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Abstract: Traditional centrifugal pump performance prediction (CPPP) employs the semi-theoretical
and semi-empirical approaches; however, it can lead to many prediction errors. Considering the
superiority of deep learning when applied to nonlinear systems, in this paper, a method combining
hydraulic loss and convolutional neural network (HLCNN) is applied to CPPP. Head and efficiency
were selected as two variables for demonstrating the energy performance of the centrifugal pump in
order to reflect the prediction ability of the proposed model. The evaluation results indicate that the
predicted head and efficiency are accurate, compared with the experimental results. Furthermore, the
HLCNN prediction model was compared against machine learning methods and the computational
fluid dynamic method. The proposed HLCNN model obtained a better AREmean, root mean square
error, sum of squares due to error, and mean absolute error for centrifugal pump energy performance.
The research revealed that the HLCNN model achieves accurate energy performance prediction in
the design of centrifugal pumps, reducing the development time and costs.

Keywords: centrifugal pump; energy performance; hydraulic loss; convolution neural network

1. Introduction

In general, the research on centrifugal pumps mainly focuses on four stages: design
and development, manufacturing, performance testing, and optimization and improve-
ment [1]. This paper focuses on extracting feature information and predicting energy
performance according to critical design and operation parameters of the centrifugal pump
during the first stage only, with the goal of shortening the development period and re-
ducing research costs. Current methods of centrifugal pump performance prediction
(CPPP) mainly include the hydraulic loss method (HLM) [2–5], the computational fluid dy-
namic (CFD) [6–8] numerical simulation method, and the artificial neural network (ANN)
method [9–12].

Because it takes into consideration factors such as secondary flow, the HLM is widely
used in the field of CPPP. Lin [13] applied the enstrophy dissipation method to study
hydraulic loss, and the results showed that the losses are controlled by the fluctuating and
the wall enstrophy dissipation power. Naggar [14] used Euler and energy equations to
calculate the fluid slip and volute loss at the impeller outlet. However, due to the difference
in hydraulic loss between the mathematical calculation models for different types of pumps,
the application is subject to restrictions. The development of computer visualization
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technology has led to the CFD method being widely used in the research on various fluid
machineries [15–18]. Kang [19] used CFD to predict the variation rule of internal flow
and performance parameters of the short blade centrifugal pump. Rehman [20] used
ANSYS soft to predict the cavitation phenomenon of the pump under different working
conditions. However, CFD’s effectiveness in prediction accuracy depends to a certain
extent on the engineers’ experience. In recent years, ANNs have been increasingly used
to predict complex behavior in uncertain problems [21–23]. Zhao [24] combined the gray
clustering method and a second curvelet neural network to predict the performance ratio
of photovoltaic pumping systems. The simulation results showed that the second curvelet
neural network had the highest prediction precision. Mrinal [25] developed approximate
models based on ANN to predict pump performance. These approximation models can
eliminate the expensive testing to plot the performance curve of a pump. Park [26] applied
ANN to predict the seasonal heating performance of a large-scale ground-source heat
pump system. The prediction model can be used as a baseline for the measurement and
verification of future energy conservation measures and real-time performance monitoring
to check for system malfunctions. Nie [27] used a back-propagation neural network
(BPNN) algorithm to predict centrifugal pump performance and found that the errors
of head and efficiency were 7% and 8%, respectively. Deng [28] used the least squares
support vector regression (LSSVR) algorithm to predict pump performance from multiple
impeller parameters but did not consider the influence of volute parameters. Although the
above findings have achieved good results, they have one drawback: only one hidden layer
was selected in the structure of the prediction model, and the features contained in the
training data were not always completely extracted. The reason why only one hidden layer
was selected is that, for these shallow networks, due to the particularity of the training
algorithm, a large number of hidden layers might cause difficulty in the training process,
and they are prone to problems such as overfitting, gradient disappearance, and falling
into local minimum value [29]. Therefore, an ANN with one hidden layer was unable to
extract pump features efficiently, and the prediction accuracy of the pump needed to be
further improved.

Later, with the rapid development of computer software and hardware technology,
deep learning (DL) has been proven to alleviate the problems of training difficulties and
gradient disappearance caused by the shallow neural network algorithm [30]. Several
researchers have introduced convolutional neural networks (CNNs) in DL to performance
prediction in various fields [31–33]. CNNs have been shown to outperform ANNs with one
hidden layer and learn features automatically instead of requiring manual design [34,35].
Ye [36] used a CNN to predict the pressure coefficient of a non-uniform cylindrical flow,
and prediction accuracy was significantly improved. Harbola [37] used a one-dimensional
CNN to predict the dominant wind speed and direction of the wind field; these research
results are beneficial for the installation of wind turbines. Haidar [38] used a deep CNN
to predict the monthly rainfall of a location in eastern Australia. Yong [39] introduced
DL to quantitatively predict changes in the heating capacity, power consumption, and
performance coefficient of air source heat pumps. DíazeVico D [40] used a CNN to predict
wind energy and solar irradiance, based on input data from a numerical weather prediction
system. These results attest to the powerful feature extraction ability of the CNN.

However, most researchers using deep neural networks for performance prediction
only migrated the DL directly from other fields, including CPPP, without considering the
embedding of physical laws between the design and performance parameters of centrifugal
pumps for small datasets. In this paper, we did consider this correlation in exploring a new
method suitable for CPPP and validated it by carrying out experiments. The novelty of
this approach is that it predicts centrifugal pump performance based on HLM and CNN
(HLCNN), rather than relying solely on a purely data-driven black box agent model to
complete CPPP. In addition, for the centrifugal pump’s entire flow field, the performance
prediction process considered hydraulic loss analysis, giving it the advantage of improving
the interpretability and stability of the intelligent model.
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Therefore, to improve the accuracy and interpretability of the CPPP model under
small sample datasets, this paper proposes a HLCNN-based approach for predicting
the energy performance of a centrifugal pump. This paper achieved the CPPP by using
multiple alternately distributed convolutional layers to complete the adaptive learning of
performance features and combine the fully connected layer (FCL). The main contributions
are as follows: (1) a hybrid CPPP model considering the relationship between centrifugal
pump hydraulic loss and energy performance is established; (2) considering the influence of
network structure on the CPPP model, the feature learning speed of different convolutional
layers is analyzed; and (3) compared with an experimental study and other methods
(BPNN, LSSVR, CFD), the effectiveness of the proposed model is proved.

2. Methodology and model
2.1. Modeling of Hydraulic Loss and Energy Performance of Centrifugal Pump

The common structure of a centrifugal pump consists of inlet, impeller, volute, and
outlet. The impeller and volute play the crucial role in energy conversion in a centrifugal
pump. The main design parameters of the impeller and volute are shown in Figure 1,
including the impeller inlet diameter (Dj), impeller outlet diameter (D2), blade outlet width
(b2), the number of blades (z), blade outlet angle (β2), hub diameter (dh), blade inlet angle
(β1), volute base circle diameter (D3), and volute inlet width (b3), initial angle of volute
tongue (ϕ0), and throat area (Ft). The specific speed (ns), flow rate (Q), and impeller
rotational speed (n) are significant operating parameters of the pump. The design and
operating parameters affecting the centrifugal pump energy performance (head (H) and
efficiency (
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Figure 1. Main design parameters of a centrifugal pump. (a) Impeller. (b) Volute. 
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Generally, there are many semi-theoretical and semi-empirical methods to calculate the
hydraulic loss of a centrifugal pump. Hydraulic loss is mainly caused by the inlet, impeller,
and three volute parts, and the inlet is usually ignored. In this section, the following
hydraulic losses are taken into consideration: (a) impeller inlet shock loss (liis), (b) impeller
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surface friction loss (lisf), (c) impeller flow passage diffusion loss (lifd), (d) volute inlet shock
loss (lvis), (e) volute friction loss (lvfri), and (f) volute diffusion loss (lvdif).

2.1.1. Impeller Inlet Shock Loss

When the centrifugal pump operates under off-design conditions, shock loss will
occur at the blade inlet. The liis depends on the relative velocity of the blade inlet, which is
defined as:

liis =
fiis

2g
(u1

Q−Qd
Qd

)
2

(1)

where f iis is the impeller inlet shock loss coefficient, u1 is the circumferential velocity of
the impeller inlet, and Qd represents the flow rate of the centrifugal pump under design
conditions.

2.1.2. Impeller Surface Friction Loss

The impeller surface friction loss follows that of the standard pipe friction model [44],
and the corrected lisf is as follows:

lisf = zk3λ1
la
Da

wa
2

2g
(2)

The relationship between impeller circumferential velocity (u), relative velocity (w),
and absolute velocity (v) is obtained from the rules of vector addition, which can be
illustrated as velocity triangles [45]. The relevant parameters used in this work to calculate
the lisf are presented in Table 1.

Table 1. Relevant parameters of impeller surface friction loss.

Parameter Expression

k3: impeller friction loss correction coefficient k3 = 1/4.68ns
0.0185 − 4.84 (3)

λ1: impeller linear friction coefficient λ1 = [1.74 + 2lg(Da/2δ)]−2 (4)
la: hydraulic length of the flow passage la = (D2 − Dj)/(sin β2 + sin β1) (5)

Da: average diameter of the flow passage Da = (D2 + Dj)/2 (6)
wa: average relative velocity wa = 0.5(w1 + w2) (7)

Here, δ is the surface roughness of the centrifugal pump. w1 and w2 are the relative velocity of the impeller inlet
and outlet.

2.1.3. Impeller Flow Passage Diffusion Loss

When liquid flows through the centrifugal pump, it will cause flow separation on the
impeller inner wall, which is defined as:

lifd = 0.25
w1

2

2g
(8)

2.1.4. Volute Inlet Shock Loss

When the centrifugal pump operates under off-design conditions, the liquid that flows
out of the impeller and enters the volute will have an impact due to the different velocity,
which is shown as:

lvis =

(
vm2

u2

)2( 1
ψ2
− b2

b3

)2
(9)

where u2 and vm2 are the circumferential and axial velocities at the impeller outlet, and ψ2
is the extrusion coefficient of the blade outlet.
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2.1.5. Volute Friction Loss

According to the theory of equivalent pipe flow loss [46], the lvfri can be estimated as:

lvfri = k7λ2
lva

D× 2g
(10)

The relevant parameters used in this work to calculate the lvfri are presented in Table 2.

Table 2. Relevant parameters of volute friction loss.

Parameter Expression

k7: volute friction loss correction coefficient k7 = −0.071+ 6.3 ns
100 − 2( ns

100 )
2− 3.44( ns

100 )
3 + 1.7( ns

100 )
4 (11)

λ2: volute linear friction coefficient λ2 = [1.2 + 2lg(D/2δ)]−2 (12)
l: equivalent tube length of volute l = π(1− ϕ0/360)(D3 + D) (13)

D: equivalent tube diameter of volute D =
√

2Ft
π

(14)

Here, va is the average velocity in the volute.

2.1.6. Volute Diffusion Loss

As the volute flow passage is in a diffusion state, the diffusion loss of the liquid flow
out of the impeller and entering the volute is calculated as follows:

lvdif = Cv
v3d

2

2g
(15)

Cv is the volute loss coefficient. v3d is the velocity component in a tangential direction
to the impeller.

To sum up, the actual head (H) and total efficiency (
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) of the centrifugal pump in this
paper can be expressed as:

H = Ht − (liis + lisf + lifd) − (lvis + lvfri + lvdif) (16)

η = ηhηvηm (17)

ηh = H/Ht (18)

ηv = 1/(1 + 0.68ns
−2/3) (19)

ηm = 1− 0.07/(ns/100)7/6 (20)

Here, Ht,
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Figure 1. Main design parameters of a centrifugal pump. (a) Impeller. (b) Volute. 

m are the theoretical head, hydraulic efficiency, volumetric efficiency,
and mechanical efficiency of the centrifugal pump [47]. The theoretical calculation of Ht (as
shown in Appendix A) can be referred to the literature [48].

2.2. Hydraulic Loss–Convolution Neural Network (HLCNN)

CNN is an end-to-end, supervised neural network, whose basic structure can be di-
vided into input layer, alternately distributed convolutional layer, pooling layer, FCL, and
output layer. In this paper, the basic architecture for predicting the hydraulic loss of the
centrifugal pump applying the CNN is shown in Figure 2. In addition, the nonlinear math-
ematical relation between centrifugal pump design, operation parameters, and hydraulic
loss can be derived as follows.
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Figure 2. HLCNN architecture of centrifugal pump hydraulic loss prediction.

First, suppose that the input layer neuron is a (aεxi), which represents the design
and operation parameters of the centrifugal pump. The expression of the centrifugal
pump feature information g(z) extracted from the first convolution layer (Conv1) through p
channels is shown in Equation (21), where wz

1,y,z is the convolution kernel and bz is the bias
of the Conv1.

g(z) =
i

∑
y=1

p

∑
z = 1

a1,y,1 ×wz
1,y,z + bz, z = 1, 2 . . . p (21)

After each channel completes the convolution computation, the nonlinear transforma-
tion is conducted by applying the rectified linear unit (ReLU) [49], and the output of Conv1
is given by

y(z) = f (g(z)) = max{0, g(z)}, z = 1, 2 . . . p (22)

Assuming that the CPPP model in this paper contains n convolutional layers, the
feature information extracted through the n-th convolution layer (Convn) is presented in
Equation (23). The output of Convn is shown in Equation (24).

g(zn) =
k

∑
yn=1

pn

∑
zn=1

a
n−1

1,yn,zn ×wzn
1,yn,zn

+ bzn (23)

g(zn) =
k

∑
yn=1

pn

∑
zn=1

a
n−1

1,yn,zn ×wzn
1,yn,zn

+ bzn (24)

Next, the centrifugal pump feature information extracted from n convolutional layers
is inputted to the first fully connected layer (FCL1), and the output of FCL1 is shown in
Equation (25), where f 1 represent the number of neurons of FCL1. Similarly, the feature
information of the (n + l)th layer is inputted to the regression layer, and the regression
function is shown in Equation (26), where wT and b are regression coefficients.

F(zn+1) =
f1

∑
i = 1

q

∑
yn+1

pn

∑
zn+1

a
n

1,yn+1,zn+1
×wzn+1

1,yn+1,zn+1
+ bzn+1 (25)

e(x) = wTx + b (26)

Finally, all feature information of the centrifugal pump is outputted from the output
layer, as shown in Equation (27), where mpl represents all hydraulic loss of the centrifugal
pump.

mpl = e(F(zn+l)) (27)

As can be seen in Figure 3, the prediction process consisted of three parts. The first
part was to calculate the hydraulic loss of the impeller and volute based on the design and
operation parameters of the centrifugal pump.
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The second part was to build a fully convolution neural network. To improve the
stability of the network and avoid the gradient disappearance in the training process, all
activation functions were set as ReLUs. The Adam algorithm [50] was used to optimize
and update each training parameter. To accelerate the learning speed of centrifugal pump
feature information and ensure the correctness of the training direction, mapminmax
normalization was used to initialize the training samples.

The third part was the evaluation of the HLCNN model. The test samples were
inputted to the prediction model for testing, and the prediction model was evaluated by
comparing the absolute relative error (ARE) between the predicted and the experimental
values, as follows:

ARE =
|yi − ŷi|

yi
(28)
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Other regression evaluation indicators [51], including root mean square error (RMSE),
the sum of squares due to error (SSE), and mean absolute error (MAE) are defined as
follows:

RMSE =

√
1
n

n

∑
i = 1

(yi − ŷi)
2 (29)

SSE =
n

∑
i = 1

(yi − ŷi)
2 (30)

MAE =
1
n

n

∑
i = 1

(yi − ŷi) (31)

where yi and ŷi represent the experimental and predicted values of the i-th sample, and n
is the number of samples.

The HLCNN model framework used to predict the hydraulic loss of centrifugal pump
is shown in Figure 4.
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3. Experimental Research and Data Sources

The centrifugal pump is an indispensable energy conversion machine on pump station
systems. The prediction of its energy performance directly affects the energy-saving
transformation and stable operation of the pump station system. In order to study the
relationship between the energy performance and design parameters of the centrifugal
pump, performance tests were carried out on an open test rig in Zhejiang, China. The test
rig met the Chinese national standard of GB/T3216, and the test accuracy was Level I. The
working medium was room temperature water. The experimental devices for the energy
performance test are presented in Figure 4. Two pressure sensors were installed at the inlet
and outlet pipe of the centrifugal pump. The flow rate was controlled by an electric valve,
and a photoelectric sensor was used for feedback on the impeller rotational speed. Finally,
the obtained energy performance parameters were saved and processed in real time by the
data acquisition system.

In this paper, the fourteen design parameters, namely Dj, D2, b2, z, β2, dh, β1, D3,
b3, ϕ0, Ft, and ns, Q, and n are considered as the input variables of the HLCNN model.
The six hydraulic losses, namely liis, lisf, lifd, lvis, lvfri and lvdif, were selected as output
variables. In the design of the centrifugal pump, the variations in these parameters were
related to each other along with the working condition and the regulation mode. In this
paper, the HLCNN model is proposed to predict the head and efficiency of the centrifugal
pump. Consequently, the modeling samples of the centrifugal pump can be represented as
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M = {X, Y}, where X = [x1, . . . , xN]T∈Rn×14, Y = [y1, . . . , yN]T∈Rn×6, and n is the number
of the sampling set. The i-th sample set can be further described as mi = {(xi = [Dj (i), D2(i),
b2(i), z(i), β2(i), dh(i), β1(i), D3(i), b3(i), ϕ0(i), Ft(i), ns(i), Q(i), n(i)]T, yi = [liis (i), lisf (i), lifd(i),
lvis(i), lvfri(i), lvdif(i)]T)}.

In this paper, 390 groups of experimental data were collected from the centrifugal
pump energy performance test rig. In terms of dataset division, we used 20% of the
samples as the test set to evaluate the generalization ability of the HLCNN model. Similarly,
20% of the experimental data were used as the validation set to adjust and optimize
the hyperparameters of the HLCNN model. The rest of the samples, except the test
and validation set, were used as a training set to build a prediction model. Therefore,
the numbers of samples in the training, validation, and test sets were 234, 78 and 78,
respectively.

4. Results and Discussions
4.1. Influence of Convolutional Layer on Prediction Model

As discussed in Section 2, we found that the convolutional layer was the main building
block of the HLCNN model. Three parameters affected the structure of the convolutional
layer: convolutional kernel size, feature maps, and neurons. Here, the convolution kernel
was able to achieve the feature extraction of the input sample. The feature map refers to
the number of convolution kernels. In this paper, the convolutional layer directly affected
whether the prediction model could completely extract the feature information from the
design and operation parameters of centrifugal pump. Therefore, the same sample set
was used to train three (CNN3), four (CNN4), five (CNN5), and six (CNN6) convolution
layers to determine the influence of the convolutional layers on the HLCNN model. The
simulation environment was a MATLAB 2020a with a 2.3 GHz CPU and 16 GB RAM.

The variation trend of losses with different convolutional layers is shown in Figure 5.
From the curve comparison, it can be found that, except for CNN5, the training process
of the other three networks was similar. In terms of model stability, the loss fluctuation of
CNN5 was the largest compared with the other three networks under the same training
epoch. The fluctuation was most obvious when the training epochs were 20 and 60.
Therefore, CNN5 was not suitable for predicting the performance of the centrifugal pump.
At the same time, CNN3 did not reach the convergence state for the feature learning speed
of the model when the training epoch was 100. Finally, we selected a network with four
convolution layers (CNN4) to predict the head and efficiency of the centrifugal pump after
taking the impact of the training time into consideration. The hyperparameters of the
selected network are listed in Table 3.
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Table 3. Hyperparameters of the selected CNN4.

Network Layer Type
Parameters

Convolutional
Kernel Size Feature Maps Neurons

Input Input layer - - 14
Conv1 Convolutional layer 1 × 3 16 -
Conv2 Convolutional layer 1 × 3 24 -
Conv3 Convolutional layer 1 × 3 24 -
Conv4 Convolutional layer 1 × 3 16 -
FCL1 Fully connected layer 1 × 1 - 32
FCL2 Fully connected layer 1 × 1 - 12
FCL3 Fully connected layer 1 × 1 - 6

Output Output layer - - 6

The loss variation in the CNN4 model in the training and validation processes is
shown in Figure 6. The results show that the loss gradually decreases with the increase in
the learning epoch, and finally keeps near zero. There was no fluctuation or overfitting in
the whole feature learning process. It indicates that the CNN4 model has robustness and
fitting ability, and it can be utilized in modeling analysis of centrifugal pump performance.
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4.2. Performance Prediction for the Test Samples

We used 78 test samples to evaluate the prediction effect of the HLCNN model. The
comparison curve between predicted and experimental values of head and efficiency is
shown in Figure 7. It shows that the values predicted by the HLCNN model were consistent
with the change trend of the experimental values, and the difference was insignificant.

The ARE variations in the HLCNN model test samples are shown in Figure 8. It can
be found that the AREmeans of the head and efficiency were both less than 9%, which meets
the requirements of theoretical research and engineering practice [52]. The change in ARE
indicates that it is feasible to use the HLCNN model to predict the energy performance of
the centrifugal pump.

Once the head and efficiency predictions of the test samples are realized, Figure 9 can
further illustrate the correlation between the prediction and the experimental results. It
can be seen that the coefficients of determination (R−Square) of head and efficiency were
0.9902 and 0.9663, indicating that the HLCNN model has better fitting performance.
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4.3. Comparison with the Other Machine Learning Models

To further verify the nonlinear approximation ability of the proposed HLCNN model,
we compared the prediction results of the HLCNN, the BPNN, and the LSSVR models. The
same data set and running environment were adopted for the three models. The predicted
results of the different models compared to the experimental results are shown in Figure 10.
It can be seen that the fitting ability of the HLCNN model was better than that of the other
two models in terms of predicting the head and efficiency of the centrifugal pump (as
marked with the blue rectangles). This indicates that the problems of training process
difficulties and model instability are solved by the HLCNN model compared with the
traditional machine learning models.
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Tables 4 and 5 summarize the error distributions of the different models regarding
head and efficiency, respectively. It can be seen that the HLCNN prediction model obtained
better AREmax, AREmin, AREmean, RMSE, SSE, and MAE values than the BPNN and LSSVR
models. This indicates that the predicted head and efficiency of the HLCNN model and
the experimental values have a great agreement, which means that it is more suitable for
approximating the nonlinear mapping relationship between design, operation parameters,
and energy performance of the centrifugal pump. At the same time, it is worth noting
that the HLCNN model reduces the complexity of the prediction model with its special
structure of local weight sharing, which is embodied in the data reconstruction in the
process of centrifugal pump feature extraction.

Table 4. Comparison of evaluation indicators of different models on centrifugal pump head.

Model AREmax AREmin AREmean RMSE SSE MAE

HLCNN 10.943% 0.112% 4.866% 2.774 m 600.331 m2 0.783 m
BPNN 20.268% 0.252% 7.587% 3.607 m 1014.695 m2 1.053 m
LSSVR 15.318% 0.118% 5.718% 3.608 m 1015.125 m2 0.980 m

Table 5. Comparison of evaluation indicators of different models on centrifugal pump efficiency.

Model AREmax AREmin AREmean RMSE SSE MAE

HLCNN 10.583% 0.072% 4.769% 4.011% 0.125 0.443%
BPNN 16.724% 2.319% 8.019% 6.263% 0.306 1.217%
LSSVR 16.693% 0.316% 6.538% 5.154% 0.207 0.463%

4.4. Comparison with the CFD Method

According to many previous studies, the CFD method, which analyzes the relationship
between the internal flow field characteristics and the external performance parameters,
is another way to predict the performance of centrifugal pumps. In order to verify the
prediction ability of the HLCNN model, the CFD flow field numerical simulation method
was compared in this section. The simulation environment of the CFD method was the
same as that of the MATLAB.
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In this section, a centrifugal pump was selected randomly to reflect the variation
in performance parameters with the flow rate. The design and operation parameters of
the centrifugal pump are given in Table 6. The impeller and volute, as two important
components of the centrifugal pump, were divided into grids as shown in Figure 11.

Table 6. Design and operation parameters of impeller and volute of centrifugal pump.

Parameter Value Parameter Value

Dj (mm) 76 D3 (mm) 15
D2 (mm) 137 b3 (mm) 30
b2 (mm) 14 ϕ0 (◦) 22

z 6 Ft (mm2) 1477
β2 (◦) 30 ns 129

dh (mm) 0 Qd (m3/h) 50
β1 (◦) 17 n (r/min) 2900

Figure 11. Grid meshing of a centrifugal pump. (a) Impeller. (b) Volute.

The changes in performance parameters of the centrifugal pump are presented in
Figure 12. The research in Figure 12 shows that when the centrifugal pump was operating
under design conditions (as marked with the green circles), the predicted values of the two
models were both close to the experimental values, and those the HLCNN model proposed
are particularly obvious. The predicted values of the CFD model gradually deviated
from the experimental values when it operated in off−design conditions. There may be
three reasons for this phenomenon: (1) The accuracy of the CFD method is limited by the
influence of computer performance and engineer experience. (2) The inside flow pattern
of the centrifugal pump has a high turbulence value. At the same time, the numerical
simulation process is affected by turbulence model selection, separated flow, reverse flow,
and other factors under off−design conditions (see Figure 13). (3) At present, the research
of the interaction between the impeller and volute is not deep enough.
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Figure 13. Flow field structure in the centrifugal pump under off−design conditions.

It can be found from Figure 14 that the AREmeans of the head and efficiency obtained
by the CFD model were 17.30% and 7.16%. On the contrary, the AREmeans of the HLCNN
model were 4.36% and 4.00%, respectively, proving the strong generalization ability of the
HLCNN model within a wide flow rate range.

In addition, compared with the CFD method, the HLCNN model has advantages
in the prediction time of centrifugal pump performance. The whole prediction process
of the HLCNN model took 6.48 min in this section. However, under the same operating
environment, the CFD method required 27.5 h to complete the performance predictions at
11 operating points (Q = 30~80 m3/h). Therefore, the HLCNN model built in this paper
can build a CPPP model to meet the needs of design, production, and operation quickly
and accurately.
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5. Conclusions

This paper proposes a HLCNN-based method for predicting centrifugal pump energy
performance. The results demonstrate that the HLCNN method can improve prediction
accuracy compared with other methods. The following conclusions can be drawn:

(1) The performance features of the centrifugal pump were extracted by the HLCNN
model, and a nonlinear mathematical relationship was established between the hydraulic
loss of the centrifugal pump and the design operating parameters.

(2) The influence of convolution layers on the HLCNN model training process was
analyzed, and it was determined that the network with four convolution layers (CNN4)
was feasible to build the performance prediction model for the centrifugal pump.

(3) The HLCNN model prediction results were compared with the experimental results,
and it was found that the AREmeans of head and efficiency were both less than 9%, which
is consistent with the error range required by both theoretical research and engineering
practice.

(4) The AREmean of the HLCNN model was lower in predicting the head and efficiency
compared with the BPNN and the LSSVR model.

(5) The AREmeans of the HLCNN model were lower than the CFD method in predicting
head and efficiency, and the whole prediction process only took 6.48 min. It indicates that
the HLCNN model can predict the energy performance of centrifugal pumps in a wide
flow rate range quickly and efficiently.
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In light of the above analysis, the energy performance prediction method proposed in
this paper only studies the centrifugal pump without considering more types of pumps,
such as mixed-flow pumps, axial-flow pumps, etc. Hence, the first effort in future work
should be to validate this idea. The second effort should be to analyze the internal flow
mechanism on the basis of energy performance prediction combined with advanced flow
field visualization technology, such as particle image velocimetry (PIV).
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Nomenclature

Abbreviations Variables
CPPP Centrifugal pump performance prediction Dj Impeller inlet diameter
HLM Hydraulic loss method D2 Impeller outlet diameter
CFD Computational fluid dynamic b2 Blade outlet width
ANN Artificial neural network β2 Blade outlet angle
BPNN Back propagation neural network z The number of blades
LSSVR Least squares support vector regression dh Impeller hub diameter
DL Deep learning β1 Blade inlet angle
CNN Convolution neural network Φ Blade cape angle
HLCNN HLM and CNN D3 Volute base circle diameter
FCL Fully connected layer b3 Volute inlet width
ReLU Rectified linear unit ϕ0 Initial angle of volute tongue
ARE Absolute relative error Ft Volute throat area
AREmax Maximum absolute relative error ns Centrifugal pump specific speed
AREmin Minimum absolute relative error n Impeller rotational speed
AREmean Mean absolute relative error Q Centrifugal pump flow rate
RMSE Root mean square error H Centrifugal pump head
SSE Sum of squares due to error η Centrifugal pump efficiency
MAE Mean absolute error liis Impeller inlet shock loss

lisf Impeller surface friction loss
Parameters lifd Impeller flow passage diffusion loss
CNN3 Three convolution layers lvis Volute inlet shock loss
CNN4 Four convolution layers lvfri Volute friction loss
CNN5 Five convolution layers lvdif Volute diffusion loss
CNN6 Six convolution layers
Conv1 First convolution layer
Convn n-th convolution layer
FCL1 First fully connected layer
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Appendix A

Theoretical head *(Ht)
The theoretical head (Ht) represents the energy transmitted by the impeller to the

liquid per unit weight. Its calculation formula can be expressed [53] as:

Ht = (u2vu2 − u1vu1)/g (A1)

where u1 and u2 are circumferential velocities at the inlet and outlet of the impeller, re-
spectively. vu1 and vu2 are the circumferential components of absolute velocity at inlet and
outlet, respectively (Figure A1).

After introducing the slip factor (γ) and the blade blockage (τ2), the theoretical head
is written [45] as:

Ht =
u2

2

g

{
γ− Q

A2u2 tan β2B

[
τ2 +

A2D∗1m tan β2B

A1 tan α1

]}
(A2)

A1 =
π

4
(D2

j − d2
h) (A3)

A2 = πD2b2 (A4)

where A1 and A2 are cross-section areas at the inlet and outlet of the impeller, respectively.
D∗1m is the meridional component of the diameter at the impeller inlet [48].

Water 2023, 15, x FOR PEER REVIEW 20 of 22 
 

 

 

Figure A1. The inlet and outlet velocity triangle of a centrifugal pump. 

References 

1. Bing, H.; Cao, S. Multi-parameter optimization design, numerical simulation and performance test of mixed-flow pump impel-

ler. Sci. China (Technol. Sci.) 2013, 56, 2194–2206. 

2. Remo, J.; Carlson, M.; Pinter, N. Hydraulic and flood-loss modeling of levee, floodplain, and river management strategies, 

Middle Mississippi River, USA. Nat. Hazards 2012, 61, 551–575. 

3. Wang, C.; Shi, W.; Wang, X.; Jiang, X.; Yang, Y.; Li, W.; Zhou, L. Optimal design of multistage centrifugal pump based on the 

combined energy loss model and computational fluid dynamics. Appl. Energy 2017, 187, 10–26. 

4. Toti, A.; Vierendeels, J.; Belloni, F. Coupled system thermal-hydraulic/CFD analysis of a protected loss of flow transient in the 

MYRRHA reactor. Ann. Nucl. Energy 2018, 118, 199–211. 

5. Qiu, C.; Huang, Q.; Pan, G.; Shi, Y.; Dong, X. Numerical simulation of hydrodynamic and cavitation performance of pumpjet 

propulsor with different tip clearances in oblique flow. Ocean Eng. 2020, 209, 107285. 

6. Prakash, S.A.; Hariharan, C.; Arivazhagan, R.; Sheeja, R.; Raj, V.A.A.; Velraj, R. Review on numerical algorithms for melting and 

solidification studies and their implementation in general purpose computational fluid dynamic software—ScienceDirect. J. 

Energy Storage 2021, 36, 102341. 

7. El-Ghafour, S.; Elghandour, M.; Mikhael, N.N. Three-Dimensional Computational Fluid Dynamics Simulation of Stirling En-

gine. Energy Convers. Manag. 2019, 180, 533–549. 

8. Conti, F.; Wiedemann, L.; Sonnleitner, M.; Saidi, A.; Goldbrunner, M. Monitoring the mixing of an artificial model substrate in 

a scale-down laboratory digester. Renew. Energy 2018, 132, 351–362. 

9. Motahar, S. Experimental study and ANN-based prediction of melting heat transfer in a uniform heat flux PCM enclosure. J. 

Energy Storage 2020, 30, 101535. 

10. Tavakolpour-Saleh, A.R.; Shourangiz-Haghighi, A.R. A neural network-based scheme for predicting critical unmeasurable pa-

rameters of a free piston Stirling oscillator. Energy Convers. Manag. 2019, 196, 623–639. 

11. Nabipour, N.; Daneshfar, R.; Rezvanjou, O.; Mohammadi-Khanaposhtani, M.; Baghban, A.; Xiong, Q.; Li, L.K.; Habibzadeh, S.; 

Doranehgard, M.H. Estimating biofuel density via a soft computing approach based on intermolecular interactions. Renew. 

Energy 2020, 152, 1086–1098. 

12. Zhang, J.; Wang, Y. Evaluating the bond strength of FRP-to-concrete composite joints using metaheuristic-optimized least-

squares support vector regression. Neural Comput. Appl. 2020, 33, 3621–3635. 

13. Lin, T.; Li, X.; Zhu, Z.; Xie, J.; Li, Y.; Yang, H. Application of enstrophy dissipation to analyze energy loss in a centrifugal pump 

as turbine. Renew. Energy 2021, 163, 41–55. 

14. El-Naggar, M.A. A one-dimensional flow analysis for the prediction of centrifugal pump performance characteristics. Int. J. 

Rotating Mach. 2013, 12, 473512. 

15. Li, W.G. Effects of viscosity on turbine mode performance and flow of a low specific speed centrifugal pump. Appl. Math. Model. 

2016, 40, 904–926. 

16. Shahverdi, K.; Loni, R.; Maestre, J.; Najafi, G. CFD numerical simulation of Archimedes screw turbine with power output anal-

ysis. Ocean Eng. 2021, 231, 108718. 

17. Bhatti, M.; Arain, M.; Zeeshan, A.; Ellahi, R.; Doranehgard, M. Swimming of Gyrotactic Microorganism in MHD Williamson 

nanofluid flow between rotating circular plates embedded in porous medium: Application of thermal energy storage. J. Energy 

Storage 2022, 45, 103511. 

18. Krzemianowski, Z.; Steller, J. High specific speed Francis turbine for small hydro purposes-design methodology based on solv-

ing the inverse problem in fluid mechanics and the cavitation test experience. Renew. Energy 2021, 169, 1210–1228. 

Figure A1. The inlet and outlet velocity triangle of a centrifugal pump.

References
1. Bing, H.; Cao, S. Multi-parameter optimization design, numerical simulation and performance test of mixed-flow pump impeller.

Sci. China (Technol. Sci.) 2013, 56, 2194–2206. [CrossRef]
2. Remo, J.; Carlson, M.; Pinter, N. Hydraulic and flood-loss modeling of levee, floodplain, and river management strategies, Middle

Mississippi River, USA. Nat. Hazards 2012, 61, 551–575. [CrossRef]
3. Wang, C.; Shi, W.; Wang, X.; Jiang, X.; Yang, Y.; Li, W.; Zhou, L. Optimal design of multistage centrifugal pump based on the

combined energy loss model and computational fluid dynamics. Appl. Energy 2017, 187, 10–26. [CrossRef]
4. Toti, A.; Vierendeels, J.; Belloni, F. Coupled system thermal-hydraulic/CFD analysis of a protected loss of flow transient in the

MYRRHA reactor. Ann. Nucl. Energy 2018, 118, 199–211. [CrossRef]
5. Qiu, C.; Huang, Q.; Pan, G.; Shi, Y.; Dong, X. Numerical simulation of hydrodynamic and cavitation performance of pumpjet

propulsor with different tip clearances in oblique flow. Ocean Eng. 2020, 209, 107285. [CrossRef]
6. Prakash, S.A.; Hariharan, C.; Arivazhagan, R.; Sheeja, R.; Raj, V.A.A.; Velraj, R. Review on numerical algorithms for melting and

solidification studies and their implementation in general purpose computational fluid dynamic software—ScienceDirect. J.
Energy Storage 2021, 36, 102341. [CrossRef]

https://doi.org/10.1007/s11431-013-5308-0
https://doi.org/10.1007/s11069-011-9938-x
https://doi.org/10.1016/j.apenergy.2016.11.046
https://doi.org/10.1016/j.anucene.2018.03.032
https://doi.org/10.1016/j.oceaneng.2020.107285
https://doi.org/10.1016/j.est.2021.102341


Water 2023, 15, 1951 19 of 20

7. El-Ghafour, S.; Elghandour, M.; Mikhael, N.N. Three-Dimensional Computational Fluid Dynamics Simulation of Stirling Engine.
Energy Convers. Manag. 2019, 180, 533–549. [CrossRef]

8. Conti, F.; Wiedemann, L.; Sonnleitner, M.; Saidi, A.; Goldbrunner, M. Monitoring the mixing of an artificial model substrate in a
scale-down laboratory digester. Renew. Energy 2018, 132, 351–362. [CrossRef]

9. Motahar, S. Experimental study and ANN-based prediction of melting heat transfer in a uniform heat flux PCM enclosure. J.
Energy Storage 2020, 30, 101535. [CrossRef]

10. Tavakolpour-Saleh, A.R.; Shourangiz-Haghighi, A.R. A neural network-based scheme for predicting critical unmeasurable
parameters of a free piston Stirling oscillator. Energy Convers. Manag. 2019, 196, 623–639.

11. Nabipour, N.; Daneshfar, R.; Rezvanjou, O.; Mohammadi-Khanaposhtani, M.; Baghban, A.; Xiong, Q.; Li, L.K.; Habibzadeh,
S.; Doranehgard, M.H. Estimating biofuel density via a soft computing approach based on intermolecular interactions. Renew.
Energy 2020, 152, 1086–1098. [CrossRef]

12. Zhang, J.; Wang, Y. Evaluating the bond strength of FRP-to-concrete composite joints using metaheuristic-optimized least-squares
support vector regression. Neural Comput. Appl. 2020, 33, 3621–3635. [CrossRef]

13. Lin, T.; Li, X.; Zhu, Z.; Xie, J.; Li, Y.; Yang, H. Application of enstrophy dissipation to analyze energy loss in a centrifugal pump as
turbine. Renew. Energy 2021, 163, 41–55. [CrossRef]

14. El-Naggar, M.A. A one-dimensional flow analysis for the prediction of centrifugal pump performance characteristics. Int. J.
Rotating Mach. 2013, 12, 473512. [CrossRef]

15. Li, W.G. Effects of viscosity on turbine mode performance and flow of a low specific speed centrifugal pump. Appl. Math. Model.
2016, 40, 904–926. [CrossRef]

16. Shahverdi, K.; Loni, R.; Maestre, J.; Najafi, G. CFD numerical simulation of Archimedes screw turbine with power output analysis.
Ocean Eng. 2021, 231, 108718. [CrossRef]

17. Bhatti, M.; Arain, M.; Zeeshan, A.; Ellahi, R.; Doranehgard, M. Swimming of Gyrotactic Microorganism in MHD Williamson
nanofluid flow between rotating circular plates embedded in porous medium: Application of thermal energy storage. J. Energy
Storage 2022, 45, 103511. [CrossRef]

18. Krzemianowski, Z.; Steller, J. High specific speed Francis turbine for small hydro purposes-design methodology based on solving
the inverse problem in fluid mechanics and the cavitation test experience. Renew. Energy 2021, 169, 1210–1228. [CrossRef]

19. Kang, C.; Mao, N.; Pan, C.; Zhu, Y.; Li, B. Effects of short blades on performance and inner flow characteristics of a low-specific-
speed centrifugal pump. Proc. Inst. Mech. Eng. Part A J. Power Energy 2017, 231, 290–302. [CrossRef]

20. Ur Rehman, A.; Shinde, S.; Singh, V.K.; Paul, A.R.; Jain, A.; Mishra, R. CFD based condition monitoring of centrifugal pumps. In
Proceedings of the COMADEM 2013, Helsinki, Finland, 11–13 June 2013.

21. Esfandiari, K.; Abdollahi, F.; Talebi, H.A. Adaptive control of uncertain Nonaffine nonlinear systems with input saturation using
neural networks. IEEE Trans. Neural Netw. Learn. Syst. 2015, 26, 2311–2322. [CrossRef]

22. Yu, L.; Dai, W.; Tang, L.; Wu, J. A hybrid grid-GA-based LSSVR learning paradigm for crude oil price forecasting. Neural Comput.
Appl. 2016, 27, 2193–2215. [CrossRef]

23. Mirabbasi, R.; Kisi, O.; Sanikhani, H.; Meshram, S.G. Monthly long-term rainfall estimation in Central India using M5Tree, MARS,
LSSVR, ANN and GEP models. Neural Comput. Appl. 2019, 31, 6843–6862. [CrossRef]

24. Zhao, B.; Ren, Y.; Gao, D.; Xu, L. Performance ratio prediction of photovoltaic pumping system based on grey clustering and
second curvelet neural network. Energy 2019, 171, 360–371. [CrossRef]

25. Mrinal, K.R.; Samad, A. Performance prediction of kinetic and screw pumps delivering slurry. Proc. Inst. Mech. Eng. Part A-J.
Power Energy 2018, 232, 898–911. [CrossRef]

26. Park, S.K.; Moon, H.J.; Min, K.C.; Hwang, C.; Kim, S. Application of a multiple linear regression and an artificial neural network
model for the heating performance analysis and hourly prediction of a large-scale ground source heat pump system. Energy Build.
2018, 165, 206–215. [CrossRef]

27. Nie, S.B.; Guan, X.F.; Liu, H.L. Exploration of using artificial neural network to predict the performance of centrifugal pumps.
Pump Technol. 2002, 5, 16–18.

28. Deng, H.; Liu, Y.; Li, P.; Zhang, S. Whole flow field performance prediction by impeller parameters of centrifugal pumps using
support vector regression. Adv. Eng. Softw. 2017, 114, 258–267. [CrossRef]

29. Zhang, Y.; Le, J.; Liao, X.; Zheng, F.; Li, Y. A novel combination forecasting model for wind power integrating least square
support vector machine, deep belief network, singular spectrum analysis and locality-sensitive hashing. Energy 2019, 168, 558–572.
[CrossRef]

30. Krizhevsky, A.; Sutskever, I.; Hinton, G. ImageNet classification with deep convolutional neural networks. Adv. Neural Inf.
Process. Syst. 2017, 60, 84–90. [CrossRef]

31. Xie, C.; Kumar, A. Finger vein identification using convolutional neural network and supervised discrete hashing. Pattern
Recognit. Lett. 2019, 119, 148–156. [CrossRef]

32. Yang, N.; Song, Z.; Hofmann, H.; Sun, J. Robust State of Health estimation of lithium-ion batteries using Convolutional Neural
Network and Random Forest. J. Energy Storage 2020, 48, 103857. [CrossRef]

33. Pereira, J.; Saraiva, F. Convolutional neural network applied to detect electricity theft: A comparative study on unbalanced data
handling techniques. Int. J. Electr. Power Energy Syst. 2021, 131, 107085. [CrossRef]

https://doi.org/10.1016/j.enconman.2018.10.103
https://doi.org/10.1016/j.renene.2018.08.013
https://doi.org/10.1016/j.est.2020.101535
https://doi.org/10.1016/j.renene.2020.01.140
https://doi.org/10.1007/s00521-020-05191-0
https://doi.org/10.1016/j.renene.2020.08.109
https://doi.org/10.1155/2013/473512
https://doi.org/10.1016/j.apm.2015.06.015
https://doi.org/10.1016/j.oceaneng.2021.108718
https://doi.org/10.1016/j.est.2021.103511
https://doi.org/10.1016/j.renene.2021.01.095
https://doi.org/10.1177/0957650917695672
https://doi.org/10.1109/TNNLS.2014.2378991
https://doi.org/10.1007/s00521-015-1999-4
https://doi.org/10.1007/s00521-018-3519-9
https://doi.org/10.1016/j.energy.2019.01.028
https://doi.org/10.1177/0957650918760161
https://doi.org/10.1016/j.enbuild.2018.01.029
https://doi.org/10.1016/j.advengsoft.2017.07.007
https://doi.org/10.1016/j.energy.2018.11.128
https://doi.org/10.1145/3065386
https://doi.org/10.1016/j.patrec.2017.12.001
https://doi.org/10.1016/j.est.2021.103857
https://doi.org/10.1016/j.ijepes.2021.107085


Water 2023, 15, 1951 20 of 20

34. Qi, C.R.; Su, H.; Nießner, M.; Dai, A.; Yan, M.; Guibas, L.J. Volumetric and multi-view CNNs for object classification on 3D data.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp.
5648–5656.

35. Kuo, C. Understanding convolutional neural networks with a mathematical model. J. Vis. Commun. Image Represent. 2016, 41,
406–413. [CrossRef]

36. Ye, S.; Zhang, Z.; Song, X.; Wang, Y.; Chen, Y.; Huang, C. A flow feature detection method for modeling pressure distribution
around a cylinder in non-uniform flows by using a convolutional neural network. Sci. Rep. 2020, 10, 4459. [CrossRef] [PubMed]

37. Harbola, S.; Coors, V. One dimensional convolutional neural network architectures for wind prediction. Energy Convers. Manag.
2019, 195, 70–75. [CrossRef]

38. Haidar, A.; Verma, B. Monthly rainfall forecasting using one-dimensional deep convolutional neural network. IEEE Access 2018,
6, 69053–69063. [CrossRef]

39. Eom, Y.H.; Chung, Y.; Park, M.; Hong, S.B.; Kim, M.S. Deep learning-based prediction method on performance change of air
source heat pump system under frosting conditions. Energy 2021, 228, 120542. [CrossRef]

40. Díaz-Vico, D.; Torres–Barrán, A.; Omari, A.; Dorronsoro, J.R. Deep neural networks for wind and solar energy prediction. Neural
Process. Lett. 2017, 46, 829–844. [CrossRef]

41. Ma, Z.Q.; Zhang, S.C.; Ma, Y.; Deng, H.Y.; Zhang, Z.H.; Zhang, H.J. Non-overload optimization design of medium specific speed
pump based on orthogonal design method. Fluid Mach. 2015, 43, 42–46.

42. Zhang, Y.; Hu, S.; Wu, J.; Zhang, Y.; Chen, L. Multi-objective optimization of double suction centrifugal pump using Kriging
metamodels. Adv. Eng. Softw. 2014, 74, 16–26. [CrossRef]

43. Jain, S.V.; Swarnkar, A.; Motwani, K.H.; Patel, R.N. Effects of impeller diameter and rotational speed on performance of pump
running in turbine mode. Energy Convers. Manag. 2015, 89, 808–824. [CrossRef]

44. Hickman. Centrifugal Pump Design. Hrvatska Znanstvena Bibliografija i MZOS-Svibor. 2007. Available online: https://www.
researchgate.net/publication/255096967_Centrifugal_pump_design (accessed on 16 May 2023).

45. Gülich, J.F. Centrifugal Pumps; Springer: Berlin, Germany, 2014.
46. Kim, K.H. Experimental Investigation under Water Condition on the Loss of Pipe Material Caused by Solid Particle Erosion in

the Pipe Flow. Int. J. Fluid Mach. Syst. 2018, 11, 424–431. [CrossRef]
47. Lei, C.; Yiyang, Z.; Zhengwei, W.; Yexiang, X.; Ruixiang, L. Effect of Axial Clearance on the Efficiency of a Shrouded Centrifugal

Pump. J. Fluids Eng. 2015, 137, 071101. [CrossRef]
48. Omar, A.K.; Khaldi, A.; Ladouani, A. Prediction of centrifugal pump performance using energy loss analysis. Aust. J. Mech. Eng.

2017, 15, 210–221. [CrossRef]
49. Bhusal, N.; Kamruzzaman, M.; Benidris, M. A convolutional neural network-based approach to composite power system

reliability evaluation. Int. J. Electr. Power Energy Syst. 2021, 135, 107468.
50. Wang, H.; Zhou, J.; Liu, W.; Li, J.; Huang, X.; Liu, L.; Liang, W.; Yu, C.; Li, F.; Li, Z. BGD-based Adam algorithm for time-domain

equalizer in PAM-based optical interconnects. Opt. Lett. 2020, 45, 141–144. [CrossRef]
51. Atsalakis, G.S.; Valavanis, K.P. Surveying stock market forecasting techniques—Part II: Soft computing methods. Expert Syst.

Appl. 2009, 36, 5932–5941. [CrossRef]
52. Guan, X.F. Modern Pump Technology Manual; China Astronautic Publishing House: Beijing, China, 1995; pp. 746–751.
53. Dixon, S.; Larry, H.C. Fluid Mechanics and Thermodynamics of Turbomachinery; Butterworth-Heinemann: Burlington, VT, USA, 2013.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.jvcir.2016.11.003
https://doi.org/10.1038/s41598-020-61450-z
https://www.ncbi.nlm.nih.gov/pubmed/32157170
https://doi.org/10.1016/j.enconman.2019.05.007
https://doi.org/10.1109/ACCESS.2018.2880044
https://doi.org/10.1016/j.energy.2021.120542
https://doi.org/10.1007/s11063-017-9613-7
https://doi.org/10.1016/j.advengsoft.2014.04.001
https://doi.org/10.1016/j.enconman.2014.10.036
https://www.researchgate.net/publication/255096967_Centrifugal_pump_design
https://www.researchgate.net/publication/255096967_Centrifugal_pump_design
https://doi.org/10.5293/IJFMS.2018.11.4.424
https://doi.org/10.1115/1.4029761
https://doi.org/10.1080/14484846.2016.1252567
https://doi.org/10.1364/OL.45.000141
https://doi.org/10.1016/j.eswa.2008.07.006

	Introduction 
	Methodology and model 
	Modeling of Hydraulic Loss and Energy Performance of Centrifugal Pump 
	Impeller Inlet Shock Loss 
	Impeller Surface Friction Loss 
	Impeller Flow Passage Diffusion Loss 
	Volute Inlet Shock Loss 
	Volute Friction Loss 
	Volute Diffusion Loss 

	Hydraulic Loss–Convolution Neural Network (HLCNN) 

	Experimental Research and Data Sources 
	Results and Discussions 
	Influence of Convolutional Layer on Prediction Model 
	Performance Prediction for the Test Samples 
	Comparison with the Other Machine Learning Models 
	Comparison with the CFD Method 

	Conclusions 
	Appendix A
	References

