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Abstract: Pickled mustard tuber, a worldwide condiment, is increasing at a fast growth rate. Its pro-
duction generates a considerable amount of hypersaline wastewater containing NaCl of 7 wt.%, COD
of 30,000 mg L−1, NH3-N of 400 mg L−1, and TP of 300 mg L−1. Pickled mustard tuber wastewater
(PMTW) has severe effects on crops, deterioration of water quality, soil infertility and ecological
systems. Due to the technic difficulties and insufficient support from the local governments; however,
PMTW has not yet been widely investigated and well summarized. Therefore, this manuscript
reviewed the relatively latest advances in PMTW. Physicochemical and biological hybrid processes
mainly treat PMTW and the corresponding cost is 6.00 US dollars per ton. In the context of double
carbon capture capacity in China and the development of the pickled mustard industry, PMTW sauce
and sustainable reuse such as nutrient recovery, acid and alkaline regeneration and renewable energy
may be bright prospects.

Keywords: hypersaline wastewater; pickled mustard tuber; characteristics and environmental effects;
treatment arts; prospects arts; resource and energy recovery

1. Introduction

Food pickling, one of the oldest ways of food preservation, refers to vegetables or
fruits soaked in a solution of salt, vinegar, other flavorings and stored for a period, during
which the ingredients go through the fermentation process and acquire the desired flavor
with naturally-occurring bacteria [1]. There are dozens of pickled recipes, with French
cornichons, German sauerkraut and Chinese Zhacai (pickled mustard tuber) being the
most well-known and popular three [2]. Pickled mustard tuber plays an important role
in Chinese condiments and its consumption is sharply increasing. According to statistical
data from (the National Bureau of Statistics), pickled mustard tuber products’ consumption
increased with an annual growth rate of 6.9% and created a total turnover of USD 0.9 billion
in the past five years.

However, the development of mustard tuber products raises some environmental
challenges as the amount of hypersaline wastewater is generated during fresh mustard
tuber processing. According to our survey results, one-ton of pickled mustard tuber
approximately produces 18.5 tons of hypersaline wastewater, containing about 3% NaCl
(the maximum NaCl reached 13 wt.%), 7000 mg L−1 COD, 400 mg L−1 of ammonia-nitrogen
and 50 mg L−1 phosphorus [3]. Such a high concentration of contaminants, mainly referring
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to organic matter, ammonia nitrogen, phosphorus nutrients and high salt content, has
caused environmental issues like the eutrophication of local rivers, serious soil salinization,
and the death of aquatic creatures [4]. These adverse effects raised from the discharge of
pickled mustard tuber wastewater (PMTW) have become more evident in recent years.
To facilitate this, both Ministry of Ecology and Environment, PRC China and the Bureau
of local Ecology and Environment, Chongqing, Sichuan, and Zhejiang, have proposed
action plans to prevent and treat hypersaline wastewater pollution of pickled mustard
tuber [5]. These plans, on the one hand, regulate the discharge standard of hypersaline
pollutants, and on the other hand, they push the development of advanced technologies
for hypersaline wastewater treatment.

Based on the number of publications on hypersaline wastewater treatment, no more
than 10% of papers focus on PMTW treatment. Given the limited references we can obtain,
we summarized the most frequently used techniques of hypersaline wastewater treatment.
Hypersaline wastewater treatment mainly involves biological oxidation and physicochemi-
cal separation [6]. Biological oxidation is the first choice for high-salt wastewater treatment
due to the low cost, excellent resistance to adverse influences, large processing capacity,
good treatment effectiveness, and ease of practical implementation [7]. Physicochemical
separation is also implemented but used more frequently for higher discharge standard
requirements compared to biological oxidation [8,9]. Since biological oxidation is lim-
ited by salt inhibition for microorganisms and physicochemical separation is impacted by
membrane pollution, neither individual biological oxidation nor physicochemical separa-
tion achieves the ideal removal efficiency of pollutants [10]. Thus, the hybrid process of
biological oxidation and physicochemical separation is usually selected.

In the context of double carbon capture capacity in China, sustainable energy and
resource recoveries are two popular research hotspots and research scopes [11,12]. The-
oretically, pickled mustard tuber wastewater has great potential as it is rich in organics,
nutrients and salts, according to the research articles and our results. However, PMTW
is an environmental issue for Chongqing, Sichuan, Zhejiang, etc., which has not be paid
much attention. Technically, the concentrated COD, NH3-N, TP and salts, cannot be treated
by the usual biological or physicochemical processes. Moreover, the high treatment cost of
mustard tuber wastewater, and the low profitability of mustard tuber products, results in
the enterprises’ unwillingness to expend much money treating mustard tuber wastewater.
Thirdly, more support from the local governments is required. Therefore, it can be seen
that the problems of mustard tuber wastewater treatment do not only include technical
difficulties, but also include issues surrounding support from the local governments. Few
review papers have reported the latest advances in pickled mustard tuber wastewater
treatment to date. This present review thus carries out a short summary of the properties,
treatment arts and prospects of PMTW to attract more scholars’ attention to hypersaline
wastewater produced by the pickled vegetable industry in China and to help figure out
sustainable approaches to realize the sustainable reuse of pickled hypersaline wastewater.

2. Pickled Mustard Tuber Wastewater’s Characteristics and Environmental Effects

PMTW usually refers to the comprehensive PMTW in many papers. In fact, PMTW
from different stages has different characteristics during pickled mustard tuber production.
In this review, PMTW’s characteristics were measured through the standard measuring
methods of wastewater contaminants, and by using other information such as the PMTW
generation, discharge, environmental effects were obtained through field survey, govern-
mental reports, questionnaires and references.

2.1. Pickled Mustard Tuber Wastewater Generation

PMTW is mainly produced in the pickling process of the fresh mustard tuber vegetable
using NaCl and in the post-treatment process of washing, desalination, and dewatering.
The production of mustard includes three submerging stages and three squeezing stages, as
displayed in Figure 1. Specifically, the fresh mustard tuber is stacked in tanks and pickled
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with NaCl (first pickling). After the first pickled stage, saline wastewater with a salinity
of 3–4 wt.% NaCl is produced. The second pickled stage (second pickling) and the third
pickled stage (third pickling) were separated in the traditional process. However, these two
stages are integrated as a pickled stage for the modern process duo to the development of
new preservation techniques. The salinity of pickled wastewater is 12–13 wt.% NaCl usually.
After the third pickled stage or the integrated pickled stage, the post-process of pickled
mustard tuber requires a large amount of freshwater for washing, desalination, dewatering,
and sterilization. The process to convert fresh mustard tuber to pickled mustard tuber
requires an input of 0.17 t NaCl, and releases about 5 m3 saline wastewater with 3.5 wt.%
NaCl for one ton of mustard tuber product. Moreover, pickled mustard tuber generation is
seasonal, so the discharge of hypersaline wastewater is intermittent. In the harvest season
(at the end of February and beginning of March) every year, saline wastewater of the first
pickled stage is huge, bringing great challenges for biological treatment and storage. The
sequencing process of the second and third pickled mustard tuber stage lasts the whole
year. So, the production of hypersaline wastewater of mustard tuber depends on the market
requirement for pickled mustard tuber products.
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Figure 1. The schematics of pickled mustard processing and hypersaline wastewater generation.

2.2. Pickled Mustard Tuber Wastewater’s Characteristics

The typical characteristics of PMTW are summarized and compared in Table 1. The con-
centrations of COD, NH3-N, and Cl− of the first pickled wastewater are 27,800–38,400 mg L−1,
264–461 mg L−1 and 30,300–78,300 mg L−1, respectively. The concentrations of COD, NH3-
N, and Cl− of the second and the third pickled wastewater are much higher than the
first pickled wastewater. Since fresh wastewater is used to desalt pickled mustard tu-
ber, the contents of COD, NH3-N, and Cl− of comprehensive mustard wastewater are
7000–30,000 mg L−1, 181–545 mg L−1, 7370–33,200 mg L−1, which are much lower than
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that of the pickled stages. The comparison of these stages of pickled wastewater demon-
strates that pickled mustard wastewater has a high-level of NaCl concentration, but is also
rich in organics and nutrients (N, P). The differences are attributed to the manufacturing
process of the pickled mustard tuber.

Table 1. Characteristics of pickled mustard tube.

Pickles Sources
COD NH3-N TN TP TS Cl−

pH
mg L−1

Mustard
tuber

1st pickling 27,800–38,400 264–461 1600–2080 263–354 49,600–52,600 30,300–78,300 5.9–6.7
2nd pickling 29,300–44,300 363–565 1620–2500 227–364 65,650–77,650 14,700–71,900 4.4–5.4
3rd pickling 26,200–90,400 307–914 1640–3150 213–407 68,150–68,650 29,700–104,000 3.7–6.6

Comprehensive 7000–30,000 181–545 210–2160 34–281 28,635–31,950 7370–33,200 4.6–5.5

2.3. Pickled Mustard Tuber Wastewater’s Environmental Effects

There are various impacts of saline wastewater on environmental systems, including
influences on crops, deterioration of water quality, soil infertility and ecological systems.
In the present scenario, it is reported that dehydration caused by hypersaline wastewater
restricts nitrogen uptake, which is important for crop growth [13,14]. Saline wastewater
for crops with no treatment/management system leads to soil salt accumulation due to
evapotranspiration. Na+ and Cl− compete with essential ions such as K+, NO3−, and
H2PO4

− for binding sites and transport proteins in root cells, causing a nutrient imbalance
in plants [15].

The presence of excess salt in the soil leads to degradation of soil quality in terms
of physical and chemical properties, poor groundwater quality and poor plant growth,
which affects the farmer’s economy. Generally, a higher accumulation of salts leads to
structural damage to soil and the dispersion of clay minerals and particles is a major cause
of reduced hydraulic conductivity and pore clogging. It further causes a thin crust at
the soil’s surface, resulting in water infiltration leading to reduced soil productivity and
reduced crop yields [16].

In a study from Hunter River in New South Wales, the indiscriminate discharge of
saline wastewater from different sources (drainage, coal mines and power plants) to the
natural water bodies deteriorated the water quality and aquatic diversity [17]. Due to the
surface runoff of saline wastewater, drinking water is affected, resulting in an increase in
sodium and sulfates in the freshwater, thus implying community health and socio-economic
implications [18]. Moreover, many floras and fauna of different ecological systems are im-
pacted by the saline wastewater discharge, disturbing different morphological parameters,
such as cell production, nutrient solubilization, etc. [19]. The salts in the saline wastewater
further promote the flocculation of smaller particles, restrict the entrance of light to the
water bodies and cause the water body’s eutrophication [20]. In addition, saline wastewater
reduces soil permeability resulting in the formation of flood areas.

As conventional biological wastewater treatment has difficulties in salt removal,
human-induced salinity to the environment is the major environmental issue of PIWW.
When saline wastewater is discharged into the environment, it can cause land salinization,
pollute freshwater and harm aquatic lives [21]. Effects on agriculture are a significant
concern for saline wastewater. A high salt concentration in the water and soil will nega-
tively affect the crop yields and degrade the land. Increasing salinization on a global scale
is decreasing average yields for most major crop plants [22]. This study shows that the
yield of lettuce and Chinese cabbage starts to decline when the salinity level is 0.9 and
1.5 dS m−1, respectively [23]. Extensive brine discharge threatens freshwater aquatic life
in rivers and lakes and has the potential to heavily affect marine species [24]. A sudden
increase in salinity influences the reproduction of marine species, consequently affecting
their development and growth rate.

Considering the hazard of hypersaline wastewater, many countries and regions are
starting to pay attention to the environmental effects of saline effluent. The prevailing
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international practice is to set emission limits for total salt in accordance with the envi-
ronmental situation, in which they are affected. In addition, directive 2000/60/EC of the
European Union requires member states to set standards related to effluent salinity for
inland freshwater [25]. Therefore, sustainable agriculture and soil fertility management
require appropriate and skilled management and treatment of saline wastewater prior to
application to alleviate such problems.

3. Pickled Mustard Tuber Wastewater Treatment
3.1. Physicochemical Treatment

Physicochemical treatment plays an essential role in hypersaline wastewater treatment.
The physicochemical processes mainly include thermal desalination, chemical precipitation,
electrochemical oxidation-based technology, and membrane technology, as summarized
in Table 2.

Table 2. Hypersaline wastewater treatment of pickled mustard tuber.

Process Wastewater
Source

Salinity
(%)

Max. Cl−1

Tolerance
(mg L−1)

Halophilic
Bacteria Module Objects Contaminant

Removal Reference

Bio-ceramic
moving bed

biofilm reactor

Mustard
tuber

wastewater
0.5–2.0 51,840 No Lab-scale

with 45 L

Optimization
of influential
factors and
tolerance of

organic
loading shock

64.71% COD
and 58.12%

NH3-N
[4]

Membrane
bioreactor

system (MBR)

Mustard
tuber

wastewater
2.0 – No Lab-scale

with 620 L

The feasibility
of Compound-
type MBR for
Mustard tuber

wastewater
treatment

80% COD,
94.16%

NH3-N, and
33.94%TP

[5]

Biological
rotating cage

Mustard
tuber

wastewater
0.6–0.83 – No Lab-scale Microbial

communities
93% COD,

99.13%
NH4

+-N
[6]

Anaerobic/partial
nitrita-

tion/ANAMMOX
process

Mustard
Wastewater 12 – No Lab scale

with12 L

Start-up of the
combined

anaerobic, PN,
and anammox
process in the
treatment of

mustard
wastewater

89.7% COD
86.2% TN [7]

A/O process Mustard
Wastewater 2.0 – – Practical

engineering
Cand N
removal

70–95%
COD,

60–80%
NH3-N, 70%

TP

Our
survey

Anaerobic/Contact
oxida-

tion/CASS
Mustard

Wastewater 1.5 – – Practical
engineering

C and N
removal

80–95%
COD,

60–92%
NH3-N

Our
survey

A2/O process Mustard
Wastewater 1.2–2.0 – – Practical

engineering
C and N
removal

90–95%
COD,

80–90%
NH3-N

Our
survey

Hydrolysis-
acidogenesis-

SBR-
coagulation

Mustard
tuber

wastewater
1.0 – Lab scale

with 56 L

Optimizing
conditions of

combined
technique for

mustard
tuber

wastewater
treatment

96% COD,
85.03% SS,

84.9% NH4
+-N

and 95.32% TP
[8]



Water 2022, 14, 1508 6 of 19

Table 2. Cont.

Process Wastewater
Source

Salinity
(%)

Max. Cl−1

Tolerance
(mg L−1)

Halophilic
Bacteria Module Objects Contaminant

Removal Reference

Biological-
chemical

Mustard
tuber

wastewater
7–7.5 Lab scale

with 3.5 L

Treating
mustard

tuber
wastewater
with high

salinity, high
phosphorus,

and high
nitrogen.

56.6% COD,
20.8% NH3-N,
and 22% TP.

[9]

Coagulation,
anaerobic and

electrode-
SBBR

integrated
process

Mustard
tuber

wastewater
– 14,780 Lab scale

Find the
optimal

parameters
to improve

the
performance

of the
combined
system for
mustard

tuber
wastewater
treatment

83.26% COD,
70.98% TN,
52.56% TP

[10]

Anoxic-oxic
biofilm-

membrane
bioreactor

Mustard
tuber

wastewater
10 – Pilot-scale

with 630 L

Developing
an optimal

condition to
obtain the

highest
treatment

efficiency at
lowest

membrane
fouling rate

90.3% COD,
92.4% NH3-N,
61.6% TN and

98.1% SS
[11]

Combined
process of

aerobicmicro-
electrolysis-

electrochemical
oxidation-

sedimentation

Mustard
tuber

wastewater
20–30 – Lab scale

Parameter
optimization
to obtain the

highest
treatment
efficiency

90.96% COD,
100% NH3-N,
72.3% TN and

100% TP
[12]

3.1.1. Thermal Desalination

Thermal desalination accounts for approximately 50% of desalination technologies [26],
and multi-stage flash (MSF) distillation and multi-effect distillation (MED) are two com-
monly used thermal desalination processes. MSF using vaporization through multi-stage
chambers produces high-quality freshwater with a little TDS (<30 ppm) [27]. Its maximum
capability of flash water generation of MSF can be up to 75,000 m3 d−1 for each unit, and
the energy requirement is 20–500 kWh m−3 [28]. MED is the oldest desalination method
to produce distilled water [29]. Awerbuch mentioned that the capability of freshwater
generation could reach 45,400 m3 per day [30]. Mechanical vapor recompression (MVR)
was used to treat pickled wastewater. The inflow wastewater contained 8% NaCl and the
outflow wastewater contained 20% NaCl. The recovered salt was reused for pickling the
fresh mustard tuber. Although thermal desalination has many attractive merits such as
zero liquid discharge, salt and minerals recovery, high quality of freshwater, etc., some
challenges like expensive costs, high energy consumption, dry solid waste precipitates, and
corrosion are faced when thermal desalination is scaled up [31].

3.1.2. Chemical Precipitation

Chemical precipitation for hypersaline wastewater of pickles mainly refers to coagula-
tion and flocculation [32]. Coagulation and flocculation are usually used simultaneously.
Coagulants carrying opposite charges are added to hypersaline wastewater to neutralize
the charges on dispersed non-settleable solids [33] and flocculation is a gentle mixing stage
that increases the particle size from submicroscopic micro floc to visible suspended particles.
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Tian and Zheng studied the characteristics and mechanisms of flocculation treatment by
recycling the physical-chemical sludge from the flocculation process (PAC and lime) in the
unit for sauce wastewater treatment [34]. Their experiments showed that the adsorption
and sweep of the reused sludge neutralized charges via PAC and CaO reacted with certain
carbohydrates to form precipitation to remove 44.2% COD on average. Liu et al. used
CaO as a coagulant and PAM as a coagulant to treat mustard wastewater with the removal
efficiencies of 36.54% COD, 52.03% TP and 97.85% turbidity, respectively. CaO and PAM
could automatically adjust pH, reduce irritating odor and improve biodegradability [35].
In contrast, coagulation and flocculation have some main disadvantages, such as high
cost, accurate dosing and frequent monitoring, which brings some inconveniences for
hypersaline wastewater treatment [36].

3.1.3. Electrochemical Oxidation

Hypersaline wastewater is treated by electrochemical oxidation due to its high conduc-
tive capability. For example, Qu et al. used electrochemical oxidation to pretreat pickled
hypersaline wastewater and obtained 55.74% COD and 99.77% ammonia removal [37].
They also used the same method to remove ammonia nitrogen from pickled hypersaline
wastewater and discussed the factors of ammonia nitrogen removal. They found that
ammonia removal was determined by time, current density, the inter-electrode distance,
electrode plate area/water volume ratio and pH value. Based on these finds, they con-
ducted the corresponding optimization and gained 99.94% of ammonia removal and
96 kWh/kg (NH4

+-N) of energy consumption [38]. Sheng et al. employed a boron-doped
diamond anode to oxidize organics of mustard tuber wastewater and achieved 80.4% COD
removal and 100% ammonium removal rate with 45.8 kWh m−3 energy consumption [39].
However, high energy consumption, electrode break down, and concentration, limit the
application of electrochemical oxidation. Some researchers focus on new technologies—
such as advanced oxidation, which is a representative technology with low energy input.
Moraes et al. applied photo-Fenton oxidation to treat saline wastewater containing hy-
drocarbons [40]. Their experimental results demonstrated that photo-Fenton oxidation
was feasible to treat high concentrations of salt of 2 g L−1. In contrast, the concentration
of residual iron after the photo-Fenton reaction was above the concentration accepted
by the environment, which required expensive technologies to reduce it to an acceptable
level [41]. Hence, photo-Fenton oxidation has not been a general approach for practical
engineering yet.

3.1.4. Membrane Technology

Membrane technology such as reverse osmosis, nano-filtration, ultra-filtration and
microfiltration, electrodialysis and electrodialysis reversal is the most commonly used
for hypersaline wastewater treatment [42,43]. Scholz and Lucas conducted a technic and
economic evaluation of membrane filtration and their results indicated that membrane
filtration enabled a 90% recovery rate of pickled agents since ion concentration and separa-
tion do not require extra chemical input or thermal energy [44]. Vaudevire and Koreman
designed a pilot-scale study on the loop of NaCl use to reduce disposal towards a zero
liquid discharge. The results demonstrated that nanofiltration membrane had 87% of
DOC, 85% of sulfate, 80% of Na+ and 100% Cl− retention [45]. These studies suggest that
membrane technology has merits for water recovery, a large capability of ion separation
and economic costs for salinity reduction associated with secondary effluent (or other
wastewater sources) TDS levels.

The costs of different processes within the pickled mustard tuber process depend on
the original salinity. As displayed in Figure 2, the costs of electrodialysis has increased
from USD 4.5 to USD 5.5 for the effluent with 0.5 wt.% NaCl and from USD 5.0 to USD
6.5 for the effluent with 0.1 wt.% NaCl, respectively, with the NaCl concentration of the
influent escalating. On the contrary, the cost of MVR decreases to USD 4.5 when the effluent
NaCl concentration increases to 15%. Besides, the cost of electrodialysis depends on the
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NaCl concentration of the effluent. Even if the lowest cost of electrodialysis is USD 4.5, it is
much more expensive than that of a biological process at USD 1.5. Additionally, membrane
fouling, acid-base resistance and corrosion are great challenges for electrodialysis. There-
fore, proper uses of physical-chemical and biological treatments can make the effective
treatment of PIWW come true. The above research also mentioned the limitations, such
as pre-treatment, solids removal, membrane fouling and concentrated and waste stream
disposal. Therefore, physical-chemical treatment displays excellent performances in salt
removal, but poor efficiency for organic, nitrogen and phosphorus.
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3.2. Bio-Treatment of Pickled Mustard Tuber Wastewater

Although NaCl detrimentally impacts the activity of the microbial community, biotreat-
ment is the mainstream of PMTW treatment and its process is shown in Figure 3 [46–50]. The
following section discusses aerobic oxidation, anaerobic digestion and aerobic/anaerobic
hybrid treatment for hypersaline wastewater, as summarized in Table 2.
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3.2.1. Aerobic Oxidation

The feasibility of aerobic oxidation to remove carbonaceous, nitrogenous, and phos-
phorous pollution from high salt concentrations has been studied for decades [50,51]. The
current interest is focused on aerobic granules formation and the efficient aerobic treatment
processes. Aerobic granular sludge (AGS) is a type of sludge that can self-immobilize flocs
and microorganisms into spherical and strong compact structures [52,53]. The formation
of sludge granules is slow but can become a salt-tolerant granular under the high-salinity
condition [54]. The formation mechanism of AGS has been discussed for some decades.
The first one of note is the crystal nucleus hypothesis. As discussed in Long’s report, when
SBR is inoculated with aerobic (anaerobic) granules, an inorganic material, or some inor-
ganic salts, the system as a crystal nucleus assists the formation of aerobic granular sludge
through microbial growth [55]. Tao’s research supported this hypothesis, that granular
activated carbon provided the interaction media for sludge to attach and enhance the mor-
phological regularization of sludge [56]. Verawaty et al. also found that flocs attachment to
the surface of the seeding granules reduced biomass washout during granulation [57].

The second of note is the selection pressure hypothesis. The hydraulic selection
pressure and biological selection pressure are used to optimize the operation parameters
and explain aerobic granular sludge formation. The salt concentration is not only hydraulic
selection pressure, but also biological selection pressure. As the hydraulic selection pressure,
the stepped increase in salt concentration from 0 wt.% to 9 wt.% resulted in bigger flocs
so that young granules could stay in the sequencing batch reactors (SBR) system, which
could be seen as the enhancement of the function of decreased settling time [58]. As a
natural selection pressure, elevated salinity alters the microbial community to adapt to
hypersaline stress. According to Lim’s study, the increase in salinity contributed to an
increase in the halotolerant bacteria, thus making the microbial community tolerant of
different salinity levels. As a result, some adapted bacteria were capable of salt tolerance,
while other unadaptable bacteria were granularly washed out or weakened [59].

The third hypothesis is described through the DLVO theory. The double-layer com-
pressed with salt concentration increasing from 0 wt.% to 9 wt.%. The surface potential was
reduced, but the surface charge density kept constant, which reduced the total repulsive
forces between different zooglea, and enhanced the maturity of young granules [60]. The ad-
dition of seawater significantly accelerated the granulation process and the salinity-induced
decrease in the electrostatic charge on the surface of cells allowed sludge flocculation [61].
Thereby, salts are somewhat beneficial for the aggregation of flocs and the maturation of
salt-tolerant granular sludge.

More efforts have been focused on the optimizations of physical factors to resist
adverse influences and achieve the best performances for hypersaline wastewater treatment,
such as pH value, salinity, substrate loading rate, solids retention time, dissolved oxygen,
cycle time/hydraulic retention time, seed sludge, and reactor configuration [62]. Some
researchers have attempted to adapt conventional micro-organisms to high salinity [48].
Nevertheless, it has been proved that halophilic inoculum is the best way to improve the
performance of the aerobic treatment processes [50].

For aerobic oxidation, the frequently mentioned processes include the AGS, physical
contact oxidation, biofilm, and rotating biological cage, as summarized in Table 2. In
these processes, starting a bio-ceramic moving bed biofilm reactor for the hypersaline
wastewater treatment of pickled mustard tuber is worth paying attention to. Under the
optimal conditions of organic loading rate (OLR) of 3.3 kg COD m−3 d−1 and operating
temperature of 25 ◦C, the biological contact oxidation process showed the highest salinity
tolerance of 51.84 g L−1 [63]. Furthermore, the composite membrane bioreactor system with
intermittent aeration to treat brine wastewater of pickled mustard tuber is recommended.
At the steady status, the reactor was filled with hypersaline wastewater characterized to
320–580 mg L−1 COD, 106–190 mg L−1 NH3-N, and 27–45 mg L−1 PO4

3− and gained the
corresponding removal efficiencies of 66%, 94%, and 34%, respectively [64]. The literature
indicates that only a few processes use single aerobic oxidation due to a large amount of
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energy for aeration and generate excess sludge bio-solids or sludge. Wang et al. studied the
multiple potential pathways and key microorganisms of nitrogen removal in a modified
sequencing batch biofilm reactor treating hypersaline mustard tuber wastewater [65]. Their
results indicate that the enrichment of particular halophilic functional bacteria with multiple
nitrogen removal pathways is a good idea for the efficient treatment of high-concentrated
hypersaline industrial wastewater.

3.2.2. Anaerobic Digestion

As the global concept of energy-saving and sustainable recovery of wastewater be-
comes increasingly popular, anaerobic digestion experiences rapid development. Anaerobic
treatment can endure high organics loading, consumes low energy, and generates methane
to be used to treat hypersaline wastewater [66,67]. The core of AD technology in anaerobic
granular sludge (AnGS) is composed of hydrolytic fermentation bacteria, acid-producing
bacteria, and methanogenic bacteria under high hydraulic shear. The structure formed by
different species is a micro-ecosystem with symbiotic or symbiotic relationships, conducive
to providing physiological conditions for microbial growth and maintaining a relatively
stable microenvironment.

It is believed that AnGS granulation is mainly divided into three stages: (1) the process
of attracting adhesion between bacteria and substrate; (2) the formation of microbial aggre-
gates; (3) the increasing size of mature sludge. The attracting adhesion process between
bacteria and substrate is the initial stage of AnGS formation and an important stage in
determining the structure of AnGS. For example, Lettinga studied the potential causes of
AnGS granulation and believed that the slow-growing bacteria and extremely hungry mi-
croorganisms (methane-producing, acetic acid bacteria, etc.) produced microbial aggregates
and they even achieved an aggregated state and thus formed a balanced ecosystem for the
benefits in pursuit of each other [68]. AnGS can retain a high concentration and withstand
a high organic matter volume load, even if it confronts with a high gas production rate and
upward flow rate [69].

Under high salinity, Ca2+ is considered to have a positive effect on the process of AnGS
granulation and can increase the strength of the particles [70,71]. Pevere et al. compared
the effects of Ca2+ and Na+ on AnGS aggregation. They found that Ca2+ strongly changed
the viscosity of AnGS suspension, enhanced the physicochemical interaction between small
anaerobic particles, and induced the formation of larger particles. At the same time, Na+

had a slight effect on the fine particle viscosity of AnGS suspension but will reduce the
strength of AnGS once the concentration of Na+ was excessively high [72,73]. Jeison et al.
found that the high salt of NaCl led to a reduction in particle strength, making the process
unstable during the long-term operation of the reactor and the sensitivity of granular
sludge to Na+ concentration decreased. As such, 7 g Na/L concentration wastewater can
replace the role of calcium in the particles, which means that bacteria have adapted to the
high salinity.

For anaerobic digestion, interspecies exchange of electrons are considered important in
diverse environments, as they enable microbial communities to gain energy from reactions.
There are two widely recognized mechanisms for microbial electron transfer [74,75]. The
first mechanism is the mediated interspecies electron transfer [76,77]. As illustrated in
Figure 4, H2 and formate are important electron transfer molecules in various methanogenic
environments. H2 is a powerful electron donor under anoxic conditions. Although less than
one-third of methane production depends on hydrogenotrophic activities, the utilization
of H2 and its interspecies transfer is critical since H2 limits the rate. Furthermore, the
pressure of H2 controls the extent of H2 producing reactions, so H2 must be continuously
consumed by partner organisms for the syntrophic interaction to occur [78]. Other than
H2, formate detected in most methanogenesis systems has proved to be an important
extracellular electron carrier in syntrophic metabolism as well. The redox potential of
formate/CO2 (E0

′
= −0.432 V) is close to that of H2/H+ (E0

′
= −0.421 V), indicating that

formate and H2 have the same niche as an intermediate. However, the solubility, transfer
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speed, and diffusion distance of formate are much higher than H2 in syntrophic propionate
and butyrate degradation [79].
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Another mechanism is direct interspecies electron transfer (DIET), as displayed in
Figure 5. DIET is a syntrophic metabolism, in which the free electrons flow from one cell
to another without being shuttled by reduced intermediates like hydrogen or formate.
Potential DIET mechanisms include electron transfer via electrically conductive pili, elec-
trically conductive materials, electron transport proteins, and the diffusive exchange of
electrons between species through soluble electron shuttles such as H2 [80,81]. The electron
exchange between syntrophic partners together by DIET requires cells to develop efficient
conductive contacts via pili and cytochromes. Based on thermodynamic principles, when
the degradation of propionic acid is coupled with methanogenesis, the change of Gibbs
free energy (∆G) is +3 kJ mol−1, indicating that the reaction is not spontaneous. However,
with the presence of sulfate-reducing bacteria, ∆G becomes −180 kJ mol−1, demonstrating
that the conversion of propionic acid to methane is more favorable [78,82]. In other words,
the salt in the system has a specific promotion effect on methane production.

Some anaerobic processes have been developed from laboratory tests to practical
engineering applications, as summarized in Table 2. Anaerobic sequencing batch biofilm
reactor (ASBBR), a new and efficient reactor, was applied to treat most organic compounds
in mustard tuber wastewater. The results demonstrated that under 30 ◦C, there was
a draining ratio of 1/3, and two-day hydraulic retention time, the biofilm density of
50%, and the maximum removal of COD reached 90.5% [83]. In contrast, high salinity
and low temperature inhibit the activity of anaerobic microorganisms and lead to low
treatment efficiency for ASBBR in winter. To solve this problem, betaine was added to
the reactor to improve the activity of the anaerobic sludge. Under the optimal dosage of
betaine of 0.5 mmol L−1, the dehydrogenase activity of anaerobic microorganisms and the
COD removal efficiency was increased by 18.6% and 18.1%, respectively [84]. Chen et al.
combined an anaerobic sequencing batch biofilm reactor, a sequencing batch reactor (SBR),
and an upflow anaerobic sludge blanket (UASB) for anaerobic treatment, partial nitridation
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and anammox using high salinity wastewater from the mustard pickling industry as the
substance. The results demonstrated that 89.7% of COD and 86.2% of nitrogen were
removed, respectively, under high salinity of 12.0 g NaCl L−1 and nitrogen loading rate
of 258 mg (L·day)−1. However, the dilemmas of this process included a slow growth rate,
slow granulation, the unstable and poor removal efficiency of contaminates, vulnerability
to contaminants, and disintegration of anaerobic granular sludge.
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3.2.3. Combined Anaerobic and Aerobic Treatment

A single aerobic or anaerobic technique has not yet been sufficiently effective in treat-
ing hypersaline wastewater. Many studies combined aerobic and anaerobic processes for
brine wastewater treatment to enhance the treatment efficiency. In Table 2, we discuss the
combined anaerobic and aerobic techniques. Lefebvre et al. designed a system combining
the anaerobic digestion of tannery soak liquor and an aerobic post-treatment. The com-
bined anaerobic/aerobic treatment system removed 96% of COD after one month of the
operation under an OLR of 0.5 kgCOD m−3 d−1, HRT of 8 days and the concentration
of total dissolved solids of 71 g L−1 [85]. Apart from carbonaceous pollution removal,
the anaerobic/aerobic combined processes could also eliminate biological nitrogen, phos-
phorus, and other pollutants from saline wastewater. Chen et al. established a combined
anaerobic/partial nitrification/anammox process to treat high salinity mustard wastewater.
After anaerobic sequencing batch biofilm reactor (ASBBR), sequencing batch reactor (SBR)
and upflow anaerobic sludge blanket digestion (UASB), the removal rates of COD and
NH3-N were 89.7% and 86.2%, respectively, when the inflow containing the salinity was
about 16.1 g NaCl L−1 [86]. Dong et al. optimized the performance of saline MTWW
treatment concerning the removal efficiencies of COD, ammonia nitrogen (NH3-N), and
total nitrogen (TN) through a pilot-scale packed cage rotating biological contactor system.
They obtained the optimal region for energy consumption and maximum COD, NH3-N,
and TN removal efficiency with an ORL of 26.71 kg day−1, RDV of 1.62, and IR of 46% [87].
According to our statistical data, the costs of bioprocessing is between USD 1.5–2.5 per ton,
but it does not remove any salts from PMTW.
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3.3. Physicochemical and Biological Hybrid Arts

To improve the efficiency of hypersaline wastewater treatment, the combination
of aerobic oxidation and anaerobic treatment or integrated physical-chemical processes
has been paid increasing attention in recent years as combined processes can facilitate
advantages and overcome the disadvantages [88,89]. The integrated processes of PMTW
treatment are summarized in Table 2.

The combination of physical-chemical and biological treatments shortens the treatment
period and enhances more complete removal of organic contaminants than sole biological
or physical-chemical technology, which is very promising for treating hypersaline wastew-
ater [90,91]. The recent research on this topic is summarized in Table 2. Wu et al. studied
a combined hydrolysis-acidogenesis-SBR-coagulation process in the laboratory scale for
mustard wastewater treatment and found that the removal rates of COD, SS, NH3-N, and
TP reached 96%, 85.03%, 84.9%, and 95.32% under the conditions of 22 h HRT, 300 mg L−1

PAC and 6 mg L−1 PAM, respectively. Yin et al. conducted a study on comprehensive
mustard wastewater treatment using the combined process of aerobic micro-electrolysis-
electrochemical oxidation-sedimentation. The removal rates of COD, BOD5, NH3-N, TP, SS
and salinity were 90.96%, 70.88%, 100%, 100%, 91.6% and 26.34%, respectively [92]. Chai
et al. optimized the operating parameters to minimize membrane fouling for mustard tuber
wastewater treatment in an anoxic-oxic biofilm-membrane bioreactor [62].

Scholz and Lucas used membrane filtration of reverse osmosis and ultra-filtration to
reuse the tanning chemicals that enabled a 90% recovery rate and topped this up with 4%
salt (NaCl) [44]. Vaudevire and Koreman proposed a pilot case of ion exchange membranes
aimed at the close loop of NaCl to achieve zero liquid discharge. The nanofiltration mem-
brane retained dissolved organic carbon of 87% and sulfate of 85% and allowed Na+ and
Cl− passing with removal efficiencies of 80% and 100%, respectively [45]. Electrodialysis
is another significant technology for seawater desalination [93,94], but little related work
was reported in publications for PMTW. Physicochemical and biological hybrid art is the
most suitable process from the cost perspective, which is approximately USD 6.00 per ton.
Although this cost is higher than bio-treatment, salts and main organic contaminants can
be removed simultaneously.

4. Pickled Mustard Tuber Wastewater’s Reuse
4.1. Nutrient Recollection

Nutrient recovery from hypersaline wastewater deserves special attention, and related
studies have been reported by many scholars [95]. Wang et al. carried out an investigation
on phosphorus recovery from mustard tuber wastewater and achieved 99% phosphorus
recovery by integrating biological and chemical processes [96]. Gao et al. investigated the
conditions affecting the precipitation of calcium phosphate for recovery from wastewater
and found that pH control and the initial Ca/P molar ratio change could increase the
precipitation efficiency through the batch tests [97]. Xie et al. reported that membrane-
based processes could recover nutrients from saline wastewater [98]. These studies indicate
that there is nutrient recovery potential from hypersaline wastewater, although there is still
a large gap between lab-scale research and practical applications.

4.2. Acids and Alkaline Regeneration

Na+ and Cl− are important sources of NaOH and HCl. The salt of mustard tuber
wastewater can be repurposed for acid and caustic production through multiple electrolysis
cycles. Bipolar membrane electrodialysis is a friendly technology. Ibáñez et al., who
studied acid and base recovery from softened reverse osmosis brine concluded that bipolar
membrane electrodialysis presented the production of 1.0 M or higher concentrated acid
and base with current efficiencies in the 60–90% range [99]. Thiel et al. reviewed many
methods for producing sodium hydroxide from seawater reverse osmosis and found that
bipolar membrane electrodialysis showed the best potential to meet the techno-economic
requirements [100]. Our study found that the maximum desalination, acid and alkaline



Water 2022, 14, 1508 14 of 19

generation rates of bipolar membrane electrodialysis for pickled mustard tuber were
0.304 mol h−1, 0.114 mol h−1, and 0.136 mol h−1, respectively [101]. The brine, seawater
and pickled mustard tuber results signify that the acid and alkaline regeneration is a good
approach to salty wastewater reuse.

4.3. Renewable Energy Recovery

Energy consumption is a widely concerned topic for hypersaline wastewater treat-
ment. Some researchers study energy saving. Chen and Yip developed an innovative
cascading osmotically mediated reverse osmosis technology to eliminate the disadvantages
of conventional reverse osmosis, which achieved up to about 33% energy saving [102]. Boo
et al. studied temperature swing solvent extraction for selective extraction of water over
salt from a saline feed of 1.5 M NaCl [103]. The other aspect is sustainable energy recovery.
Ansari et al. introduced a hybrid system of halotolerant organisms in forwarding osmosis
based anaerobic digestion. This system produced biogas and simultaneously allowed the
forward osmosis system to reduce salt concentration [104]. Kim and Logan applied a new
bio-electrochemical system by supplying additional voltage to remove salts and organic
matters under the concentration of 8 g NaCl L−1, of which they gained removal efficiencies
of salts and COD of 84% and 94%, respectively. Hydrogen production was achieved with a
maximum production rate of 3.6 m3-H2 m−3 -electrolyte per day at an applied voltage of
1.2 V [7]. Guo et al. utilized mustard tuber wastewater as a fuel for a typical dual-chamber
microbial fuel cell. Microbial fuel cells had an internal resistance of 121 Ω, a Columbic
efficiency of 67.7± 1.0%, a maximum power density of 246 mW m−2, and a maximum COD
removal rate of 85%, respectively [3]. Our latest paper reported electricity generation and
acid and alkaline recovery from pickled waters/wastewaters through anaerobic digestion,
bipolar membrane electrodialysis and a solid oxide fuel cell hybrid system. The results
demonstrated that AD converted 70% of chemical oxygen demand (COD) to biogas with
0.051 L-CH4 g-COD−1 on average. SOFC used recovered biogas and NH3/H2 and output
500 mW cm−2 and 530 mW cm−2 of peak power densities, respectively. The hybrid system
finally gained 55% of maximum net energy efficiency for the third pickled water [101].

5. Pickled Mustard Tuber Wastewater’s Prospects

Due to the agricultural industry’s low profitability and broad scope, there are various
difficulties in PMTW that are not widely reported. Therefore, how to find a technically
feasible, realistically operable and easily accepted way to treat PMTW and promote the
harmonious development of the mustard tuber industry and local society and economy has
become a significant issue. According to our published work on AD-ED used to regenerate
HCl and NaOH, the brine juice produced in the “three-pickling” processes output higher
energy and brought lighter inhibition on bacteria when the brine juice was separately
treated from the comprehensive PMTW. Our work indicates that the combined process
is cost-effective for PMTW treatment, which is primarily required for a long time in the
future. Mustard tuber sauce production may be one choice since the brine juice produced
in the pickling process of fresh mustard tuber contains various sugars, amino acids and
nutrients. The development of mustard tuber sauce can reduce the discharge of PMTW
and the consumption of soybeans and NaCl. Moreover, sustainable reuse of PMTW is to be
an essential prospect for PMTW.

6. Conclusions

This manuscript reviewed the characteristics, existing and emerging technologies, and
prospects of PMTW treatment in the future. PMTW features concentrated NaCl of 7 wt.%,
COD of 30,000 mg L−1, NH3-N of 400 mg L−1, and TP of 300 mg L−1 on average, affect-
ing agricultural crops, water quality deterioration, soil infertility and ecological systems.
PMTW is mainly treated by physicochemical processes (USD 17.00 per ton), biological
processes (USD 2.00 per ton) and integrated both (USD 6.00 per ton). The difficulties with



Water 2022, 14, 1508 15 of 19

the PMTW results are that the research focuses on salt and organic contaminant removal at
present, but PMTW sauce and sustainable reuse may be a bright prospect in the future.
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