300 and the lowest was recorded for F0B0 (control). Higher maize growth
parameters were recorded when biochar and inorganic fertilizer were applied together
compared to when biochar and inorganic fertilizer were applied separately.

For the 2017 and 2018 growing seasons (Supplementary Data; Table S1), the highest
plant height, number of leaves, leaf area and leaf area index were recorded in plots treated
with biochar and fertilizer in all the irrigation treatments (Supplementary Data; Table S1).
The plant height, number of leaves, leaf area and leaf area index are indices that directly
reflect the growth of the maize plants under the different irrigation, fertilizer and biochar
treatments (Supplementary Data; Table S1). Increases in irrigation amount, biochar and
fertilizer application significantly (p < 0.05) increased the growth parameters.

3.2. Maize Crop Evapotranspiration and Crop Water Use Efficiency under Different Soil and
Water Conditions

In the 2016 growing season experiment, ETc (calculated) varied from 359.98 mm for
the F0B0 treatment to 391.43 mm for F300B10 (Table 5). ETc increased with the increasing
magnitude of added biochar and fertilizer application. ETc in treatments F0B3, F0B6 and
F0B10 increased by 0.49%, 0.81% and 2.53% over the control (F0B0). Fertilizer application in
treatment plot F300B0 increased ETc over the control by 7.35%. An additional increase in ETc
was observed in the fertilizer-treated plots. Applying biochar and fertilizer concurrently
increased ETc by 7.41, 7.88 and 8.74% in treatments F300B3, F300B6 and F300B10 compared to
the control plot. In addition, when the plot treated with fertilizer only was compared to the
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unamended control, ETc increased by 0.054%, 0.5% and 1.29% in treatments F300B3, F300B6
and F300B10, respectively.

Table 5. Water balance equation components and ETc data for maize during the growing seasons (2016).

Treatments Irrigation
(mm)

Change in Soil
Water Storage (∆S) (mm)

Rainfall
(mm) ETc (mm)

F0B0 235.05 6.50 118.43 359.98
F0B3 235.05 8.17 118.43 361.65
F0B6 235.05 9.40 118.43 362.88
F0B10 235.05 15.61 118.43 369.09
F300B0 235.05 32.95 118.43 386.43
F300B3 235.05 33.16 118.43 386.64
F300B6 235.05 34.88 118.43 388.36
F300B10 235.05 37.95 118.43 391.43

2017

Treatments Irrigation
(mm) (∆S) (mm) Rainfall

(mm)
ETc

(mm) CWUE

F0B0I100 120.6 10.45 304.5 433.55 8.96
F0B20I100 120.6 14.54 304.5 439.64 11.33

F300B20I100 120.6 22.44 304.5 447.54 14.18
F300B0I100 120.6 19.33 304.5 444.43 12.34
F300B20I80 96.5 26.96 304.5 427.91 14.03
F0B20I80 96.5 15.08 304.5 416.03 10.76
F300B0I80 96.5 23.49 304.5 424.44 12.82
F0B0I80 96.5 10.84 304.5 411.79 9.11

F300B20I60 72.3 23.66 304.5 400.46 13.29
F0B20I60 72.3 17.26 304.5 394.06 8.99
F300B0I60 72.3 22.07 304.5 398.87 12.16
F0B0I60 72.3 12.56 304.5 389.36 6.60

2018

Treatments Irrigation
(mm) (∆S) (mm) Rainfall

(mm) ETc (mm)

F0B0I100 361.80 26.61 3.13 391.54 10.00
F0B20I100 361.80 30.83 3.13 395.76 10.19

F300B20I100 361.80 37.41 3.13 402.34 13.03
F300B0I100 361.80 35.93 3.13 400.86 11.92
F300B20I80 289.44 32.77 3.13 325.34 15.12
F0B20I80 289.44 27.05 3.13 319.62 12.31
F300B0I80 289.44 31.04 3.13 323.62 13.79
F0B0I80 289.44 22.12 3.13 314.73 11.75

F300B20I60 217.08 28.54 3.13 248.75 17.46
F0B20I60 217.08 19.30 3.13 239.51 11.91
F300B0I60 217.08 24.28 3.13 244.49 15.39
F0B0I60 217.08 14.25 3.13 234.46 10.78

For the 2017 growing season (Table 5), adding biochar and inorganic fertilizer sequen-
tially increased the ETc of maize. An additional increase in ETc was observed when biochar
and fertilizer were applied simultaneously in all the irrigation treatments (100% FIT, 80%
FIT and 60% FIT; Table 5). Compared to the control, applying biochar with NPK fertilizer
increased ET by 3.23% in 100% FIT, 3.91 in 80% FIT and 2.85% in 60% FIT. These increments
were 1.40%, 1.02% and 1.21% for biochar application alone, while they were 2.51%, 3.07%
and 2.44% for NPK fertilizer alone in 100% FIT, 80% FIT and 60% FIT, respectively.

Similarly, for the 2018 growing season, adding biochar and fertilizer resulted in in-
creased ETc of maize. An additional increase in ETc was observed when biochar and
fertilizer were applied together in all the irrigation treatments (100% FIT, 80% FIT and 60%
FIT; Table 5). Compared to the control, applying biochar with NPK fertilizer increased ETc
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by 2.8% in 100% FIT, 3.7% in 80% FIT and 6.1% in 60% FIT. These increments were 1.10%,
1.6% and 2.2% for biochar application alone, while they were 2.3%, 2.8% and 4.3% for NPK
fertilizer alone in 100% FIT, 80% FIT and 60% FIT, respectively.

A higher ETc was recorded in the 2017 experiment compared to the 2018 experiment
due to higher rainfall totals during the experiment (wetter season) in 2017. The difference in
ETc values reported in this study may result from irrigation water management, irrigation
method (drip) and climatic conditions during the growing season. In this study, the
increased ETc observed upon biochar addition may be attributed to the ability of biochar
to enhance soil water and modify the root development of maize plants compared to
the unamended plot [37,38]. Moreover, modification of the root upon biochar addition
might either be by a chemical mechanism (higher plant-available water or lower acidity)
or by a biological mechanism such as improved development of mycorrhizae, facilitating
nutrient and water uptake by plant roots [39]. On the other hand, the increased ET observed
in the fertilized plot compared to the unamended plots might be due to increased LAI
and soil water extraction (as documented in [11,15]). Fertilizer promotes root growth
and longer roots that can extract soil moisture from deep down in the soil depth [40,41].
This will lead to the depletion of soil water in the root zone of maize. The extracted soil
moisture might result in rapid leaf development and stem elongation due to fertilizer
application. Thus, transpiration may increase in the fertilizer-treated plots [40], thus
resulting in increased agricultural productivity (Supplementary Data; Tables S2 and S3)
and consequently increased water use efficiency (Table 5). The strategy of improving
water use efficiency with the co-application of inorganic fertilizer and biochar in the face
of water scarcity proved successful in this study (Table 5), with higher values of CWUE
obtained in amended soils compared to unamended soils. In addition, the highest CWUE
values were recorded in the deficit irrigation treatment while the maize yield produced
under deficit irrigation was statistically similar (p > 0.05) (Supplementary Data; Table S4)
to those obtained under full irrigation. Moreover, maize grain yields obtained under
deficit irrigation were closer in value to the full irrigation treatment when biochar and
inorganic fertilizer were co-applied. This outcome from the study justifies the need to
accurately predict the water requirement of a maize crop under deficit irrigation using a
good representative model which could capture the nutrient and water retention benefits
of biochar addition to soils on ETc and CWUE. This is important since decision-making and
planning of water resources will be aided by saving more water and costs while improving
crop water use efficiency.

3.3. Correlation between the Crop Growth Data (Plant Height and Leaf Area Index), Climatic Data
and Crop Evapotranspiration under the Different Soil and Water Management Conditions

A correlation result matrix between the input variables and crop evapotranspiration is
given in Table 6. The correlation result indicates that the highest correlation of 0.99 with a
significance of p = 0.0001 was observed between crop evapotranspiration and water supply.
Therefore, water supply was included in all model combinations as an input. The second-
best correlation was observed between wind speed and ETc, while the mean air temperature
and solar radiation also showed a good correlation with crop evapotranspiration. This
observation agrees with the report of [42], who found a high correlation between ETc
and wind speed. The correlation of the meteorological parameters with measured crop
evapotranspiration is in line with the findings of some researchers [43–45] who have
proposed and applied temperature and solar radiation-based models to determine ETc.
In addition, the crop parameters, plant height (PH) and leaf area index (LAI), correlated
well and significantly (p < 0.05) with crop evapotranspiration. This observation justifies
introducing crop parameters into the prediction of maize crop evapotranspiration. In the
correlation result, a negative correlation was observed between mean relative humidity and
crop evapotranspiration. A similar observation was reported by [27]. The correlation of
soil amendments biochar and inorganic fertilizer with maize crop coefficient was low and
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insignificant in both cases. This may be attributed to the quantity of biochar and inorganic
fertilizer applied.

Table 6. Correlation between maize crop evapotranspiration and crop parameters with climatic parameters.

Variables ETc (r) ETc (p Value)

Rs 0.6 0.0001
U2 0.77 0.0001
RHmean −0.001 0.998
Tmean 0.6 0.0001
WS 0.99 0.0001
LAI 0.68 0.0001
PH 0.5 0.004
B 0.019 0.919
F 0.11 0.552

3.4. Model Training, Testing and Validation for Maize Crop Evapotranspiration and Water Use Efficiency

The performance indices of the models with different strategies (input combinations)
for estimating maize crop evapotranspiration under different soil and water management
conditions are presented in Table 7. Input combinations (strategies) are more important
in maize crop evapotranspiration prediction accuracy and precision using MLR methods
than when using ANN methods. Adding LAI values improved the accuracy and predic-
tion of maize crop evapotranspiration under different soil and water management con-
ditions. However, in ANN, all input combinations predicted evapotranspiration well in
terms of accuracy and precision. The MLR model gave accurate seasonal evapotranspira-
tion for maize during training, testing and validation. For MLR evaluation, MAE, RMSE
and NRMSE were 2.310–2.31 mm, 3.12–73.73 mm and 0.78–18.35 during training; they were
2.10–15.96 mm, 10.34–70.23 mm and 2.95–20.20 during testing; while they were 3.27–11.53 mm,
16.10–51.10 mm and 6.28–19.93 during validation. The lower values of NRMSE, mostly
<20%, showed that MLR is suitable for ETc prediction. Evaluation of the ANN model
using Logsig and Tansig transfer functions gave an accurate result, with MAE, RMSE
and NRMSE of 3.64–10.53 mm, 4.63–12.10 mm and 1.15–2.99 during testing. These were
also 0.449–3.049 mm, 2.296–15.33 mm and 0.659–4.36% during testing, while they were
0.589–1.729 mm, 3.06–9.01 mm and 1.195–3.51 during model validation. Model accuracy
evaluation showed that the ANN model is advantageous in crop evapotranspiration of maize
under different soil and water management scenarios, compared to MLR. This might be due
to the fact that the ANN model does not necessarily require any input data that correlate well
and significantly with crop evapotranspiration before giving an accurate prediction [46,47].

Generally, during training, testing and validation, the input combination with crop
parameters (leaf area index and plant height) improved prediction better than the model
without crop factors. In addition, adding the crop growth parameters improved crop
evapotranspiration prediction in soil amended with biochar and inorganic fertilizer when
compared to the model prediction in the strategy without crop growth parameters. The
second strategy (containing weather data with crop growth data (LAI) performed best in
MLR and even performed better when plant height was added. Nevertheless, this was
not the case when ANN was used; prediction performed mostly better when the plant
height was included in the model input combination. Considering model precision, the
coefficient of determination, R2, was 0.861–0.986, 0.97–0.996 and 0.89–0.99, while it was
0.823–0.967, 0.875–0.998 and 0.974–0.996 during training, testing and validation for MLR
and ANN, respectively. These results showed excellent and strong agreement between
the modelled and measured results. The robust accuracy and precision results obtained in
this study agree with the report of [23], who indicated that incorporating LAI into grape
vine crop evapotranspiration prediction using linear and non-linear multiple regression
improved prediction. Innovatively, our study considered ANN and MLR for maize under
different soil and water scenarios. The accuracy and precision obtained in this study
showed the improved robustness and sensitivity of the models, particularly MLR, when



Water 2023, 15, 2294 13 of 20

LAI is introduced to the model input combinations. This study provides innovative insight
into improving crop evapotranspiration by incorporating crop growth data such as the
leaf area index. The outcome of this study is innovative since previous researchers [25,27]
have only mostly documented improvement in crop evapotranspiration to the use of
complete climatic data using artificial intelligence (ANFIS and ANN models) without
considering crop growth data such as LAI. Similarly, results from this study showed that
a simple multiple linear model can accurately predict crop evapotranspiration of maize
under different soil and water scenarios with limited data in combination with crop growth
data such as LAI. Notably, the introduction of plant height did not produce any noticeable
improvement in maize crop evapotranspiration (mm). A performance evaluation of the
maize crop water use efficiency under the different soil and water management scenarios
is presented in Table 8. Since the input combination for the estimation of crop water use
showed that the combination of climatic data with the soil amendment dosage (strategy 4)
are suitable for the prediction of ETc (strategy 6), these strategies have been chosen for the
prediction of crop water use efficiency (CWUE). In addition, in the prediction, ANN-Logsig
proved superior for both ETc and CWUE (Table 8). The evaluation results showed that
adding crop data (LAI and plant height) values improved the accuracy and prediction
of maize CWUE, mainly using a simple model such as MLR under different soil and
water management scenarios. Nevertheless, in ANN, all input combinations predicted
evapotranspiration well in terms of accuracy (MAE, RMSE and NRMSE) and precision
(R2) for CWUE. The lower values of NRMSE, mostly <20%, showed that MLR is suitable
for CWUE prediction. In addition, all models produced high precision; the coefficient of
determination (R2) had values greater than 70%, except for Tansig, during testing.

Table 7. Evaluation statistics for multiple linear regression and artificial neural network models for
crop evapotranspiration of maize.

MLR ANN-Logsig ANN-Tansig

Strategy Training Testing Validation Training Testing Validation Training Testing Validation

MAE 73.0962 15.9156 11.5339502 9.972569 0.562948 1.72906 10.52958 1.871385 1.634383
1 RMSE (mm) 73.7337 70.23091 51.1025188 11.10077 2.73064 9.008289 12.01918 8.594026 9.203487

NRMSE 18.35471 19.99878 19.9317124 2.763341 0.77757 3.513538 2.991963 2.447213 3.589671
R2 0.861 0.996 0.974 0.8266 0.996 0.974 0.8244 0.996 0.974

MAE (mm) 4.752118 2.483089 5.67657261 7.844486 1.449674 1.064761 7.429653 0.691542 1.026543
2 RMSE (mm) 6.244017 11.15794 25.9418747 8.961183 7.923928 5.904671 8.229682 4.232713 5.703664

NRMSE 1.554338 3.177306 10.1182094 2.230729 2.256398 2.303022 2.048635 1.205297 2.224622
R2 0.9419 0.996 0.993 0.9 0.995 0.982 0.901 0.999 0.983

MAE(mm) 3.85757 3.429731 10.1299695 5.515094 0.44977 0.589261 5.041136 0.553268 0.670117
3 RMSE (mm) 4.552961 19.17704 45.7843167 6.726925 2.296507 3.064051 5.856318 3.31934 3.428998

NRMSE 1.13338 5.460807 17.8574335 1.67455 0.653948 1.195083 1.457828 0.945207 1.337425
R2 0.9691 0.998 0.9054 0.937 0.997 0.9901 0.951 0.995 0.99

MAE 3.874442 2.096909 3.27417235 5.414299 1.499988 1.184506 4.243626 2.744371 1.123556
4 RMSE (mm) 4.348188 10.34361 16.0973443 6.326777 7.150282 6.685846 5.515131 14.9664 6.272513

NRMSE 1.082405 2.945421 6.27850925 1.57494 2.036096 2.607706 1.372895 4.261794 2.446492
R2 0.9718 0.9742 0.9635 0.952 0.977 0.996 0.9574 0.945 0.991

MAE 3.750603 2.158049 3.45040704 4.800702 3.049068 0.623687 6.036672 1.508278 0.77868
5 RMSE (mm) 4.292505 10.73294 17.2128767 6.027666 15.33328 3.724429 7.013216 8.095132 3.969681

NRMSE 1.068544 3.056286 6.71360465 1.500482 4.366266 1.452653 1.745817 2.30515 1.54831
R2 0.9726 0.9743 0.9674 0.958 0.875 0.994 0.9401 0.969 0.993

MAE 2.306277 2.798179 7.22638384 3.792852 0.516614 0.767143 3.635421 0.689258 0.610614
6 RMSE (mm) 3.122548 13.96745 33.6273831 4.62622 2.724905 4.061304 4.787979 3.646876 3.150157

NRMSE 0.777303 3.977337 13.1158179 1.151616 0.775937 1.584046 1.191883 1.038475 1.228668
R2 0.9855 0.9903 0.889 0.9689 0.9978 0.9939 0.9665 0.995 0.991
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Table 8. Evaluation statistics for multiple linear regression and artificial neural network models for
crop water use efficiency of maize.

MLR ANN-Logsig ANN-Tansig

Strategy Training Testing Validation Training Testing Validation Training Testing Validation

MAE (mm) 0.5555 0.4012 2.4517 0.4013 0.5911 0.685041 1.004866 0.6682 1.3930
With crop data RMSE (mm) 0.6687 0.4967 2.5934 0.5692 0.9164 1.114378 1.3084 0.8102 1.7799

NRMSE 0.05805 0.03937 0.1868 0.04941 0.07263 0.080258 0.1136 0.06421 0.1282
R2 0.946 0.911 0.901 0.954 0.995 0.936 0.758 0.844 0.955

MAE (mm) 0.8117 0.5296 5.2042 0.5644 0.03692 0.615002 1.6687 1.3683 0.5281
Without crop data RMSE (mm) 1.1881 0.7655 5.2805 1.0549 0.04645 1.178798 2.0040 1.8718 0.6923

NRMSE 0.1031 0.06068 0.3803 0.09158 0.003682 0.084897 0.1740 0.1484 0.04986
R2 0.783 0.952 0.974 0.856 0.998 0.95 0.651 0.01 0.958

3.5. Assessment of Model Overall Performance for Crop Evapotranspiration and Water Use Efficiency

The average values presented in Figures 2a–c and 3 and Table 9 explain the overall
prediction of maize crop evapotranspiration. The quantification of possible over/under
prediction of ETc and CWUE for maize by the MLR and ANN models is also presented in
Table 9. Figure 2a–c under different modelling strategies showed that the strategy without
LAI strongly and significantly (p < 0.05) underpredicted ETc. Strategy 4, also without LAI,
but incorporating soil management (addition of biochar and inorganic fertilizer), similarly
(p > 0.05) predicted ETc. Overall, Figure 2a–c illustrates the difference between the average
estimated values using the ANN and MLR models. For CWUE prediction, the strategy
with/without crop data similarly predicted CWUE (p > 0.05) (Figure 3), with prediction
more accurate when the crop data were added. The results in Table 7 show the difference
between measured and modelled values for both ETc and CWUE. A comparison of the
predicted results using MLR show that all the linear models resulted in a slight underesti-
mation of ETc, while they primarily resulted in an overestimation of CWUE. In addition,
the ANN models mostly resulted in an overestimation of ETc and an underestimation
of CWUE. This is understood since CWUE is inversely proportional to ETc in its estima-
tion [48,49], interestingly captured by the model structure. The multiple linear models
with crop data incorporated had the lowest underestimation and the lowest differences
in standard deviation between the actual and modelled results for both ETc and CWUE.
Similar improvement with LAI incorporation was also observed when soil amendments
were considered. Similarly, the ANN model with crop growth data resulted in the best
prediction for both CWUE and ETc. The ANN and MLR models yielded the lowest SDs
of 0.075 and 2.153 for ETc and CWUE predictions. The better prediction observed when
limited data (even without crop data) were considered agrees with the findings of [50,51],
who reported improved prediction in ETc using ANN with limited data. Overall, multiple
linear regression models showed higher bias error in model performance estimation than
the ANN model for ETc estimation, but this was not true for CWUE. In all, the magnitude
of the error reduced when crop growth data (LAI and plant height) were incorporated, thus
emphasizing the need to include crop data to complement climatic data for ETc and CWUE
prediction using a simple model such as MLR. The poorest performance was attributed to
the linear model for maize ETc prediction, primarily without crop data.
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Table 9. Error and standard deviation results between overall measured and predicted values for
each strategy.

MLR ANN-Logsig ANN-Tansig

Crop Evapotranspiration

Strategy SD Error SD Error SD Error

1 8.2 −69.12 3.09 −1.91 4.77 3.57
2 9.22 −3.94 1.97 3.85 0.075 2.21
3 15.78 −9.26 1.14 1.54 1.53 0.97
4 5.32 −1.67 0.086 1.38 2.53 0.87
5 0.35 −0.45 −2.41 1.75 −0.51 1.54
6 11.5 −6.33 0.081 1.61 −0.45 0.35

CWUE

With crop data (strategy 4) 2.153 0.12 2.27 −0.17

Without crop data (strategy 6) 2.34 0.45 2.75 −0.073

Note(s): Error is the difference between the average of overall measured and predicted ETc/CWUE; SD is the
standard deviation value.

In addition, the model performance evaluation of MLR and ANN in each irrigation
treatment for ETc and CWUE is presented in Tables 10 and 11, respectively. The comparison
between the models and strategies adopted showed that ANN outperformed MLR under
the varying water application treatments for ETc and CWUE predictions. In most cases, the
incorporation of the LAI index improved the prediction of ETc, particularly with the use
of MLR. The models’ evaluation based on MAE, RMSE, NRMSE and R2 showed that all
models were excellent for predicting ETc in treatments that received the highest amount
of water (where the evaporative demand is fully satisfied) and the treatment receiving
the least amount of water. This is evident since NRMSE < 10%. In addition, the model
precisions were very high, with the coefficient of determination (R2) value greater than
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0.99. Therefore, the result from this study revealed that all the models (MLR and ANN)
are suitable for the prediction of ETc at varying quantities of water applications with
an acceptable level of accuracy, thus establishing the use of ANN and MLR in water
stress conditions.

Table 10. Prediction of crop evapotranspiration of maize under different irrigation treatments.

Irrigation
Treatment Measured/Prediction Mean R2 MAE (mm) RMSE

(mm) NRMSE

Measured 397.64 ± 34.17
MLR—with crop data 397.64 ± 33.59 0.994 2.0467 2.5729 0.006471

100% FIT MLR—without crop data 397.63 ± 33.17 0.983 3.9520 4.2773 0.01076
Logsig—with crop data 396.49 ± 32.11 0.989 3.1771 4.0783 0.01026

Logsig—without crop data 395.90 ± 28.45 0.991 5.6409 6.3890 0.01607
Measured 370.64 ± 53.34

MLR—with crop data 378.59 ± 44.47 0.997 8.7238 11.9219 0.03218
80% FIT MLR—without crop data 371.86 ± 52.24 0.993 3.5675 4.3756 0.01181

Logsig—with crop data 372.17 ± 54.20 0.995 3.0271 4.0701 0.01099
Logsig—without crop data 369.85 ± 56.58 0.990 4.8440 5.9678 0.01611

Measured 330.92 ± 95.48
MLR—with crop data 348.86 ± 86.32 0.993 18.5026 26.1180 0.07892

60% FIT MLR—without crop data 339.67 ± 86.32 0.998 9.9662 12.8217 0.03875
Logsig—with crop data 334.05 ± 94.81 0.998 4.2988 4.9788 0.01505

Logsig—without crop data 333.75 ± 94.56 0.999 3.1940 4.0825 0.01234

Table 11. Prediction of crop water use efficiency of maize under different irrigation treatments.

Irrigation
Treatment Measured/Prediction Mean R2 MAE (mm) RMSE

(mm) NRMSE

Measured 11.62 ± 1.65
MLR—with crop data 11.86 ± 1.76 0.913 0.4625 0.5428 0.04672

100% FIT MLR—without crop data 11.76 ± 1.98 0.915 0.5337 0.6058 0.05215
Logsig—with crop data 11.89 ± 2.00 0.927 0.4463 0.6257 0.05386

Logsig—without crop data 12.24 ± 2.27 0.811 0.6323 1.1740 0.1011
Measured 12.46 ± 1.93

MLR—with crop data 12.57 ± 1.92 0.949 0.3596 0.4242 0.03404
80% FIT MLR—without crop data 12.37 ± 2.07 0.936 0.3319 0.5004 0.04016

Logsig—with crop data 12.85 ± 2.21 0.96 0.3921 0.6104 0.04898
Logsig—without crop data 12.13 ± 2.62 0.947 0.3354 0.8728 0.0700

Measured 12.07 ± 3.43
MLR—with crop data 11.36 ± 2.76 0.67 1.7347 1.9827 0.1642

60% FIT MLR—without crop data 10.53 ± 2.80 0.0323 3.6599 4.0674 0.3369
Logsig—with crop data 11.93 ± 2.72 0.953 0.5786 0.9274 0.07682

Logsig—without crop data 11.99 ± 3.57 0.917 0.5530 0.9591 0.07945

However, for crop water use efficiency (CWUE) prediction, the multiple linear regres-
sion (MLR) model only performed well in the treatment that received the highest amount of
water (100% FIT) and the treatment that received the moderate amount of water (80%). Nev-
ertheless, the prediction was very poor both in accuracy and precision at the 60% FIT. The
MLR prediction without crop data is obvious with NRMSE > 30% and an R2 value of 3%.
However, when the crop data were included in the prediction, the accuracy amplitude
was improved with R2 increasing to 67% and NRMSE reducing to < 20% (indicating a
good prediction). In addition, other error statistics (MAE and RMSE) were minimized after
including the crop data. However, the use of ANN gave a suitable prediction in terms of
accuracy and precision in all irrigation treatments.

Therefore, the result from this study showed that crop water use efficiency, being a
climate change index [52], can be accurately predicted using ANN with/without crop data,
while the ability of MLR to accurately predict CWUE depends on the inclusion of crop data,
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particularly under extreme weather conditions that may result in dryness. The ability of
the models to predict ETc and CWUE justified the fact that the models were sensitive to the
alteration caused by the added soil amendments and water conditions.

4. Conclusions

This study applied simple model (multiple linear regression) and artificial intelligence
(artificial neural network) methods to estimate the seasonal crop evapotranspiration and
crop water use efficiency of maize in soil individually and co-applied with biochar and
inorganic fertilizer under varying water applications. The models’ performance was evalu-
ated using six different strategy–input combinations, with and without plant parameters
(plant physiological data—leaf area index and plant height) combined with climatic data
for ETc. Under different soil and water management scenarios, the use of an artificial neural
network (ANN) and multiple linear regression (MLR) resulted in a satisfactory prediction
of maize crop evapotranspiration (ETc) with only climatic parameters. However, the pre-
diction was notably improved when the plant’s physiological parameters, leaf area index
(LAI) and plant height, were included in the MLR. Both MLR and ANN are suitable for
predicting maize’s water requirement when evaporative demands are met (full irrigation)
and under deficit irrigation. However, using the MLR, the amplitude of CWUE prediction
decreased in accuracy and precision at the irrigation treatment that received the lowest
amount of water. Nevertheless, the precision and accuracy improved with the inclusion
of crop data, while ANN produced a good prediction with/without crop data inclusion.
The outcome of this study showed that ANN and MLR can be applied to predict water use
and CWUE of maize under water stress conditions in areas where water is a limiting factor,
hence facilitating decision-making and water resources management strategy.
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