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Abstract: Korea has made various efforts to reduce drought damage; however, socio-economic
damage has increased in recent years due to climate change, which has led to increasing frequency
and intensity of drought. In South Korea, because precipitation is concentrated in the summer,
drought damage will be significant in the event of failure of water resources management. Seasonal
and regional imbalances in precipitation have contributed to recent extreme droughts in South
Korea. In addition, population growth and urbanization have led to increased water use and
contributed to water shortage. Drought risk analysis must address multiple contributing factors
and comprehensively assess the effects or occurrence of future droughts, which are essential for
planning drought mitigation to cope with actual droughts. Drought mitigation depends on the water
supply capacity during dry spells. In this study, a dynamic naive Bayesian classifier-based multiple
drought index (DNBC-MDI) was developed by combining the strengths of conventional drought
indices and water supply capacity. The DNBC-MDI was applied to a bivariate drought frequency
analysis to evaluate hydrologic risk of extreme droughts. In addition, future changes of the risk were
investigated according to climate change scenarios. As a result, the drought risk had a decreasing
trend from the historic period of 1974–2016 to the future period of 2017–2070, then had an increasing
trend in the period of 2071–2099.

Keywords: dynamic naive Bayesian classifier; multiple drought index; hydrologic risk; climate change

1. Introduction

Based on a variety of climate change scenarios, general circulation models (GCMs)
predict that global temperature will rise 0.64 ◦C to 0.70 ◦C by 2030 compared with 1980. The
frequency and intensity of extreme rainfall events and extreme droughts are also expected
to increase in many areas, along with heatwaves [1–4]. Research works on Korea’s climate
predict that the frequency and intensity of droughts will increase [5–7]. When drought
occurs, it generally affects a broad region for seasons or years at a time. The proportion of
population affected by drought tends to be larger than with other disasters [8]. However,
an effective response is possible, because droughts are usually a prolonged and slow-
moving disaster.

The drought that occurred in Chungcheong, South Korea during 2014 and 2015 re-
sulted in a continuous drop of water stored in reservoirs by 25.5%, which was a historic
record. After the drought of 2014–2015, the need for comprehensive risk assessment and
effective response measures of extreme drought is increasing. Drought can cause significant
damage to agricultural production and economies; nevertheless, in general, the absence of
a unique definition of drought makes it difficult to know when and where drought occurs.
There is also no recognized universal drought index [9], although conventional indices

Water 2022, 14, 1516. https://doi.org/10.3390/w14091516 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w14091516
https://doi.org/10.3390/w14091516
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0003-0872-1059
https://orcid.org/0000-0002-1793-2483
https://doi.org/10.3390/w14091516
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w14091516?type=check_update&version=1


Water 2022, 14, 1516 2 of 12

have been developed for use in monitoring meteorological, agricultural, and hydrological
drought [10–12]. More recently developed indices can comprehensively determine and
evaluate drought severity [9]. To develop a multiple drought index, this study attempts to
combine the standardized precipitation index (SPI), streamflow drought index (SDI), evap-
orative stress index (ESI), and waters supply capacity index (WSCI). Generally, droughts
are classified into four different types, i.e., meteorological, hydrological, agricultural, and
socioeconomic drought. A multiple drought index that combines several drought indices
can accurately represent drought characteristics, because drought occurs from intercon-
nected factors [13]. Thus, many researchers have developed multiple indices that compose
pre-developed indices [14–16].

We used a dynamic naive Bayesian classifier (DNBC) to calculate a multiple-drought
index. The DNBC that has been used for probabilistic univariate drought prediction and
assessment recently is an extension of Hidden Markov Model (HMM) [17,18]. When
the amount of training samples is limited, the DNBC has the advantages of reducing
the number of model parameters, improving training time, and performing better than
HMM [14,19]. Various efforts have been made to apply Bayesian theory to drought assess-
ment. Shin et al. [20] used a Bayesian network model to produce probabilistic predictions
of hydrological drought. Yoo et al. [21] used a Bayesian network to probabilistically assess
the sensitivity of the meteorological drought index. Most notably, Chen et al. [14] incor-
porated multiple drought indices, such as SPI, SDI, and a normalized vegetation supply
index (NVSWI), in a comprehensive drought evaluation, then adopted and analyzed the
DNBC for probabilistic drought evaluation and evaluated droughts to a degree of accuracy
greater than that of any single index. Even though various indices are developed and
employed according to the respective goals, the drought characteristics vary from region to
region, and drought impacts may not be realized in agriculture and human society, even if
meteorological drought progresses. In addition, if water resources are concerned, different
types of drought make it difficult to assess and manage drought effectively. In this study,
we used the DNBC to assess and evaluate drought severity considering its various causes,
including regional water supply capacity, which significantly affects regional drought
response capacity.

Other attempts have been made to assess the risk of drought using a bivariate drought
frequency analysis (BDFA). Previous analyses of variations on rainfall deficiency and
the standard precipitation index have led to more attempts to calculate drought risk.
Yoo et al. [22] conducted frequency analysis using the copula function to combine drought
severity and duration and quantified uncertainty in frequency analysis results. Yu et al. [23]
used dam inflow data to define hydrological drought and performed the BDFA to evaluate
water supply capacity. Chen et al. [24] and Mirabbasi et al. [25] conducted the BDFA
by applying a copula function to drought severity and duration. Kim et al. [26] applied
Bayesian analysis to a copula model to assess the uncertainty of the parameter. Yu et al. [27]
estimated a joint probability distribution function of drought duration and severity and
calculated hydrologic risks for critical drought events. In this study, we performed the
BDFA using a DNBC-MDI to estimate drought return periods and assessed drought risk in
a region. Drought risk can be used as a reference in drought planning and mitigation.

2. Overview of Method and Data

We developed a practical method of calculating drought risk combining various
drought indices and evaluating changes in risk according to climate change scenarios.
According to Chen et al. [14] and Mallya et al. [17], probabilistic assessment of drought
using several factors produced better results than using conventional droughts indices.

The first step was to calculate individual drought indices using observed and synthetic
data. We used observed data from 1974 to 2016 and synthetic data from 2017 to 2099
generated by the HadGEM2-AO, which is one of the representative global models used
by the Korea Meteorological Administration (KMA) to calculate climate change scenarios
through the standard experimental system of Coupled Model Intercomparison Project
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phase 5, under the Intergovernmental Panel on Climate Change (IPCC) representative
concentration pathway (RCP) 8.5 scenario. In this study, using observed and synthetic data,
the SPI, SDI, ESI, and WSCI were calculated and used as the inputs to the DNBC.

The second step was to calculate a multiple drought index. Drought is usually defined
as a natural disaster caused by a lack of precipitation. However, damage from drought
occurs if sufficient water is not secured reliably enough to meet the demand of water users.
If water is secured reliably, there is no damage, even during a prolonged drought. To
calculate the drought risk, a drought index must, therefore, consider the water supply
capacity. In this study, the WSCI was employed to represent the water supply capacity,
which was developed by Lee et al. [28] to assess how long a reservoir can meet the demand
for water. Taking inspiration from Chen et al. [14], who applied the DNBC to combine the
SPI, SDI, and NVSWI, we calculated a DNBC-based multiple drought index (DNBC-MDI)
combining the SPI, SDI, ESI, and WSCI. The DNBC-MDI was expected to represent actual
drought areas by incorporating the effects of water supply capacity with other drought
indices. In addition, using the DNBC-MDI, we can compare and assess the current drought
risk posed to South Korea from climate change.

The third step was to analyze current and future drought risks based on drought
return periods after performing the BDFA of the DNBC-MDI. Yu et al. [27] demonstrated
that the BDFA was useful for calculating hydrological drought risk, because return periods
of drought were easily determined from the BDFA. Determining drought risk using the
DNBC-MDI allowed for assessing how the risk varies with water supply capacity. Figure 1
is a flow chart of this study.

Water 2022, 14, x FOR PEER REVIEW 3 of 13 
 

 

The first step was to calculate individual drought indices using observed and syn-
thetic data. We used observed data from 1974 to 2016 and synthetic data from 2017 to 2099 
generated by the HadGEM2-AO, which is one of the representative global models used 
by the Korea Meteorological Administration (KMA) to calculate climate change scenarios 
through the standard experimental system of Coupled Model Intercomparison Project 
phase 5, under the Intergovernmental Panel on Climate Change (IPCC) representative 
concentration pathway (RCP) 8.5 scenario. In this study, using observed and synthetic 
data, the SPI, SDI, ESI, and WSCI were calculated and used as the inputs to the DNBC. 

The second step was to calculate a multiple drought index. Drought is usually de-
fined as a natural disaster caused by a lack of precipitation. However, damage from 
drought occurs if sufficient water is not secured reliably enough to meet the demand of 
water users. If water is secured reliably, there is no damage, even during a prolonged 
drought. To calculate the drought risk, a drought index must, therefore, consider the wa-
ter supply capacity. In this study, the WSCI was employed to represent the water supply 
capacity, which was developed by Lee et al. [28] to assess how long a reservoir can meet 
the demand for water. Taking inspiration from Chen et al. [14], who applied the DNBC to 
combine the SPI, SDI, and NVSWI, we calculated a DNBC-based multiple drought index 
(DNBC-MDI) combining the SPI, SDI, ESI, and WSCI. The DNBC-MDI was expected to 
represent actual drought areas by incorporating the effects of water supply capacity with 
other drought indices. In addition, using the DNBC-MDI, we can compare and assess the 
current drought risk posed to South Korea from climate change. 

The third step was to analyze current and future drought risks based on drought 
return periods after performing the BDFA of the DNBC-MDI. Yu et al. [27] demonstrated 
that the BDFA was useful for calculating hydrological drought risk, because return peri-
ods of drought were easily determined from the BDFA. Determining drought risk using 
the DNBC-MDI allowed for assessing how the risk varies with water supply capacity. 
Figure 1 is a flow chart of this study. 

 
Figure 1. Flow chart of the study. 

The study is in the Han River basin, located at 36°48′–38°55′ north latitude and 
125°69′–129°29′ east longitude. It is the largest basin in Korea and accounts for 25 per-cent 

Figure 1. Flow chart of the study.

The study is in the Han River basin, located at 36◦48′–38◦55′ north latitude and
125◦69′–129◦29′ east longitude. It is the largest basin in Korea and accounts for 25 per-
cent of the country’s area. The average monthly temperature is 23–25 ◦C in summer and
−6–3 ◦C in winter, and the average precipitation in summer is 1272.5 mm, accounting for
70% of the average annual precipitation.

We collected, observed, and synthesized data from the KMA website (http://www.
kma.go.kr (accessed on 27 March 2020)), Water Resources Management Information System

http://www.kma.go.kr
http://www.kma.go.kr
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(http://www.wamis.go.kr (accessed on 22 February 2020)), and Asia-Pacific Economic
Cooperation Climate Center (https://www.apcc21.org (accessed on 13 June 2021)) for
26 sub-basins in the Han River basin, excluding North Korea portions, as shown in Figure 2.
To compare variations according to the climate change scenario, the periods were divided
into P-0 (1974–2016), P-1 (2017–2040), P-2 (2041–2070), and P-3 (2071–2099).
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3. Dynamic Naive Bayesian Classifier (DNBC)

The DNBC is a simple probabilistic classifier based on Bayes’ theorem with strong
naive assumptions of conditional independence among the attributes given the hidden state.
The model is composed of a set A = {At|t = 1, . . . , T}, where each At = {An

t |1 ≤ n ≤ N}
is a set of N attributes generated by the dynamic process at state St = {1, . . . , m} [15].
An

t identifies a specific attribute, e.g., an individual drought index, while St denotes a
realization of the drought state with different severity at time t. The joint likelihood of
observed attributes and latent states in a DNBC can be expressed by Equation (1).

P(A1:T, S1:T) = P(S1)
T−1

∏
t=1

P(St+1|St)
T

∏
t=1

N

∏
n=1

P(An
t |St) (1)

where P(S1) is the initial probability distribution for the hidden state St at time t = 1;

P(St+1 |S t) is the transition probability from St to St+1; and P(At |S t) =
N
∏

n=1
P(An

t | S t

)
is the

emission probability distribution of an observed attribute at time t given St.

P(At |S t) =
N
∏

n=1
P(An

t

∣∣∣∣ St) is valid for its naive conditional independence assumption

among the attributes given the class. The DNBC follows two main assumptions. The
dynamic process of St follows the first-order Markov chain property, i.e., the next state is
dependent only on the current state. The dynamic process is stationary, i.e., the transition
probability is not time-dependent.

We estimated the parameters of the DNBC using the R package “depmixS4” based on
the expectation-maximization algorithm, which iteratively maximizes the expected joint
log-likelihood of the parameters given the attribute observations and states. In the DNBC,
the complete set of parameters for a given model was defined as θ = (θ1, θ2, θ3) with three

http://www.wamis.go.kr
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vectors demonstrating the parameters for the initial, transition, and emission probabilities,
respectively. The joint log-likelihood can be written as Equation (2).

log P(A1:T, S1:T| θ) = log P(S1 |θ 1) +
T−1

∑
t=1

log P(St |S t+1 , θ2 ) +
T

∑
t=1

log P(At|St, θ3) (2)

In this study, the previously calculated drought indices SPI, SDI, ESI, and WSCI were
adopted as input attributes to the DNBC. Assuming that the inputs were independent of
each other, we chose a Gaussian distribution for the emission distribution of each attribute,
given by Equation (3).

P(An
t |S t = i) = N

(
An

t |µ
n
i , σ2n

i

)
, n = 1, · · · , N, i = 1, · · · , m (3)

where µN
i and σ2n

i are the mean and the variance of the Gaussian emission distribution for
the ith latent state and the nth observed variable. Chen et al. [14] selected the Gaussian
distribution due to its easy computation and availability to account for the drought-related
indicator’s complex process. With the estimated optimal DNBC parameters, the most prob-
able path of the latent drought state that maximizes P(A|·) , together with the probability
of each state at every time step, can be obtained using the Viterbi algorithm [14].

4. Results
4.1. Individual Drought Indices

The SPI, SDI, ESI, and WSCI were calculated using the observed and synthetic data to
account for the various causes of drought. Figure 3 shows their time series for Chungju
Dam basin (# 1005), as a representative example, in which the SPI and SDI showed similar
patterns, while the ESI and WSCI showed greater regional variations than seasonal effects.
The drought state was classified into seven conditions as shown in Table 1. The average ratio
of drought states for all 26 sub-basins is different as follows. Based on the SPI, “Normal”
condition was the most common at 66.73 to 70.27%; “Extreme Wet” was 2.27 to 3.40%; and
“Extreme Dry” was found to be the least likely to occur at 1.47 to 2.47%. Based on the
SDI, “Normal” was the most common at 67.13 to 69.40%; “Extreme Wet” presented 1.40 to
2.93%; and “Extreme Dry” was found to be the least likely at 1.67 to 3.13%. Based on the
ESI, “Normal” was the most common at 74.67 to 84.53%; the probability of “Extreme Wet”
was almost nonexistent; and “Extreme Dry” presented 4.73 to 6.67%. Based on the WSCI,
“Normal” was the highest at 67.13 to 80.93%; “Severe Dry” ranged from 0.73% to 8.40%;
and “Extreme Dry” was the least likely to occur at 0.0 to 3.0%.
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Table 1. Drought indices and moisture conditions.

SPI, SDI, ESI, WSCI DNBC-MDI Moisture Condition

2.00~∞ 1 Extremely wet
1.50~1.99 2 Very wet
1.00~1.49 3 Moderately wet
−0.99~0.99 4 Normal
−1.00~−1.49 5 Moderately dry
−1.50~−1.99 6 Severe dry
−2.00~−∞ 7 Extremely dry

4.2. DNBC-MDI

The DNBC-MDI was calculated by applying the DNBC to drought indices, assuming
no association between the input indices. In this study, we assumed that the SPI, SDI, ESI,
and WSCI were independent of each other. As shown in Table 1, the DNBC-MDI presents
seven drought states, and the sum of the occurrence probabilities corresponding to seven
states is 1.

Figure 4 shows the probability of the DNBC-MDI drought states that can occur monthly
for Chungju Dam basin (# 1005), as a representative example, in which the larger the color
bar of each state, the higher the probability of occurrence of that state. As shown in Figure 4,
the probabilities of “Extremely Dry” (yellow bar) were similar for P-1 and P-2 but decreased
for P-3 by 0.8%. The probabilities of “Very Wet” tended to extremely decrease for P-1. The
probabilities of “Moderately Wet” and “Severe Dry” tended to increase for P-1 and P-2, then
decrease for P-3. The probabilities of “Normal” and “Extremely Wet” tended to decrease
for P-1, then increase for P-2 and P-3. The probabilities of “Moderately Dry” tended to
increase for P-1, P-2, and P-3.
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4.3. Bivariate Drought Frequency Analysis Using a Copula Function

In this study, a Clayton copula function of the Archimedean family was used for the
BDFA after comparing with other copula functions. It is suitable for hydrological analysis,
as the Archimedean copula can better reflect the relationship between hydrological variables
than the elliptical copula [27,29,30]. Moreover, a Clayton copula function is suitable for
drought simulations to reflect the tail structure of the data [31].

The BDFA was performed for 26 sub-basins after extracting drought duration and
severity from the time series of DNBC-MDI with threshold of five to seven states. Figure 5
shows the drought severity–duration–frequency curve for Chungju Dam basin (# 1005), as
a representative example.
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4.4. Risk Analysis

In this study, drought risk was calculated based on the hydrologic risk in Equation (4),
which means the probability that return period Tds will occur for n years. Therefore, a
region with a drought risk closer to one is most drought-prone.

R = 1−
(

1− 1
Tds

)n
(4)

Using the drought severity–duration–frequency curves in Section 4.3, the maximum
return periods were estimated for each sub-basin and period, and the drought risks were
calculated for 100 years (n = 100). Figure 6 shows the drought risk using the DNBC-MDI.
Sub-basins # 1302 (R = 0.999) and # 1011 (R = 0.999) presented the highest risk during
1974–2016, and # 1005 (R = 0.999) and # 1016 (R = 0.999) were the most dangerous areas
during 2017–2040. Sub-basin # 1303 (R = 1.000) and # 1004 (R = 0.999) were at high risk
during 2041–2071. Sub-basins # 1301 (R = 1.000) and # 1303 (R = 1.000) were the most
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dangerous areas in 2071–2099. During 1974–2016, sub-basin # 1303 (R = 0.000) and # 1101
(R = 0.080) were at the lowest risk, while, during 2017–2040, sub-basin # 1019 (R = 0.000) and
# 1004 (R = 0.000) were at the lowest risk. During 2041–2070, sub-basin # 1006 (R = 0.100)
and # 1016 (R = 0.232) were at the lowest risk, and sub-basins # 1019 (R = 0.000) and # 1014
(R = 0.000) were at the lowest risk during 2071–1999. On average, sub-basins # 1005 and
# 1008 were the most dangerous areas, while sub-basins # 1017 and # 1019 were the least
dangerous. Drought risk varied over time, but drought risk in the Han River basin was the
highest during 1974–2016 at 0.709, while the drought risk during 2041–2070 was the lowest
at 0.573. The drought risk in the Han River basin decreased by 2070 but then increased.
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4.5. Comparisons with Actual Drought Events

Figure 7 shows recently drought-affected areas. The drought in 2001 caused damage
to the Han River basin as a whole, making it difficult to directly compare with Figure 7a.
However, by comparing damage from 2014–2015 according to drought risk, sub-basins
# 1002, # 1003, # 1011 with high DNBC-MDI overlapped actual drought-affected areas,
while sub-basin # 1101 showed no drought damage and was at low risk, as shown in
Figure 7b.

To analyze the relationship between the DNBC-MDI and actual drought events, an
accuracy analysis was performed by determining droughts as if they were consistent with
the 1994–1995, 2001, 2008–2009, 2012, and 2014–2015 droughts (shaded bars in Figure 8) and
states 5 to 7 of the DNBC-MDI, as shown in Figure 8. If the DNBC-MDI matched the actual
drought, a “hit” was assigned; if there was no actual drought and the DNBC-MDI was
drought, then a “false alarm” was assigned; if there was a drought and the DNBC-MDI was
not a drought, then a “miss” was assigned; if there was no drought and the DNBC-MDI
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was not a drought, then a “correct rejection” was assigned. As an accuracy measure, the
production correct (PC) was calculated using Equation (5).

PC =
a + d

a + b + c + d
(5)

where a, b, c, and d are the number of hits, false alarms, misses, and correct rejections, respectively.
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Figure 8. A comparison of actual drought events and the DNBC-MDI.

For comparative evaluation, the PC was calculated for the SPI, SDI, ESI, and DNBC-
MDI. The DNBC-MDI produced the highest average PC of 0.663, followed by the SPI of
0.632, SDI of 0.639, and ESI of 0.657. Figure 9 shows the production corrections for different
drought indices. The DNBC-MDI were the highest for sub-basin # 1202 (PC = 0.792) and
lowest for # 1015 (PC = 0.406). The SPI had a high accuracy for sub-basin # 1302 (PC = 0.740)
and showed the lowest of the accuracy for sub-basin # 1005 among the four indices. The
SDI had high accuracy for sub-basin # 1303 (PC = 0.750) and with a low accuracy for # 1202
(PC = 0.542). The ESI had high accuracy for sub-basin # 1007 (PC = 0.771) and low accuracy
for # 1002 (PC = 0.542).
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5. Conclusions

The purposes of this study were to develop a dynamic naive Bayesian classifier-based
multiple-drought index (DNBC-MDI) and assess regional drought risk, taking into account
various influencing factors. Especially the DNBC-MDI incorporated the drought indices
and water supply capacity, which may be a key vulnerability to regional drought and useful
in drought planning. Using the DNBC-MDI, a regional drought risk was comprehensively
assessed for the current and future circumstances considering a climate change scenario.
Based on the overall results, we concluded that the DNBC-MDI is useful in (1) combining
various drought indices available for regional analysis, (2) quantifying probabilistically
drought severity to detect onset and termination, and (3) applying the bivariate drought
frequency analysis for comprehensive drought risk assessment.

In addition, drought assessment and drought planning are main topics in many
drought-prone countries. Several systematic approaches have been suggested to develop
a drought plan. For example, Knutson [32] presented six steps that attempt to reduce
potential drought effects before a drought occurs when developing a country’s drought
plan. Among them, the second and third steps prioritize response to drought-risk areas to
reduce drought damage. Wilhite [33] presented the process required for drought planning
in the “10-step drought planning process”, which states that vulnerability in the fourth step
should be used to determine the risk of drought. Drought planning in the United States
requires regional drought risks or vulnerabilities.

In this study, we aimed to develop a comprehensive drought index that could be used
to develop regional drought plans. To consider various drought effects, the probabilistic
droughts were evaluated incorporating SPI, SDI, and ESI, as well as the impact of droughts
on water supply capacity, which is a socio-economic concern. The drought indices such
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as the SPI, SDI, and ESI only represent the probability of occurrence of drought but do
not represent the drought vulnerability. In this study, the WSCI was used to represent
the degree of vulnerability of drought, and, thus, it can be available for drought planning.
For more effective monitoring of drought conditions, this study was limited to using only
climate data for historic and future drought assessment. Remote sensing data of MODIS
and Landsat may be useful in overcoming this weakness to quantify the hydrological
extreme events and associated hazards with significant precision [34].

A growing interest in drought and the need for drought planning have led to the need
for a comprehensive assessment of droughts and their risks. While the drought indices
that are based on the ground and surface factors can identify drought, meteorological
and hydrological factors, such as precipitation, runoff, and evaporation, can be not easily
managed, but socio-economic factors can be sufficiently improved by effective management
and countermeasures. Thus, it is reasonable to assess drought risks considering the socio-
economic factors.
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