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Abstract: The current standards used for nitrogen pollution evaluation are lacking, and scientific
classification methods are needed for nitrogen pollution to improve water quality management
capabilities. This study addresses the important issue of assessing surface water nitrogen pollution
by utilizing two advanced multivariate statistical techniques: self-organizing maps (SOMs) obtained
using the K-means algorithm and the Hasse diagram technique (HDT). The research targets of
this study are the rivers of the megacity Chengdu, China. Samples were collected on a monthly
basis in 2017–2020 from different sites along the rivers, and their nitrogen pollution parameters
were determined. The grouping of nitrogen pollution parameters and the clustering of sampling
events using SOMs facilitate the preprocessing required for the HDT, wherein clusters are ordered
according to the pre-clustered water sampling events. The results indicate that nitrogen pollution
in the Chengdu River Basin, which is prominent and mainly driven by nitrate nitrogen, can be
categorized into five levels. The nitrogen pollution in Tuo River is serious. Although the degree of
ammonia nitrogen pollution in Jin River is higher, the pollution range is smaller. Furthermore, these
results were evaluated by the SOMs and HDT to be clear and reliable. Overall, these findings can
provide a basis for local environmental legislation.

Keywords: megacity; self-organizing maps; Hasse diagram technique; nitrogen pollution; environmental
management

1. Introduction

Theoretical and experimental advances in water environment quality, which is a well-
known indicator of the degree of pollution, are vital for protecting the water ecological
environment [1,2]. Earlier evaluations of water environment pollution have mainly been
performed using qualitative descriptions of water. An extensive understanding of the phys-
ical, chemical, and biological effects of the water environment has been obtained over the
years using several water quality evaluation methods such as index evaluation [3,4], fuzzy
mathematics theory [5], grey system theory [6], multivariate statistical analyses [7–10], and
artificial neural networks [11–13] . Owing to the rising pressure on water quality manage-
ment objectives, there is an urgent need to analyze data and obtain important information;
however, this has become difficult due to an increase in the historical monitoring data and
automatic station data. Accordingly, the need for scientific and efficient water pollution
assessment methods has arisen. Therefore, the research and application of artificial neural
networks and Hasse diagram technology (HDT) have become a future development trend.

Self-organizing maps (SOMs) were first pfroposed by Finnish scholar Kohonen in
1982 [14]. As a nonlinear science, SOMs have the advantages of autonomy and inclusive-
ness. However, since clustering results cannot be used to compare each SOM individually,
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their practical applicability for environmental management is limited. HDT, which has been
named after the German mathematician Helmut Hasse, is a method based on the partial
order set theory that retains the important elements in the evaluation and decision-making
processes [15,16]. This method only requires the weight order of the evaluation index, thus
circumventing the need to weigh in other water quality evaluation methods. However,
HDT exhibits high intolerance to ‘noise’; thus, it has high requirements for data prepro-
cessing. Although SOM and HDT have been used together for river pollution assessments,
insufficient information has been obtained. Li et al. [17] only used two methods to evaluate
water pollution independently, while limited information was interpreted using complex
Hasse images. Meanwhile, Voyslavov et al. [18,19] and Liu et al. [20] only used SOMs
for parameter grouping, and the equivalence class division of samples still relied on local
surface water quality standards.

According to most global standards, rivers require only limited total nitrogen (TN)
concentrations; however, these standards lack the concentration requirements for various
other nitrogen forms. According to the surface water quality standard in China (GB3838-
2002), river water is evaluated only using NH3-N. Meanwhile, lakes and reservoirs are
evaluated using TN and NH3-N. Although the mass concentration of NO3

−-N is limited
in drinking water (610 mg/L in China), it exhibits a wide range. Traditional analytical
methods offer a more qualitative description, which is insufficient for evaluating nitrogen
pollution in rivers.

Under the absence of standards, this study used SOM and HDT techniques to explore
the characteristics of regional nitrogen pollution and classify the river water pollution in
Chengdu. In this study, no river water quality standard has been used as a reference except
for the NH3-N concentration. Therefore, SOM is used to simultaneously categorize the
equivalence classes of parameters and samples, thereby eliminating the need for manual
classification and successfully completing the ’noise reduction’ processing of data. Finally,
a concise and clear Hasse diagram is obtained, and the nitrogen pollution of samples is
ranked. Based on the binomial results, the spatial and temporal distribution laws of large
data set elements are determined. Overall, the advantages of both SOMs and HDT have
been exploited, while their shortcomings have been addressed.

The study aims to offer chemometric expertise for comprehensively evaluating the
nitrogen pollution in the river waters of Chengdu and provide a basis for local environ-
mental legislation.

2. Materials and Methods
2.1. Study Area

The Yangtze River is China’s ‘mother river’, and the Yangtze River Economic Belt
is a major engine for China’s development [21]. Chengdu is the nearest megacity to the
Yangtze River Basin, and its water quality directly restricts the economic development and
water safety in the lower reaches of the Yangtze River. It is located between 30◦05′ N and
102◦54′ E, has a population of 20.9 million, and covers an area of 14,335 km2. Furthermore,
it is positioned within the subtropical humid monsoon climate zone, and experiences an
annual rainfall of 800–1400 mm and an average annual temperature of 15.2–16.6 ◦C [22].
Land use types in Chengdu City have the following three characteristics: First, land
types are diverse. Second, the plain area accounts for 40.1% of the city area. Third, the
land reclamation index (38.2%) is higher than the national average (10.1%). The area of
construction land in Jin River Basin is 483.56 km2, which is higher than that in Jinma River
Basin and Tuo River Basin. The area of agricultural land in the Jinma River Basin and the
Tuo River Basin is 3333.25 km2 and 4749.67 km2, respectively, which is significantly higher
than that in the Jin River Basin.

Chengdu straddles two water systems: the Min River and Tuo River. The Min River,
which was once considered the Yangtze River’s main tributary, is divided into the Jinma
River Basin and Jin River Basin at the Dujiangyan Fish Mouth (i.e., part of a famous ancient
water project). Since ancient times, fish mouths have provided a steady flow of water
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to Jin River throughout the year, thus facilitating agricultural irrigation and preventing
floods. Excess water tends to flow toward the Jinma River, which is mainly used for flood
discharge. Although the Tuo River has its own water system, it actually draws water from
the Min River. Notably, the Jinma, Jin, and Tuo River Basin account for 44.43%, 15.94%, and
39.63% of the total watershed area, respectively [22].

2.2. Sample Collection

This study used 75 sampling points (Figure 1) in Chengdu River Basin, and 891 annual
average values were collected between 2017–2020.

Figure 1. Location of sampling points.

The first working day of each month was used for sampling, and 21 physical and
chemical indicators (flow, pH, DO, temperature, EC, CODMn, BOD5, TN, NH3-N, NO3

−-N,
NO2

−-N, DON, TP, PO4
3−, K+, Na+, Ca2+, Mg2+, Cl−, SO4

2−, CO3−) of the samples were
tested. Furthermore, the annual average concentrations of total nitrogen (TN), ammonia
nitrogen (NH3-N), nitrate nitrogen (NO3

−-N), nitrite nitrogen (NO2
−-N), and total organic

nitrogen (DON) at the 75 sampling sites from 2017 to 2020 were used. These indexes were
analyzed after the water samples were filtered in situ with disposable filter devices (0.45 µm
pore size, 25 mm diameter, Whatman, GD/X, Maidstone, UK), frozen, and stored at <4 ◦C
in centrifuge tubes made of polyethylene terephthalate (15 mL, sterile, Corning, NY, USA).
NO3

−-N and NO2
−-N concentrations were measured using ion chromatography (883 Basic

IC, Metrohm, HeriSau, Switzerland), while the NH3-N concentrations were determined
using spectrophotometry (722N, Shanghai Jingke, Shanghai, China). The TN concentration
was digested using alkaline K persulfate and analyzed via spectrophotometry (UV752,
Shanghai Jingke, Shanghai, China) after reducing NO3

−-N to NO2
−-N. Meanwhile, DON

is calculated as follows: DON = TN-DIN = TN-NH3-N-NO3
−-N-NO2

−-N [22,23].

2.3. Chemometrics
2.3.1. SOMs

SOMs are a neural network model used for exploring and visualizing high-dimensional
data sets in the environment. Based on the minimum criterion of the Davies-Bouldwin
index (DBI), this study uses K-means clustering for the automatic generation of final clus-
tering categories [19,20]. Thus, this method can provide variable distribution information
of the data sample by outputting variable planes. Furthermore, the K-means algorithm of
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SOM can also output the unified distance matrix (U-matrix), which governs the construc-
tion of SOMs according to the distance between nodes and obtains the classification results
of all nodes. The difference between the U-matrix and variable plane is that it includes all
the variable information of the samples. The SOM clustering analysis was conducted using
the SOM toolbox 2.0 in MATLAB 2021b software.

2.3.2. HDT

HDT is a data graph that can represent finite posets. According to the research
results of Voyslavov et al. [18,19] and the user manual associated with Decision Analysis
by Ranking Techniques (DART) [24], the steps required for HDT clustering are briefly
explained:

(1) First, the weight order of each index parameter is determined. The calculation
method of entropy weight is as follows [25]:

X =
[
Xij
]

n×m =


x11 x12 x13 . . . x1m
x21 x22 x23 . . . x2m
x31 x32 x33 . . . x3m

...
...

...
. . .

...
xn1 xn2 xn3 . . . xnm

 (1)

For n samples and m indicators, Xij is the value of the ith sample corresponding to the
jth index.

(2) Calculate the normalization matrix:

Xnew =

∣∣∣∣ X− Xmin
Xmax − Xmin

∣∣∣∣ (2)

N =
[
Xij
]

n×m (3)

(3) Calculate entropy for all criteria:

ρij =
Xij

∑n
i=1 Xij

, ·(i = 1, 2, . . . , n; j = 1, 2, . . . , m)

ej = −k ∑n
i=1 ρij · ln

(
ρij
)
, (i = 1, 2, . . . , n; j = 1, 2, . . . , m)

(4)

where ρij is the weight of the jth sample value in the ith index, ej is the entropy of the jth
index, and k is the Boltzmann constant (k = 1/ln(n), (0 6 ej < 1)).

(4) Calculate the entropy weight wj of the j indicator:

Wj =
1− ej

∑m
j=1dj

, (j = 1, 2, . . . , m) (5)

Thus, the value of W = (w1, w2, w3, . . . , wj can be obtained (∑n
j wj = 1).

Second, the Hasse matrix is obtained using HDT. The ranking of object E, which
includes the sampling data of the research period, is performed based on variables such
as the selected water quality parameters; this object is called Information Basis (IB). The
processed data matrix Q(N × R) contains N objects and R variables. y(x) represents the
numerical value of the rth variable, and yr indicates the variables according to which the
objects are ranked. The two objects s and t are comparable in the following cases:

s, t ∈ E; s ≤ t↔ y(s) ≤ y(t)
y(s) ≤ y(t)↔ yr(s) ≤ yr(t), ∀yr ∈ IB

(6)
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Even if one y(s) 6 y(t), the objects s and t cannot be compared. The Hasse matrix,
which can easily derive the partial order set and determine the relations between objects,
can be expressed as follows:

hst


+1 if yr(s) ≥ yr(t), ∀yr ∈ IB
−1 if yr(s) < yr(t), ∀yr ∈ IB

0 otherwise
(7)

Finally, the Hasse image is drawn according to the Hasse matrix. If there is no object a
in E, for which s ≤ a ≤ t (a 6= s ∧ a 6= t), s is covered by t or vice versa. The order relation
in the Hasse matrix can be represented using the Hasse diagram, which is constructed
as follows:

a. Each object or equivalence class has a circular representation with an identifier. The
equivalence elements function as different objects, indicating that all variables in IB have
the same value.

b. If there is a coverage relationship, the corresponding objects are connected by lines
and the representative elements can be compared.

c. If s ≤ t, s is drawn above or below t; all the relation lines follow the same direction
principle.

d. If s ≤ t ∧ t ≤ z, s ≤ z. Although there is no connecting line between s and z, a
straight line can be used to connect s and t.

e. If s ≤ t ∨ t ≤ z, s and t are not comparable and cannot be connected using a
straight line.

Elements that are not covered by other objects are termed as ‘maximal elements’,
and those not covered by other objects are ‘minimal elements’. Meanwhile, ‘chain’ and
‘anti-chain’ represent a set of comparable and incomparable objects at the same level,
respectively; that is, the graph height represents the longest chain, and the graph width
represents the longest anti-chain.

Since HDT is not tolerant to ‘noise’, preprocessing steps are extremely important. In
this study, SOMs were used to preprocess the data, and HDT is implemented using the
DART software [26].

3. Results
3.1. SOM Clustering Results
3.1.1. Determining the SOM Clustering Structure

In this study, the multi-year average of 75 monitoring sections for 12 months (a total
of 891 samples) was used as the data set. According to the minimum node volume of the
competition layer (5 × INT(

√
N)), the number of neurons in the SOM map was determined

as 150 and statistical calculations were performed according to the data analysis method
in Section 2.3.1. Figure 2a shows the U-matrix of the input dataset and visualizes all the
parameters. The distance between neurons can be reflected by the U-matrix to determine
the clustering structure of the SOM graph. The attribute value of the index parameters
corresponding to each neuron can be expressed using color depth. That is, the neurons with
higher TN and NH3-N values were located in the upper and middle parts of the SOMs, and
the neurons with higher NO−3 -N, NO−2 -N and DON values were located in the lower right
part of the SOMs. Figure 2 shows that some neurons were not only polluted by NH3-N,
but also by NO−3 -N, NO−2 -N, and DON.
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Figure 2. (a) U-matrix and variable planes for the input data, and (b) ordering of component planes.

3.1.2. Evaluation Index Selection

The plane ordering of water quality parameters is shown in Figure 2b, which also
depicts the position, distance, and color of each parameter on the graph. Three distinct
groups can be observed; the first group includes NH3-N, the second group comprises TN,
and the third group contains NO−3 -N, NO−2 -N, and DON. The images of the parameters
in the third group show a high degree of consistency, indicating that there is a significant
correlation between them. NO−3 -N is the main form of nitrogen in river water and is
more representative than NO−2 -N and DON; thus, NO−3 -N represents NO−2 -N and DON
to be a group. TN, NH3-N, and NO−3 -N parameters exhibit distinct distributions, thereby
providing different information for data set objects. Therefore, TN, NH3-N, and NO−3 -N
were selected as the evaluation indexes for water nitrogen pollution assessment based
on HDT.

3.1.3. SOM Clustering Results

In this study, 891 objects were distributed in 142 neurons, and 8 neurons were not
filled with objects (Figure 3d). Finally, the data samples were divided into 8 clustering
categories (Figure 3a) denoted as Ci (i = 1, 2, . . . , 8). Different cluster categories in Figure 3b
correspond to distinct color partitions, with the corresponding number representing the
cluster category (i). Figure 3c indicates the corresponding neurons in different clustering
categories. Neurons numbered 1 to 150 are filled in order from left to right and from top to
bottom. Figure 3d shows the number of samples contained in each neuron. For example,
C1 contains 11 neurons (119, 120, 13, 133, 134, 135, 146, 147, 148, 149, and 150) and a total of
78 samples.

3.2. HDT Clustering Results
3.2.1. Determining the Data Set Equivalence Class and Evaluation Index Weight Ranking

To reduce the irrelevant differences between objects, each filled node in SOM has been
used as an equivalence class. Therefore, 891 objects are included in 142 neurons, and these
neurons are then divided into 8 categories according to the water quality characteristics
between nodes. These categories are used as the final equivalence class for HDT clustering
analysis. When dividing the equivalence class of the data set, it is necessary to consider
the weight ranking of the evaluation indicators. According to the selection results of
the evaluation indicators in Section 3.1.2 and the methods described in Section 2.3.2, the
weights of the evaluation indicators are calculated (Table 1).



Water 2023, 15, 2113 7 of 12

Figure 3. SOM clustering results: (a) relationship between the clustering number and DBI index,
(b) clusters based on the lowest DBI index, (c) neuron numbers, and (d) number of samples in each
neuron.

Table 1. Entropy weight of evaluation indices.

Name TN NH3-N NO3
−-N

Wij 0.2087 0.4079 0.3834
ranking 3 1 2

3.2.2. HDT Clustering Ranking

The preprocessing results of data sets and evaluation indicators are input into the
DART software, after which the Hasse diagram is output (Figure 4). The input object is
divided into five levels (clean, generally clean, lightly polluted, moderately polluted, and
heavily polluted), and the maximum elements C1 and C8 and the minimum element C6 are
obtained. There is no connection line between the adjacent elements C4 and C7 as well as
C3 and C1, and it is considered that they have at least one evaluation index with opposite
attributes. There are connecting lines between adjacent elements such as C7 and C1 as
well as C2 and C3, indicating that the attribute values of all evaluation indexes increase
synchronously. The final sample clustering results are shown in Table 2, and the attribute
values of clustering evaluation indexes are shown in Table 3.
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Figure 4. Schematic depicting the Hasse diagram where C1,2,...,8 represents elements used for SOM
clustering, N represents sample number, and the purple text represents the evaluation indices driving
element pollution.

Table 2. Clustering results of SOM and HDT.

Level Element N Neuron Number Corresponding Samples (Section-Month)

Level 1 C6 309
7,8,9,10,11,12,13,14,15,23,24,25,26,27,28,29,
30,39,40,41,42,43

JM19-3, JM23-3, JM23-4, JM4-5, JM22-8, J14-10, J15-10,
JM13-2, JM3-2, JM3-3, J2-5, JM3-5, T5-8, T5-7, T9-10,. . .

Level 2 C5 153
5,6,20,21,35,36,37,38,44,45,51,52,54,55,56,
57,58,60,67,68,69,70,71

J3-1, T5-2, J3-3, JM18-4, JM20-4, J29-6, J30-8, J18-9,J31-11,
J18-3, JM20-3, JM19-4, J3-7, J13-8, J3-12, J18-1, JM18-1,. . .

Level 3 C2 94
50,59,66,72,73,74,75,82,83,84,85,86,88,97,
98,99,112,113,114

JM9-12, T12-12, T9-1, JM22-2, T9-2, T1-3, T1-5, JM5-6,
T1-11, T9-11, JM20-1, JM19-2, JM19-12, JM5-5, J13-1,. . .

C4 67
2,3,4,18,19,33,49,65,80,95,109,110,122,124,
125,126,127,137,138,139,140,142

J19-8, T11-12, J3-5, J18-4, J30-6, T15-6, J25-7, J4-7, J18-11,
T12-9, T13-11, J5-12, JM9-2, J5-7, J6-9, T11-11, J19-1,. . .

Level 4 C3 42 1,16,17,31,32,48,63,64,79,93,94,107,108,121 J25-12, T11-4,J24-1, J30-1, J7-7, T11-2, T4-3, J19-4, J30-2,. . .

C7 108
87,89,90,100,101,102,103,104,105,116,117,
118,129,130,131,143,144,145

JM17-6, JM24-8, JM20-10, JM24-12, T2-2, T6-7, T8-7, T5-9,
T7-10, T2-3, T2-4, J5-10, J3-10, J6-6, J6-2, J6-3, JM23-9,. . .

Level 5 C1 78 119,120,132,133,134,135,146,147,148,149,150 T16-4, T16-5, T16-6, T16-9, T16-10, J29-1, J30-9, J7-3,. . .
C8 40 46,47,61,62,76,77,78,91,92,106 J8-4, JM10-5, T13-4, T13-5, J25-4, JM10-2, T17-3, T17-6,. . .

Table 3. Attribute values of evaluation indices in clustering results (unit: mg/L).

Level Element TN NH3-N NO3
−-N NO2

−-N DON
ave SD ave SD ave SD ave SD ave SD

Level 1 C6 0.98 0.62 0.35 0.34 0.46 0.32 0.03 0.02 0.14 0.10
Level 2 C5 1.65 0.42 0.50 0.29 0.84 0.24 0.05 0.01 0.26 0.08

Level 3 C2 2.27 0.59 0.56 0.30 1.24 0.35 0.07 0.02 0.39 0.11
C4 2.87 0.69 1.45 0.42 1.04 0.29 0.06 0.02 0.33 0.09

Level 4 C3 4.32 1.10 2.34 0.83 1.44 0.41 0.08 0.02 0.45 0.13
C7 3.05 0.74 0.73 0.49 1.69 0.40 0.09 0.02 0.53 0.13

Level 5 C1 4.63 1.33 0.96 0.82 2.68 0.84 0.15 0.05 0.85 0.26
C8 6.91 1.63 3.90 1.45 2.20 0.56 0.12 0.03 0.69 0.18

The advanced relationships among nitrogen properties (mass concentration) can be
analyzed by determining the relationship between different elements. Figure 4 shows
the elements (Ci) in each level of the Hasse diagram. C8 and C3 represent heavy NH3-N
pollution, while C1, C7, and C8 represent heavy NO3

−-N pollution. The nitrogen attribute
values of C6 and C5 were low. Nitrogen pollution gradually increased from Level 1 to
Level 5; however, the nitrogen attribute values between elements did not increase with a
rise in level (Table 3). Specifically, Level 1 contains C6 whose nitrogen attribute values are
low. Level 2 contains C5, which is more nitrogenous than Level 1. Level 3 contains C2 and
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C4, and its nitrogen properties are more profound than those at Level 2. Level 4 includes
C3 and C7; C3 shows higher TN and NH3-N values, C7 has higher NO3

−-N values, and C3
exhibits higher nitrogen attributes than those of the samples at Level 3. However, C7 only
increased the nitrogen attribute of C2 at Level 3, which was lower than the NH3-N value in
C4. Level 5 contains C1 and C8, which exhibit high nitrogen attribute values. The NO3

−-N
pollution of C1 is dominant, while the NH3-N pollution of C8 is more prominent. C1 only
has an advanced relationship with C7 at Level 4. The NH3-N attribute of C3 at Level 4 is
higher than that of C1, while the nitrogen attribute of C8 is higher than all elements at Level
1 to Level 4.

4. Discussion
4.1. Comprehensive Evaluation of Nitrogen Pollution

The nitrogen pollution of rivers in Chengdu, which is mainly driven by nitrate nitrogen,
has been concentrated in the middle and lower reaches. Figure 5 shows the number and
proportion of samples during the high and low water periods as well as the upper, middle,
and lower reaches of the hierarchical clustering results. The nitrogen pollution at the upper,
middle, and lower reaches in Chengdu changed significantly compared to the variations
in nitrogen pollution in the high and low water periods. Samples that were moderately
and heavily polluted accounted for 30.1% of the total samples, indicating that nitrogen
pollution is still prominent. With increasing pollution levels, the proportion of dry season
samples increased to 57.0%, the proportion of upstream samples decreased significantly,
and the proportion of downstream samples increased significantly. The upstream samples
that were moderately and heavily polluted accounted for only 14.9% of the total samples,
whereas the proportion of downstream samples was 85.1%. Samples subjected to NH3-N
pollution were dominant in the middle reaches, and there were no upstream samples.
Meanwhile, samples in the dry season were more than double the samples in the wet
season. For NO3

−-N pollution, the proportion of downstream samples was approximately
50%, and the sample size of C1 in the wet season and dry season was similar. The number
of C7 samples in the wet season was more than that in the dry season, while contrasting
results were observed for C8 because of the significant NH3-N pollution. Samples subjected
to low-level nitrogen pollution were mainly observed in the middle and upper reaches, and
the number of samples in the wet and dry seasons was equivalent. Overall, the nitrogen
attribute values of most samples were low, and the number of samples affected by NO3

−-N
(25.4%) was much more than that affected by NH3-N (9.2%).

Figure 5. Number of samples and proportion of each cluster in rainy and dry seasons as well as
upstream, midstream, and downstream.
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The nitrogen pollution characteristics in the three basins tended to be slightly different.
The degree of nitrogen pollution in the Tuo River Basin was greater than that in the other
two basins. The proportion of clean samples was only 1.0%, and that of heavily polluted
samples was 32.0%. Meanwhile, the proportion of clean samples in Jinma and Jin River
Basin accounted for 51.0% and 40.3%, respectively. The proportion of samples affected by
NO3

−-N and NH3-N was 47.4% and 14.5% in Tuo River Basin, 16.0% and 8.0% in Jinma
River Basin, and 20.0% and 6.7% in Jin River Basin, respectively. The pollution range of
NH3-N in Jin River Basin was low, but the pollution degree was high (3.11 ± 1.50 mg/L);
however, all the samples were located in the middle reaches.

4.2. Advantages and Disadvantages of SOMs and HDT Technology

Studies have shown that the spatial and temporal distributions of various nitrogen
forms in the region are complex, and the conclusions drawn by traditional single evaluation
methods are often not accurate enough. Through the unorganized information provided
by SOMs, numerous samples can be preliminarily clustered. Although the results provide
a qualitative evaluation of water quality, a definite ranking of pollution levels cannot
be obtained. Furthermore, HDT technology can elucidate ranking relationships during
clustering, is not restricted by national water quality standards, and can be used to perform
any standard water quality evaluation. The preprocessing of data by SOMs addresses the
problem of HDT being intolerant to ‘noise’ to some extent. Thus, the nitrogen pollution
evaluation conducted using SOMs and HDT is friendly and reliable.

Previous studies have concluded that by utilizing both SOMs and HDT, water pol-
lution evaluation can be realized by imaging the water surface. Tsakovski et al. [12],
Liu et al. [20], and Voyslavov et al. [18,19] used binomial technology to analyze the tem-
poral and spatial characteristics of surface water pollution in Struma River, Mudan River,
and Maritsa River, respectively. However, all these studies relied on local surface water
standards for manual grading. In contrast, the present study employed SOMs and HDT to
perform visual nitrogen pollution evaluation without utilizing any water standards. The
results elucidated the spatial and temporal characteristics of nitrogen pollution in rivers,
while providing another method for formulating water quality standards to better serve
local water environment management.

Although the proposed method clearly exhibits advantages for evaluating surface
water monitoring results, this study judges its reliability based on only the consistency
of results. Since it only utilizes spatial and temporal analysis results of nitrogen forms,
substantive evidence is lacking. The water quality evaluation parameters only include
nitrogen-related indicators; although there is a significant correlation between these parame-
ters, a certain deviation is also observed in the characterization characteristics. Furthermore,
when using DART software for HDT analysis, it is still necessary to manually set the equiv-
alence class samples, which is not ideal.

5. Conclusions

Nitrogen pollution in the rivers of Chengdu, which can be divided into five levels, is
prominent and mainly driven by nitrate nitrogen. To further improve the water environ-
ment quality, controlling nitrate nitrogen pollution is key. The nitrogen pollution in the Tuo
River Basin is more prominent. Meanwhile, the range of ammonia nitrogen pollution in
Jin River Basin is low, but the pollution degree is high. The evaluation results obtained
using SOMs and HDT are consistent with the actual situation, and thus can be used for
evaluating nitrogen pollution in other rivers.

Furthermore, the evaluation of nitrogen pollution in river waters based on SOM and
HDT is not restricted by water quality standards. The proposed method can be used
for visual clustering and sorting, with the output results being clear and reliable. In
the future, the credibility of this method can be improved and the software application
development can be optimized to reduce manual operation, which will help promote its
practical applicability for environmental management.
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