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Abstract: Ecosystems of inland saline waters play a significant role in the biosphere and human
life. Various articles of this Special Issue are devoted to a wide range of issues of their study and
management. This introductory article gives a general overview of the types of inland waters on
the planet, as well as the features of their ecosystems, reflected in 18 articles of this Special Issue.
Attention is also paid to modern problems of conservation and integrated sustainable use of aquatic
ecosystems in a changing climate and increasing anthropogenic pressure on water bodies.
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1. Introduction

This review is part of a Special Issue aimed at drawing attention to the biodiver-
sity, the scientific, economic and social values of inland saline lakes. These unique and
relatively simple natural laboratories, whose biodiversity and functionality depend on
climate, salinity, and other abiotic and biotic parameters and anthropogenic activities, help
understand how ecosystems produce essential services as well as evaluate the impact
of anthropogenic activities on their biodiversity dynamics and limnological properties.
This Special Issue contains articles dealing with trace elements, especially mercury, in the
bottom sediments of Crimean lakes that affect their functioning and sustainability due
to intra-ecosystem and anthropogenic processes [1,2]. Using technogenic radionuclide
90Sr as a tracer, the sedimentation rate in one Crimean hypersaline lake was estimated [3].
De Necker et al. [4] studied the resilience and recovery of the invertebrate community in
Lake Nyamithi, a saline lake in South Africa that experienced a two-year supra-seasonal
drought. Taxon richness reduced considerably during the drought’s peak due to high
salinity but recovered after the water reached suitable conditions. The zooplankton com-
munity structure of several (n = 23) shallow saline inland waters in Central Asia in an
arid steppe climate changed with salinity [5]. Halophilic rotifer species predominated
(Brachionus asplanchnoides, Br. dimidiatus, Br. plicatilis) at low salinity, while mesohaline
and hypersaline waters favored halobiont crustaceans (Moina salina, Arctodiaptomus salinus,
Cletocamptus retrogressus). Under hypersaline conditions, Artemia spp. is the most adapted
to this extreme environment. Species richness of bisexual Artemia was first analyzed in
the reservoir of the Crimean lakes, with four species found [6]. Shadrin et al. [7] showed
significant changes in the total microphytobenthos of Bay Sivash, the world’s largest hyper-
saline lagoon (Crimean Peninsula), such as Cyanobacteria, Ochrophyta, Haptophyta, and
Miozoa, after salinity increased sharply due to anthropogenic activity. Since other changes
were detected (suspended solids and dissolved organic matter), ecosystem changes cannot
solely be explained by salinity. The article ‘metabarcoding under brine’ by Saccò et al. [8]
took advantage of this rapid and reliable DNA tool to investigate the microbial ecology
of five hypersaline lakes in Rottnest Island (WA, Australia). They found lake-driven mi-
crobial aquatic assemblages taxonomically and functionally characterized as moderate to
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extremely halophilic groups, with total dissolved solids and alkalinity being influential
parameters driving the community patterns. Redón et al. [9] consider hypersaline lagoons
in the Atacama Desert (23 ◦S) and Patagonia (53 ◦S), Chile, good laboratories to investigate
the avian parasite (cestode), given the abundance of hosts (waterbird species and two
Artemia species) along a broad latitudinal gradient. Parasites of flamingos and shorebirds
were associated with Atacama lagoons (arid and higher salinity), while parasites of grebes
and ducks were dominant in Patagonian lagoons (sub-antarctic and of lower salinity).

The anthropogenic-induced sharp salinity changes in the hypersaline Lagoon Bay
Sivash (Crimea) demonstrated that this well-studied ecosystem has transited to an alter-
native state, which calls attention to the need to have a good database for management
decisions [10,11]. Ragnvaldsson et al. [12] highlighted the challenge of monitoring water
quality parameters and the need to have standardized methodologies for risk assessment
of environmental quality, particularly regarding the ability of aquatic organisms to take up
metals. When evaluating the state of aquatic ecosystems, we should take into account the
presence of natural rhythms of their parameters that occur on different time scales, including
daily ones [13]. This review provides the necessary context regarding the need to reduce
the threats to saline ecosystems and the biodiversity they harbor by 2030, according to the
post-2020 goals of the Convention on Biological Diversity (CBD). We specifically discuss:
(1) the challenge of protecting saline lakes and their biodiversity; (2) the ecological hetero-
geneity of inland saline lakes and lagoons; (3) the relationship between biodiversity and
services; and (4) the relationship between business and biodiversity and the social impact of
anthropogenic activities. This Special Issue’s primary goal is to promote research areas to
reduce the knowledge gap and to highlight the need to articulate the science available with
non-scientific stakeholders, including policymakers, to reach science-based decisions for the
management of inland saline lakes and lagoons, their sustainable use, and conservation.

2. Diversity of Saline Inland Waters

On Earth, the main volume of saline water is concentrated (96%) in the oceans, and
only 3.5% in inland waters, of which 51% is in the form of ice and snow [14]. More than
99% of these waters are underground, and 55% of their volume is saline water. The rest of
the inland water volume corresponds to various types of surface and groundwater. Lakes
dominate surface waters, and saline lakes in terms of total volume (85,400 km3) are close to
the total volume of fresh lakes (91,000 km3) [15]. However, much less attention is paid to
studying saline inland water ecosystems than fresh ones.

Consider the variety of existing types of inland saline waters. Let us start with saline
groundwater, which includes lakes in the caves, underground mineral water horizons,
and capillary-fractured and pore waters. For example, in natural and artificial salt caves,
there are underground hypersaline lakes with different chemical compositions of dissolved
salts [16,17]. Such lakes, most often, have a condensation origin. In summer, moisture
from the air condenses, entering caves or mines when underground lakes are intensively
replenished. In total, during the year, the amount of condensing water significantly exceeds
its removal, which leads to the formation of saline and even hypersaline lakes, the volume
of which can be significant [18]. The composition of the rock determines the chemical
composition in the waters of such lakes. In artesian basins, even in their deepest parts,
there are often zones of slow water exchange [19–21]. For example, in the Moscow artesian
basin, hypersaline waters from 50 to 270 g/L have a significant thickness [22,23]. In the
Tunguska artesian basin (Siberia), brine mineralization can exceed 360 g/L [24]. In the
subsurface biosphere, a significant part of film waters in rock fissures are brines with high
salinity [25–27]. Life in groundwater is found everywhere, to depths of more than 3 km [28,29].
Groundwater ecosystems interact with subterranean biota and superficial waters and
ecosystems, but knowledge of those interactions is scarce and remains incomplete [8,27].
Since this Special Issue contains only articles on surface saline waters, we do not further
consider the unique ecosystems of underground saline waters.
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Inland surface saline waters (lagoons, estuaries, puddles, lakes, rivers, streams, springs,
and bogs) are widely represented in all climatic zones and on all continents, including
Antarctica: Europe [30,31], Asia [32], Australia [33], Africa [34,35], North America [36]
and South America [37], and Antarctica [35]. The main volume of surface saline inland
waters is concentrated in lakes and lagoons, and all the articles in this Special Issue are
devoted to them. The reasons for the formation of saline lakes can be different. For
example, freezing processes lead to their formation in Antarctica and the Arctic [35,36].
In Africa, Tibet, and some other regions of our planet, their occurrence is due to tectonic
processes, volcanic activity, or erosion of ancient salt deposits [30,32,33]. The causal origin
of most saline lakes and lagoons is the arid climate [30]. Arid regions, where potential
evaporation is greater than precipitation, occupy about 40–45% of the total land surface and
are projected to increase in the coming decades [30,37,38]. Most of the world’s saline and
hypersaline water bodies occur in arid regions. The climatic conditions of their formation
include several geophysical factors [30,39,40]. Climatic conditions of a particular region
influence the hydrophysical and hydrochemical structure of saline lakes and directly
depend on the interaction of the lake with the atmosphere, that is, on heat and moisture
flows [41,42]. It should be noted that during the exchange of saline water bodies with
the atmosphere, evaporation exceeds the amount of precipitation; however, the resulting
water inflow (underground runoff, filtration) can partially compensate for this difference.
The accumulation of dissolved salts in a lake or lagoon increases the salinity of the water
body [40]. Therefore, assessing territory aridity requires monitoring both precipitation and
surface evaporation, which are influenced by weather conditions and salinity. As salinity
increases, evaporation decreases [41,43]. The ratio between the annual, monthly or seasonal
amount of precipitation and its evaporation determines the humidity coefficient of the
territory. The heat exchange between a water body and land is an insignificant value and
can be ignored. Therefore, an amount of heat equal to the annual balance of irradiation
may be spent on annual evaporation in a given area, and the irradiation index during the
year is determined as follows [41,44]:

Kδ = B/LP (1)

where Kδ is the dryness radiation index, B is the annual radiation balance, P is the total
annual precipitation, and L is the heat of evaporation.

The dryness radiation index (Equation (1)) indicates how much of the balance’s
irradiation is used to evaporate precipitation. It is believed that if the value exceeds the
dryness limit, Kδ = 3, the climate in the area is arid, which contributes to the accumulation
of salts and the formation of saline and hypersaline lakes/lagoons [42].

Saline/hypersaline lakes and lagoons are widespread in all continents, primarily in
arid and semi-arid basins [15,45,46], and they are ecologically diverse, with salinity varying
from brackish to hypersaline. Their diversity of inland saline lakes in terms of size, geo-
chemical, chemical-physical, and biotic characteristics is enormous. The largest and deepest
saline lake is the Caspian Sea (area 390,000 km2, volume 78,000 km3, maximum depth
1025 m) [15]. The altitudes they are at also vary significantly [30,34], such as hypersaline
lagoons over 2300 m above sea level in the Chilean Andes [9] and lake Dangxiong Co
in Tibet, China, over 4000 m [47]. Moreover, some hypersaline lagoons occur in unusual
latitudes (33 ◦S in Argentina and from 5 to 53 ◦S in Chile). The geochemical diversity of
saline lakes concerning the structure of their ecosystems is the subject of three articles in
this Special Issue [1,2,5].

In addition to natural saline water bodies, various artificial ones are likely formed
due to the extraction of fossil salt [48,49]. Due to the aridization of many territories and
anthropogenic activities, natural and artificial freshwater bodies are being salinized [50–53].
In China and India, people began to extract salt from saline water, creating systems of
hypersaline ponds (salt evaporation pond, saltern, saltworks) as early as 4000–6000 BC,
and a little later, they also appeared in the Mediterranean [54]. Salt pond systems now
occupy large areas and are widely used worldwide in various arid/subarid regions. Salt is
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also obtained in evaporation ponds created by pumping underground saline water into
them, for example, in southern India [55]. There are also saline lakes of other anthropogenic
origins. Mining fossil salts may be accompanied by forming such lakes [49]. Examples are
the Solotvino Lakes (Transcarpathian region, Ukraine) and Slavic lakes (Donetsk region),
which arose due to the subsidence of rocks during salt extraction. The hypersaline lakes
of Sol-Iletsk (Orenburg region, Russia) [48] and some lakes in Romania [56] are of the
same origin. The development of irrigated agriculture led to the discharge of drainage
water from fields into relief depressions, which also led to the appearance of several saline
reservoirs, such as the Salton Sea in the USA (an area of about 1000 km2) [57] and lakes of
the El Fayoum oasis in Egypt [53,58,59].

The existence and long-term dynamics of the structure and functioning of saline lake
ecosystems are determined jointly by climate variability and anthropogenic activity [53,58].
Saline lakes are among the most variable water habitats on the planet; now, researchers often talk
about their tragedy and the Aral Sea natural-technogenic disaster is one example of this [60–62].

Lagoons and estuaries are transit water bodies, where inland and sea waters mix.
There are many lagoons throughout the world with a wide range of salinity. They are
primarily between fresh and oceanic salinity [63,64], and only a few are hypersaline [65,66].
Usually, their increased salinity is caused by isolation or weak connection with the seas,
high evaporation, and/or low freshwater inflow. In the coming decades, climate change,
influencing the frequency and magnitude of precipitation, as well as the height of the sea level,
could potentially affect the growth of areas of saline and hypersaline lagoons in different
parts of the world [65]. Anthropogenic activity can also lead to this [66–69]. The world’s
largest hypersaline lagoon, Bay Sivash (area 2560 km2), is undergoing dramatic changes
under anthropogenic influence. Two articles in this Issue are devoted to this problem [7,11].

Saline rivers are rare aquatic ecosystems primarily found in arid zones. However, the
highly mineralized rivers flowing into the hypersaline lake Elton (South Russia) represent
a unique hydroecosystem of the natural territorial complex in the Elton region, which
belongs to the Caspian drainless basin [70]. Another example would be the Mediterranean
hypersaline Rambla Salada in the Fortuna sedimentary basin, belonging to the watershed
of the Segura River (southeast of the Iberian Peninsula), an ecosystem whose structure and
dynamics have been studied by Velasco et al. [71].

In saline and hypersaline waters, species diversity is higher at lower salinity, while the
opposite occurs at higher salinities [72]. One of the articles in this issue shows a negative
correlation between zooplankton diversity and salinity in the lakes of Kazakhstan [5]. In the
largest hypersaline lagoon in the world, as a result of anthropogenic activity, there has been
a sharp increase in salinity, a decrease in biodiversity, and a change in species composition;
two articles in this collection show this for microphytobenthos [7] and fauna [11]. The effect
of dry years on salinity and biota structure in South African lakes is discussed in one of the
papers in this issue [4]. An article in this Special Issue analyzes factors affecting species
diversity and abundance of parasites in Artemia in different regions of South America [9].
The main conclusion of these articles is that salinity is undoubtedly an important factor
determining the biotic structure of ecosystems of saline lakes and lagoons, but not the only
one. In some instances, other factors, including the factor of chance, may mask the salinity
factor’s effect, which requires a more profound approach in future studies.

3. The Relationship between Biodiversity and Services

Since the total volume of inland saline lakes is approximately equal to that of freshwater
(91,000 km3), saline inland waters play an essential landscape role and provide multiple
economic resources, such as salt, mining, and Artemia biomass in the case of Great Salt
Lake (GSL) in Utah, USA, and non-economic services such as a habitat and nesting sites for
migrant waterbirds [37,47]. Likewise, social services include cultural, aesthetic, and recre-
ational [8,15,71,72]. Despite such importance, they have received less attention, likely due
to their invisible invertebrate diversity (to the inexpert eye), even though they are the most
abundant food web community, besides microbial diversity, as articles in this issue attest. The
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filter-feeder brine shrimps Artemia spp. (Crustacea, Branchiopoda) are the keystone species
in hypersaline environments controlling the physicochemical properties and the abundance
of phytoplankton and bacterioplankton [47,73–75]. Artemia species are the intermediate hosts
of helminth parasites of important migratory waterbirds such as flamingos, grebes, gulls,
shorebirds, and ducks [9]. The availability of cyst banks (Artemia Reference Centre in Ghent,
Belgium, and the Asian Reference Centre in Tianjin, China) facilitates laboratory studies and
inter-population and species comparisons with samples from all over the world. Moreover,
Artemia is a good indicator of waterbird abundance in saline lakes, as the intentional intro-
duction of Artemia sinica in Lake Dangxiong Co in Tibet, China, demonstrated [37,47]. Such
intentional colonization had favorable environmental consequences for avian biodiversity
as the number of waterbirds using the lake increased dramatically. The lake also began to
produce Artemia cysts (resistant diapause embryos) and biomass to benefit local commu-
nities [47]. Artemia is also an excellent scientific model for studying adaptation to critical
life conditions in the field and laboratory conditions [76]. Finally, Artemia is an excellent
model organism for different disciplines (ecology, evolutionary genetics, toxicology, radiation
biology), and so it is regarded as a sort of aquatic Drosophila [77].

Preserving ecosystem biodiversity and services requires a gene, population, and
species analysis over time and space. Biodiversity stability is tightly linked to the ecological
conditions to which species are adapted, and the maintenance over time of such conditions
is a proxy for ecosystem health and sustainability. Saline inland lakes contain the three
domains of life, Archaea, Bacteria, and Eukarya [72,78]. Diverse phytoplanktonic and
zooplanktonic species (Ostracoda, Copepoda, Branchiopoda) are abundant at low salinities,
but as salinity increases, diversity is reduced, with the brine shrimp Artemia playing a
critical ecological role. This relatively simple food web is sensitive to environmental
conditions; hence, interseason and interannual biodiversity differences occur. Due to the
difficulty of monitoring such variations over time, partly due to the remoteness of most
saline ecosystems, particularly those at high altitudes, there are few systematic studies
on the relationship between biodiversity and ecosystem functioning over time, except
for a few cases [79]. However, Artemia is known to be a good predictor of waterbird’s
presence [37,47], the most significant non-economic service (a monetary value not yet
calculated) of saline lakes, which is why the Ramsar Convention protects several saline
wetlands. In turn, waterbirds provide the service of dispersing Artemia to new suitable
habitats [6,80]. This virtuous cycle favors Artemia distribution to some extent, which is
done by carrying cysts in their feathers or the digestive tube, and are released to the
environment by their feces [80,81]. Another form of Artemia distribution stems from an
indirect consequence of its use in the aquarium trade and marine larviculture [82], the North
American brine shrimp Artemia franciscana being the most traded species for mariculture.
Vietnam, China, and other Asian countries exemplify a flourishing Artemia biomass and
cyst production business integrated with solar saltworks to support the aquaculture of
important regional shrimp and fish species [83,84]. On another front, studying host–parasite
interactions over geographic variation [9] contributes to biodiversity conservation as they
mitigate the impact of emerging diseases and facilitate the use of parasites as biogeographic
indicators. In turn, Artemia abundance can be controlled by copepods, ostracods, and
amphipods species at lower salinities [85].

4. Saline Lakes, Bioresources, and Business

According to CBD, biodiversity is essential for human health and well-being, economic
prosperity, food safety, security, and individual and collective thriving, provided its use
is sustainable. Nevertheless, due to a lack of corporate responsibility, the relationship
between biodiversity and business has become uncomfortable (One of the reasons would
be the lack of cooperation among industry and conservation biologists for developing
effective biodiversity protection strategies. In saline lakes, this conflict is exacerbated by
their shrinking due to climate change and water diversion [73,86,87]), with Great Salt Lake
(GSL) being an iconic management case.
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Great Salt Lake (GSL), the large and permanent hypersaline lake in Utah, US, has high
economic value stemming from salt mining in evaporating ponds and from harvesting
resting eggs (cysts) of the brine shrimp, which has turned into a multibillion-dollar busi-
ness [88]. Consequently, the business benefits from long-term monitoring of ecosystem
processes in the lake, such as nutrient and phytoplankton dynamics, brine shrimp, and bird
abundance [89,90]. Therefore, the Artemia business and waterbird abundance (eared grebe
in particular) are interrelated and contribute to maintaining global bird diversity foraging
mainly on Artemia. About 1.5-million eared grebes (Podiceps nigricollis), representing half of
the North American population, stop on Utah’s GSL during autumn migration to forage
on Artemia. To minimize the risk of birds’ persistence, managers consider scientific data,
for example, the daily energy requirements of eared grebes, so that regulations governing
brine shrimp cyst harvest reflect the foraging needs of grebes. Accordingly, cyst harvest is
suspended when densities fall below 20,000 cysts/m3 in order to ensure food availability
and energy requirements (nearly 30,000 adult brine shrimp daily) for the 1.5 million grebes
using the lake during their autumn migration to the Southern Hemisphere [91]. The op-
posite situation (to be discussed in Section 5) occurs in high-altitude Andean hypersaline
lagoons of the Atacama Desert in northern Chile), where the large world deposit of lithium
exists. These lagoons are an integral part of lithium exploitation from brine pumped from
beneath the surface, which raises concern about the risks such volume of brine extracted,
and freshwater shortage caused by lithium and other mining companies operating in one
of the world’s driest deserts might have on the dynamics of hypersaline lagoons and the
associated waterbirds [37,72,92–94].

Besides Artemia, other valuable bioresources of saline and hypersaline water bodies are
the green filamentous algae Cladophora (Figure 1), chironomid larvae (Figure 2) [37,72,95].
Saline and even hypersaline lakes and lagoons provide a large potential to developing
different kinds of aquaculture, e.c. fish, shrimps, various other invertebrates, and micro-
and macroalgae [96]. Ecology and aquaculture perspectives of some Cladocera, the prawn
Palaemon adspersus and Ephydra hians (Diptera) in the saline/hypersaline lakes were also
discussed in this Special Issue [97–100].
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5. Risks and Challenges of Protecting Inland Saline Lakes and Their Biodiversity

Biodiversity and ecosystem loss due to climatic and human-driven perturbations
remain among the most challenging problems for sustainable development. After a failed
biodiversity decade aimed at safeguarding ecosystems and their biodiversity, as estab-
lished in the Nagoya strategic CBD plan 2011–2020 (www.cbd.int/sp/targets/ (accessed on
22 November 2022)), and the post-2020 goals and targets under negotiation by the CBD
parties, transformative actions are required to reduce threats to both ecosystems and biodi-
versity at all levels (gene, population, species) in the coming decade (2021–2030) [101,102].
In this regard, inland saline and hypersaline lakes or lagoons (salinity over 3 g/L) deserve
consideration because of their unique biodiversity and limnological properties and because
they reflect climatic conditions, i.e., they shrink and grow with natural climatic varia-
tion [103]. As such, they are good natural laboratories for understanding how relatively
simple ecosystems (in terms of the food web) function to produce economic and non-
economic services. Policymakers need this knowledge to understand why these ecosystems
should be monitored and conserved over time [104].

Threats to saline and hypersaline lakes are diverse, including climatic and atmospheric
changes, water surface diversion and salinization, mining, recreation development, hydro-
technical constructions, pollution, and biological disturbances (introducing non-native
species). Since 2002, many authors have alerted that changes in the limnological properties
and dynamics of saline lakes could affect their unique biodiversity and services in the
21st century [15,45,46]. Sadly, such a prediction has become a reality as saline lakes and la-
goons are shrinking worldwide at alarming rates, reducing waterbird habitat and economic
benefits [73,87]. Migratory waterbirds would be the red flag of this ongoing tragedy. As
discussed later in this article, a new threat is lithium exploitation to support electromobility,
which may be affecting Andean saline lagoons in the Atacama Desert in northern Chile,
where the world’s largest lithium reserve exists [37].

The relatively simple food web makes these lagoons more sensitive to climate change
and water diversion compared to more complex ecosystems where redundancy of species
provides a sort of insurance against functionality loss if one or more species perform
similar ecological functions [86]. Thus, conserving these lagoons’ unique biodiversity
and limnological properties requires long-term monitoring, including keystone taxa like
the brine shrimp Artemia, and this is particularly relevant in the Atacama Desert, north-
ern Chile, one of the world’s largest lithium deposits and exploitation [37]. An obvious
question is how such unique biodiversity will be conserved in a scenario of increasing
lithium demand to support the expected increase of electromobility. The answer needs a
transdisciplinary approach in the science-policy interphase, i.e., involving non-scientific
stakeholders [104], such as policymakers, governmental bodies, lithium, and other mining
company representatives. The conceptual framework proposed (Figure 3) summarizes the
risks encountered by any perturbed inland saline ecosystem worldwide, particularly those
intensively exploited for mining.

It considers the threats to biodiversity and the ecosystem, and the need for regularly
monitoring the ecosystem dynamics and services using key biodiversity indicators (Artemia,
waterbirds) to develop a science-based adaptive management plan and regulations. A
critical aspect is a need to articulate the scientific knowledge available, albeit limited, with
stakeholders, including the communities affected, to produce a consensual management
plan and regulations. Indigenous communities settled in the territory are of concern not
only because lagoons are part of their cultural heritage, but also because water shortages
cause severe friction over water rights between them and mining companies [94,105,106].
Mining and indigenous mobilization in the territory have translated into ambivalences
and consensus, as indigenous people have strategically adapted to lithium companies
despite the persisting tensions. A new approach to solving the socio-environmental and
energy ‘(in)justices’ in the Andes territory considers lithium and solar energy as a form of
‘produced nature’ [107], which refers to a self-sustained cycle of energy transition that can
enlarge energy access in remote areas. Thus, it represents an opportunity for sustainable
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development through a process of commodification of nature led by the interplay of lithium,
energy, and other stakeholders. The development of an integrated saline lake management
is an urgent task now.
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Figure 3. A conceptual framework for conserving Andean high-altitude hypersaline lagoons, biodi-
versity, and non-economic services (waterbird biodiversity) that are affected by climate oscillations,
increasing lithium extraction from brine, and freshwater diversion. Flamingos, other waterbirds, and
the brine shrimp Artemia are flagships for conservation. A transdisciplinary approach involving non-
scientific stakeholders, including policymakers, lithium companies, and indigenous communities,
should help to articulate the scientific knowledge with these stakeholders to produce a validated
science-based conservation plan and environmental regulations. Figure modified from [37].

Finally, the contrasting management and fates of two sister lakes such as Great Salt
Lake (USA) and Lake Urmia (Iran), two of the world’s largest saline lakes, are also discussed
in this issue, alerting to the impact of climate change and management decisions [87].
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