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Abstract: Advanced oxidation processes (AOPs) have become a favored approach in wastewater
treatment due to the high efficiency and diverse catalyzed ways. Iron-based materials were the
commonly used catalyst due to their environmental friendliness and sustainability in the environ-
ment. We collected the published papers relative to the application of the modified iron-based
materials in AOPs between 1999 and 2020 to comprehensively understand the related mechanism of
modified materials to improve the catalytic performance of iron-based materials in AOPs. Related
data of iron-based materials, modification types, target pollutants, final removal efficiencies, and
rate constants were extracted to reveal the critical process of improving the catalytic efficiency of
iron-based materials in AOPs. Our results indicated that the modified materials through various
mechanisms to enhance the catalytic performance of iron-based materials. The principal aim of
iron-based materials modification in AOPs is to increase the content of available Fe2+ and enhance
the stability of Fe2+ in the system. The available Fe2+ is elevated by the following mechanisms: (1)
modified materials accelerate the electron transfer to promote the Fe3+/Fe2+ reaction cycle in the
system; (2) modified materials form chelates with iron ions and bond with iron ions to avoid Fe3+

precipitation. We further analyzed the effect of different modifying materials in improving these
two mechanisms. Combining the advantages of different modified materials to develop iron-based
materials with composite modification methods can enhance the catalytic performance of iron-based
materials in AOPs for further application in wastewater treatment.

Keywords: advanced oxidation processes (AOPs); iron-based materials; modification; organic pollutant

1. Introduction

The treatment of refractory organic pollutants in water has been one of the most
critical environmental issues during the past few decades [1–3]. Traditional chemical,
physical, and biological methods treatment methods have been applied to treat refrac-
tory organic pollutants [4,5]. The advanced oxidation processes (AOPs) and functional
iron-based materials have gradually attracted attention due to their high efficiency and
policy development in the sewage treatment industry [6–8]. The most widely used AOPs
processes include photochemical degradation processes (UV/O3, UV/H2O2), photocataly-
sis (TiO2/UV, photo-Fenton reactives), and chemical oxidation processes (O3, O3/H2O2,
H2O2/Fe2+) (Table 1) [9]. Meanwhile, alternative persulfate-AOPs utilizing peroxymono-
sulfate (PMS) or peroxydisulfate (PDS) instead of H2O2 have emerged and been researched
in wastewater treatment [10].
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Table 1. The types of AOPs processes in wastewater treatment.

Types of AOPs Processes

Types of AOPs
System

Process of AOPs Based on OH. Process of AOPs Based on SO.−
4

Photochemical Photocatalysis
Chemical
Oxidation
Processes

Persulfate-AOPs

UV/O3, UV/H2O2

TiO2/UV,
Photo-Fenton

Reactives

O3, O3/
H2O2, H2O2/Fe2+

Peroxymonosulfate
(PMS)-AOPs

Peroxydisulfate
(PDS)-AOPs

Oxidation process AOPs → OH. pollutant→ CO2+H2O AOPs → SO.−
4

pollutant→ CO2+H2O
Oxidation
properties E0 (OH. /OH−) = +1.90 − +2.70 VNHE E0

(
SO.−

4 /SO2−
4 ) = +2.60 − +3.10 VNHE

Nanomaterials have properties of high surface area and high catalytic activity, which
have been increasingly employed in AOPs [11,12]. Currently, the nanomaterials used
in AOPs include carbon-based nanomaterials, metal-based nanomaterials, zeolite, TiO2,
etc. [13]. Iron-based nanomaterials, as a kind of metal-based nanomaterials, have also been
widely used in AOPs due to their environmentally friendly properties [14,15]. However,
these materials also have limited mass transfer and poor stability [11]. Homogeneous
AOPs based on Fe2+, such as homogeneous Fenton systems or homogeneous persulfate
(PS)/peroxymonosulfate (PMS) systems, have been accepted in practice due to their advan-
tages, such as low cost, non-toxicity, and widely available [4,16,17]. The reactive oxidation
substance (ROS) in AOPs, including hydroxyl radicals (OH.), sulfate radicals (SO.−

4 ), super-
oxide radicals (O.−

2 ), and singlet oxygen (1O2), ideally can induce the complete degradation
of many pollutants [2,18]. However, homogeneous AOPs based on Fe2+ should be operated
in highly restrictive conditions, such as low pH and high Fe2+ concentrations [19–21]. Mean-
while, the properties of easy agglomeration of iron-based materials also limit its application
in the environment. Therefore, previous studies prioritized modifying iron-based materials
to avoid those obstacles [8,22,23].

Iron-based materials are widely distributed in enormous quantities and can be en-
vironmentally friendly [24–26]. The functional modification of iron-based materials with
environmentally friendly materials can improve the performance of iron-based materials
and expand the sustainability of their applications in the natural environment [27,28]. We
collected the literature about applying iron-based materials modification in AOPs from
the Web of Science database. The application of various iron-based materials in AOPs
was systematically analyzed, and the related factors affecting the catalytic performance of
iron-based materials in AOPs were also analyzed. Finally, the related mechanisms of the
modified materials that enhanced the catalytic performance of iron-based materials that
were detailed were also analyzed.

2. Data Sources and Search Strategy

Published papers from 1999 to 2020 were systematically searched in databases such
as the Web of Science using keywords [29] (Table S1), and 2028 articles were selected
(Figure 1). After reading based on the title and abstract of the literature, the repeated books
and conference literature were removed. In addition, relevant documents unrelated to
iron-based materials and the use of adsorption to remove organic pollutants were also
been removed. The number of documents selected in this process and finally entered
into the evaluation stage was n = 467. Based on the second-stage literature screening, the
screening scope was further narrowed by reading the complete text. The literature that
was not related to advanced oxidation, iron-based materials and organic pollutants were
eliminated. The number of documents selected in this process and finally entered into the
evaluation stage is n = 100. In this stage, data including publication year, author, journal,
materials used, target pollutant type, advanced oxidation type, reaction time, removal rate,



Water 2022, 14, 1498 3 of 18

kinetic constant, and primary reactive oxidation substance (ROS) included in the screening
literature were also extracted. Meanwhile, relevant impact factors such as temperature, pH,
catalyst dosage, target pollutant concentration, oxidant dosage, and other data were also
extracted [30]. All the relevant literature and extracted data are shown in the Excel table in
the Supplementary Excel File S1.
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Figure 1. The flowchart of the search and selection of published papers based on the Web of Science
database by using keywords.

As shown in Figure S1, documents obtained in the third stage of the document search
were categorized according to the different types of organic pollutants, oxidation type,
and iron-based materials. The primary pollutants treated by AOPs are medicines, dyes,
endocrine disruptors, chlorinated hydrocarbons, and phenols (Figure S1a). The Fenton-
based AOPs and PS/PMS-based AOPs have a preferential trend in removing organic
compounds in water (Figure S1b). The primary iron-based materials currently used are
zero-valent iron (ZVI), nano zero-valent iron (n-ZVI), Fe2O3, Fe3O4, FeOOH, FeO, Fe3+,
iron-based metal-organic framework (Fe-MOFs), metal ferrite (MFe2O4, M=Fe Co, Ni,
Mn, Cu, Zn) (Figure S1c). Based on the published literature collected in the database, the
primary modified materials are shown in Table S2.

3. Iron-Based Materials in AOPs: Systematic Classification and Mechanism Analysis

Iron-based materials vary in size, active sites, organic molecular transport channels,
and iron ions valence [31–33]. The n-ZVI, as a source of non-photochemical ROS, has a
higher specific surface area, particle size ratio, and more active sites than ZVI and Fe2O3.
The n-ZVI facilitates electron transfer at its surface due to its advantage in active sites,
resulting in higher reactivity in AOPs [2,34]. As a metal hydroxide, FeOOH widely exists
in nature and is considered a semiconductor. Meanwhile, it was photoactive under solar
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radiation due to its narrow bandgap of 2.0–2.3 eV absorbed 200–800 nm sunlight [35].
The photocatalytic activity and the generation of Fe2+ on the goethite surface make it an
effective catalyst for PS/PMS or H2O2 [1,8]. The iron-based metal–organic framework (Fe-
MOFs) has the characteristics of large surface area, large nano-scale cavities, open channels,
and uniform distribution of metal centers [36–38]. Its open channels and sufficient nano-
scale cavities are conducive to the diffusion of molecules, which provides more available
active sites, which can be obtained by reactants [38]. Coordinated unsaturated metal sites
generated in the activation process facilitated the H2O2 (Lewis base) adsorption due to the
Lewis acidity of the metal cations [39]. Metal iron oxides such as spinel ferrite (MFe2O4,
M=Ni, Cu, Zn, Co et al.) have received more attention in catalytic applications due to
their magnetic recycling ability, stable crystal structure, high-density oxygen vacancies,
and surface hydroxyl groups [17,40]. Liu et al. found that CuFe2O4 has more significant
advantages in catalytic activity due to the more oxygen vacancies and surface hydroxyl
groups than Fe2O3 [41].

Iron-based materials as catalysts to replace Fe2+ in the homogeneous AOPs, the content
of available Fe2+ affects iron-based materials’ catalytic performance [26]. It is worth noting
that the primary iron element state of Fe0 (ZVI and n-ZVI) is Fe2+ (Equations (1)–(3)) [34].
However, the materials such as Fe-MOFs, Fe3O4, Fe2O3, MFe2O4 (M=Ni, Cu, Zn, Co et al.),
and FeOOH, containing the Fe3+ as their predominant iron element state [33,42,43]. Fe3+

as an electron acceptor cannot directly activate the oxidant, and the interaction with the
oxidant led to the generation of weaker free radicals in AOPs. It is necessary to reduce
Fe3+ to Fe2+ before reacting with oxidants to generate ROS, which is crucial in determining
the reaction rate in AOPs. For example, Zhang et al. used Fe2+ and Fe3+ to activate H2O2
(Equations (4) and (5)). The rate constant of the k value when Fe3+ and Fe2+ are used as
the H2O2 activator was 0.02 M−1 s−1 and 76 M−1 s−1, respectively. There are three orders
of magnitude differences in the rate constant of degradation target pollutants [39]. Chen
et al. used Fe2+/Fe3+ to activate PMS (HSO−

5 ) (Equations (6) and (7)) and found that Fe2+

activation produced the main SO.−
4 , while Fe3+ activated PMS to generate less oxidative

free radical of SO.−
5 [43]. Therefore, the Fe2+ content is a crucial factor for the degradation

of target pollutants in AOPs [39,44].

Fe0 → Fe2++2e− (1)

2Fe0+O2+2H2O → 2Fe2++4OH− (2)

Fe0+O2+2H+ → Fe2++H2O2 (3)

Fe2++H2O2 → Fe3++OH.+OH− (4)

Fe3++H2O2 → Fe2++HO.
2+H+ (5)

Fe2++HSO−
5 → SO.−

4 +Fe3++OH− (6)

Fe3++HSO−
5 → Fe2++SO.−

5 +H+ (7)

4. Mechanism of Modified Materials to Raise the Content of Fe2+ of Iron-Based
Materials in AOPs
4.1. Modified Materials Accelerate the Electron Transfer in AOPs
4.1.1. Electron-Rich Functional Groups in Modified Materials Facilitate Electron Transport

Electron transfer during the interaction between iron-based materials and oxidants
can increase the Fe2+ content of iron-based materials in AOPs [26]. In modifying iron-
based materials, many modified materials have large functional groups, such as hydroxyl
groups (-OH), ketone groups (-C=O), carboxyl groups (-COOH), etc. [45–47]. These oxygen-
containing functional groups are electron-rich and act as electron donors to facilitate
electron transfer from catalyst to oxidant in AOPs. Activated carbon, biochar, graphene,
carbon nanotubes, as supporting materials in modifying iron-based materials, have large
oxygen-containing functional groups such as hydroxyl groups (-OH), ketone groups (-C=O),
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carboxyl groups (-COOH), etc. [48]. Guo et al. used carbon spheres to modify Fe3O4. The
Lewis basic groups, such as plenteous ketone groups (-C=O), on the surface of the magnetic
carbon shell combined with PMS molecules and promoted the electron transfer process in
AOPs. The electrons transferred from the catalyst to the PMS generated more ROS, which
can contribute to target pollutant degradation [49]. Luo et al. have found that biochar that
transferred electrons to n-ZVI promoted the formation of the active substance Fe2+ in the
Fenton-like AOPs [1,50]. Yao et al. found that the functional groups on the biochar surface
had an activating effect, which acted as an electron shuttle in the PS-based AOPs to mediate
the transfer of conductive electrons and activated the oxidant to generate a strong oxidizing
active SO.−

4 (Equations (8) and (9)) [21].

SBCsurface−OOH + S2O2−
8 → SBCsurface−OO.+SO.−

4 +HSO−
4 (8)

SBCsurface−OH + S2O2−
8 → SBCsurface−O.+SO.−

4 +HSO−
4 (9)

Clay minerals are dual-functional materials with adsorption and catalytic oxidation
capabilities [51–53]. Clay minerals, including montmorillonite and natural sepiolite, have
abundant -OH as supporting materials in modifying iron-based materials [52,54]. Niu et al.
have shown that montmorillonite was rich in -OH and was always negatively charged in a
wide pH range (2–11), which facilitated H2O2 adsorption and was further conducive to the
rate-controlled decomposition of H2O2 in the reaction [54]. The presence of the opposing
surface also formed a proton-rich layer on the surface and improved the selectivity of H2O2
to decompose OH.. Liu et al. reported that sepiolite as CuFe2O4-supporting materials
played an essential role in dispersing the active phase and promoted oxygen migration
from the active site to the oxygen vacancy, which was very important in the electron transfer
in AOPs and light-based AOPs. The -OH on the surface and other Lewis acid sites could
promote O3 decomposition to generate more OH. [41].

4.1.2. Redox Pairs in the Bimetallic System Facilitates Electron Transfer

The redox pairs in the bimetallic system formed by the modification of iron-based
materials plays a crucial role in electron transfer. On one hand, single metal as the second
metal such as Ni, Ag, Cu, Co, and Al was deposed on the surface of the iron-based materials
to form a bimetallic system [55–57]. Notably, the metal additives may prevent or delay
the formation of an iron oxide shell, which maintains the catalytic ability of ZVI/n-ZVI
for a longer time. In addition, metal additives in bimetallic systems can serve as electron
donors, promoting electron transfer in AOPs [58,59]. For example, Liu et al. found that
zero-valent aluminum (ZVAl) could provide a greater thermodynamic driving force for
electron transfer on the facile transfer of electrons to O2, which enhanced the catalytic ability
of the nanoparticles [60]. Meanwhile, the redox pair present in the bimetal system can
promote the circulation of Fe3+/Fe2+, increasing the content of effective Fe2+ to enhance the
performance of AOPs [4,61]. Xu et al. found that Cu-doped FeOOH composites promoted
electron transfer between copper ions and iron ions. Cu+/Cu2+ could promote the cycle
of Fe3+/Fe2+ in the system, which produced more ROS to degrade pollutants (Equations
(10) and (11)) [1]. Zhang et al. introduced cobalt into iron to form a bimetallic catalyst and
improved interface electron transfer due to dual-redox pairs (Fe3+/Fe2+ and Co2+/Co3+) in
the system [6,62].

Fe2++S2O2−
8 → Fe3++SO2−

4 +SO.−
4 (10)

Cu++Fe3+ → Cu2++Fe2+ (11)

On the other hand, the redox pairs in the mixed metal catalyst were formed by
supporting metal oxides, as the modification of iron-based materials can promote the
electron transfer and improve the catalytic activity of the oxidant in AOPs. Lu et al. used
MnO2-loaded beta-FeOOH catalyst as a catalyst for PMS, the redox pairs of Mn4+/Mn3+
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and Fe3+/Fe2+ could more effectively catalyze PMS to generate more ROS in AOPs
(Equations (12)–(16)) [63,64].

−Mn4++HSO−
5 → −Mn3++SO.−

5 +H+ (12)

−Mn3++H2O → −MnOH2++H+ (13)

−Fe3++HSO−
5 → −Fe2++SO.−

5 +H+ (14)

−Fe2++H2O → −FeOH++H+ (15)

−Mn4++− Fe2+ → −Mn3++Fe3+ (16)

4.1.3. The FeS Layer Formed during Sulfide Modification of Iron-Based Materials Promotes
Electron Transport

The solid Fe-S bond formed in the FeS layer on the surface of iron-based materials
played an essential role in improving the catalytic performance of composite materials in
AOPs. As shown in Figure 2, the sulfide-modified iron-based material with a core-shell
structure formed an outer layer of FeS with unique physical and chemical properties [65–67].
The FeS layer had a protective effect for iron-based materials, acted as an electron shuttle to
transfer electrons, and promoted the corrosion of n-ZVI to release effective Fe2+ [2]. The
direct reaction of n-ZVI with oxygen was greatly restricted due to the more stable Fe-S
bond in the FeS layer [62,68]. Meanwhile, Fe-S clusters, as an electric “wire”, promoted
the direct electron transfer of the Fe0 nucleus to Fe3+ and promoted the cycle of Fe3+/Fe2+,
so a large amount of effective state of Fe2+ was bound to the surface [62]. Therefore, the
presence of the Fe-S layer significantly enhanced the yield of ROS in the system and played
a significant role in the degradation of target pollutants [65].
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4.1.4. Quinone Structure Formed by Organic Quinones-Modified Iron-Based Materials as
Electron Shuttle Mediators to Facilitate Electron Transfer

Organic quinones with the redox potential act as redox shuttles, which can accelerate
electron transfer during the modification of iron-based materials. Xiang et al. modified
Fe-MOFs with quinone, in which the quinone unit (Q) in 2-anthraquinone sulfonate (AQS)
could be reduced to form semiquinone (SQ) or hydroquinone (HQ). The interaction effect of
Fe3+ with SQ or HQ promoted the Fe3+/Fe2+ cycling in the system (Equations (17)–(21) [33].
Biochar as a supporting material also contains a hydroquinone/quinone structure, which
played an essential role in the functional modification of iron-based materials [4,47]. Wang
et al. reported that the hydroquinone/quinone structure in biochar promoted the Fe2+/Fe3+

cycling by acting as an electron donor [69–71]. Biochar hydroquinone (BCHQ) to quinone
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(BCQ) during the interaction between biochar and iron-based materials increased the Fe2+

content and the ROS generation, which further improved the catalytic performance of
iron-based materials in AOPs (Equations (22)–(24)).

Q + H2O → 2SQ + 2H+ (17)

Q + O.−
2 → SQ + O2 (18)

SQ + O.−
2 → HQ + O2 (19)

Fe3++SQ → Fe2++Q + H+ (20)

Fe3++HQ → Fe2++SQ + H+ (21)

BC ≡ Fe2+ → Fe2+(dissolution) (22)

Fe2++H2O2 → Fe3++OH−+OH. (23)

Fe3++BCHQ → Fe2++BCQ (24)

4.1.5. The Unique Hybrid Structure Formed by Non-Metal Element-Doped Carbon-Based
Materials Promotes Electron Transfer

Carbon-based materials, e.g., activated carbon, graphene, carbon nanotubes, can be
functionalized by doping non-metallic elements such as boron, nitrogen, sulfur [48,72,73].
The unique hybrid structure increased functional materials’ catalytically active sites and
conductivity [4,74,75]. Li, M et al. found that an appropriate sp2/sp3 hybrid structure
effectively increased the electron density on the surface of graphitized carbon, transferred
more electrons to the PMS molecule, and accelerated the oxidation process [76,77]. Liu
et al. found that metal nanocrystals synergized with nitrogen-doped carbon to facilitate
electron transfer to maintain Fe2+ regeneration. The sp2 hybrid carbon network with many
mobile electrons efficiently activated PMS to generate ROS to degrade target pollutants
(Equation (25)) [6,78]. Xu et al. found that boron-doped activated carbon destroyed the
electroneutrality of the original carbon material, resulting in the electron rearrangement
of adjacent carbon atoms. At the same time, it was easier to form CO bonds on the
carbon atoms adjacent to boron, which promoted the redox reactions in electron-rich
centers [79]. Liu et al. found that sulfur-doped activated carbon formed the unique C-S-C
bond. The unique C-S-C bond has electron-rich properties that promote electron transfer to
the PMS [80].

C − π−+HSO−
5 → C − π+ OH−+SO.−

4 (25)

4.2. Modified Materials to form Iron Complex or Surface Bonding with Iron to Increase Fe2+

4.2.1. Formation of Iron Ion-Chelates Using Chelating Agents as Stabilizers for Iron-Based
Materials to Increase Fe2+

The chelating agent can reduce the precipitation of iron ions in AOPs by forming iron
chelate complexes with iron-based materials during using chelating agents as stabilizer materi-
als to modify iron-based materials. The formation of iron chelates could further increase the Fe2+

content and produce more ROS in AOPs [81–83]. Ascorbic acid (VC), citrate (Cit), nitrilotriacetic
acid (NTA), β-alaninediacetic acid (β-ADA), epigallocatechin gallate (EGCG), etc. can form
iron chelates such as VC · · ·Fe3+, Fe3+−Cit, Fe2+−NTA,Fe2+ · · ·β−ADA, Fe3+ · · ·EGCG
(Table 2), which can significantly improve the solubility of Fe2+ in AOPs [25,84]. Tan et al.
found that VC@Fe3O4 composite material enhanced the removal efficiency of sulfadiazine
from 40% to 57% compared with Fe3O4 alone, and the rate constant k value was increased
from 0.01 min−1 to 0.072 min−1 [82]. The composite material formed by citrate and Fe2O3
elevated the removal efficiency of methylene blue from 20% to 96.1%, and the rate constant k
value was increased from 0.002 min−1 to 0.0463 min−1 [25]. The composite material formed by
NTA and Fe2O3 improved the removal efficiency of sulfamethazine from 20% to 96.1%, and
the rate constant k value was increased from 0.007 min−1 to 0.1954 min−1 [81]. As shown in
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Table 2, stabilizer materials also have many functional groups, such as C=O, -OH, C-O, -COO,
-NH2, -SH, -COOH [20,76,82]. These active groups could chelate iron ions and enhance the
direct contact between the iron-based material and the oxidant or target pollutants [84]. Zhou
et al. found that the glutathione (GSH) was anchored onto the surface of Fe3O4 nanoparti-
cles via the thiol groups in modifying Fe3O4 particles, and the Fe2+ leached from the Fe3O4
attracted by the coated GSH can effectively react with the nearby H2O2 to generate OH. to
achieve the high efficient pollutant removal [85]. Bio-friendly polymers also have an excellent
chelating ability with iron ions. Wang et al. found that Fe3O4 @β-CD with particular structure
of β-CD has higher catalytic ability than pure Fe3O4 , and Fe2+-β-CD-pollutant complexes
allowed the production of OH. directly attacked pollutants and increased the solubility of
organic pollutants [86]. Fe3O4 @β-CD composite material enhanced the removal efficiency of
4-chlorophenol from 78% to 100% compared with Fe3O4 alone, and the rate constant k value
was increased from 0.0162 min−1 to 0.0373 min−1. Nadejde et al. synthesized chitosan (CS) and
Fe3O4 composite material (Fe3O4/CS) for high-efficiency catalytic degradation of bisphenol
A. The Fe2+ or Fe3+ combined with the CS surface to the biopolymer, which acted as a ligand
between the magnetic core and the external photoactive agent [87]. The composite material
formed by CS and Fe3O4 strengthened the removal efficiency of bisphenol A from 30% to 98%,
and the rate constant k value was increased from 0.0009 min−1 to 0.0031 min−1. These chelating
agents were environmentally friendly with low toxicity and high biodegradability [25,42,76].
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Table 2. Summary of related properties and reactions of different types of stabilizer materials in AOPs.

Stabilizer Materials Structure Functional
Groups Reactions Reference

Chelatingagent

Ascorbic acid(VC)

Water 2022, 14, x FOR PEER REVIEW 9 of 21 
 

 

Table 2. Summary of related properties and reactions of different types of stabilizer materials in AOPs. 

Stabilizer Materials Structure 
Functional 

Groups 
Reactions Reference 

Chelating 
agent 

Ascorbic acid 
(VC) 

OH

OH

HO

O
O

HO

H  

-OH 
-C-O 

VC⋯Fe3+→MDHA⋯Fe2++H+ 
Fe2++HSO5

−→SO4
.−+Fe3++OH− 

SO4
.−+H2O→OH.+HSO4

− 
[82] 

Citrate 
HO

O

OH

O OH

O

HO

 

-COOH 
-OH 

Fe3+-Cit+hv→Fe2++.OOC-C(OH)(CH2COO)2
2− 

.OOC-C(OH)(CH2COO)2
2−→.CሺOHሻሺCH2COOሻ2

2−+CO2 
.CሺOHሻሺCH2COOሻ2

2−+O2→CO(CH2COO)2
2−+HO2

. 
Fe2++HO2

.+H+→Fe3++H2O2 
Fe2++H2O2→Fe3++OH.+OH− 

[25] 

Nitrilotriacetic acid 
(NTA) N

O

OH

O

OH

O

OH  

-COOH 
C=O 
-C-O 
-OH 

Fe2+-NTA+H2O2→Fe3+-NTA+OH.+OH− 
Fe3+-NTA+H2O2→Fe3+OOH−1NTA+H+ 

Fe3+OOH−1NTA+H2O2→Fe2+ONTA+HO2
.+H2O 

[81] 

β-alanine diacetic 
acid 

(β-ADA) 
N

O

HO

O

HO O

OH

 

-COOH 
-C-O 
-OH 

Fe2+⋯β-ADA+HSO5
−→Fe3+⋯β-ADA+SO4

.−+OH− 
SO4

.−+H2O→SO4
2−+OH.+H+ 

Fe3+⋯β-ADA+HSO5
−→Fe2+⋯β-ADA+SO5

.−+H+ 

[83] 

-OH
-C-O

VC · · · Fe3+ → MDHA · · · Fe2++H+

Fe2++HSO−
5 → SO.−

4 +Fe3++OH−

SO.−
4 +H2O → OH.+HSO−

4

[82]

Citrate

Water 2022, 14, x FOR PEER REVIEW 9 of 21 
 

 

Table 2. Summary of related properties and reactions of different types of stabilizer materials in AOPs. 

Stabilizer Materials Structure 
Functional 

Groups 
Reactions Reference 

Chelating 
agent 

Ascorbic acid 
(VC) 

OH

OH

HO

O
O

HO

H  

-OH 
-C-O 

VC⋯Fe3+→MDHA⋯Fe2++H+ 
Fe2++HSO5

−→SO4
.−+Fe3++OH− 

SO4
.−+H2O→OH.+HSO4

− 
[82] 

Citrate 
HO

O

OH

O OH

O

HO

 

-COOH 
-OH 

Fe3+-Cit+hv→Fe2++.OOC-C(OH)(CH2COO)2
2− 

.OOC-C(OH)(CH2COO)2
2−→.CሺOHሻሺCH2COOሻ2

2−+CO2 
.CሺOHሻሺCH2COOሻ2

2−+O2→CO(CH2COO)2
2−+HO2

. 
Fe2++HO2

.+H+→Fe3++H2O2 
Fe2++H2O2→Fe3++OH.+OH− 

[25] 

Nitrilotriacetic acid 
(NTA) N

O

OH

O

OH

O

OH  

-COOH 
C=O 
-C-O 
-OH 

Fe2+-NTA+H2O2→Fe3+-NTA+OH.+OH− 
Fe3+-NTA+H2O2→Fe3+OOH−1NTA+H+ 

Fe3+OOH−1NTA+H2O2→Fe2+ONTA+HO2
.+H2O 

[81] 

β-alanine diacetic 
acid 

(β-ADA) 
N

O

HO

O

HO O

OH

 

-COOH 
-C-O 
-OH 

Fe2+⋯β-ADA+HSO5
−→Fe3+⋯β-ADA+SO4

.−+OH− 
SO4

.−+H2O→SO4
2−+OH.+H+ 

Fe3+⋯β-ADA+HSO5
−→Fe2+⋯β-ADA+SO5

.−+H+ 

[83] 

-COOH
-OH

Fe3+−Cit + hv → Fe2+ + .OOC − C(OH)(CH 2 COO)2
2−

.OOC − C(OH)(CH 2 COO)2
2− → .C(OH)(CH2COO)2

2−+CO2
.C(OH)(CH2COO)2

2−+O2 → CO(CH 2 COO)2
2−+HO2

.

Fe2++HO2
.+H+ → Fe3++H2O2

Fe2++H2O2 → Fe3++OH.+OH−

[25]

Nitrilotriacetic acid(NTA)

Water 2022, 14, x FOR PEER REVIEW 9 of 21 
 

 

Table 2. Summary of related properties and reactions of different types of stabilizer materials in AOPs. 

Stabilizer Materials Structure 
Functional 

Groups 
Reactions Reference 

Chelating 
agent 

Ascorbic acid 
(VC) 

OH

OH

HO

O
O

HO

H  

-OH 
-C-O 

VC⋯Fe3+→MDHA⋯Fe2++H+ 
Fe2++HSO5

−→SO4
.−+Fe3++OH− 

SO4
.−+H2O→OH.+HSO4

− 
[82] 

Citrate 
HO

O

OH

O OH

O

HO

 

-COOH 
-OH 

Fe3+-Cit+hv→Fe2++.OOC-C(OH)(CH2COO)2
2− 

.OOC-C(OH)(CH2COO)2
2−→.CሺOHሻሺCH2COOሻ2

2−+CO2 
.CሺOHሻሺCH2COOሻ2

2−+O2→CO(CH2COO)2
2−+HO2

. 
Fe2++HO2

.+H+→Fe3++H2O2 
Fe2++H2O2→Fe3++OH.+OH− 

[25] 

Nitrilotriacetic acid 
(NTA) N

O

OH

O

OH

O

OH  

-COOH 
C=O 
-C-O 
-OH 

Fe2+-NTA+H2O2→Fe3+-NTA+OH.+OH− 
Fe3+-NTA+H2O2→Fe3+OOH−1NTA+H+ 

Fe3+OOH−1NTA+H2O2→Fe2+ONTA+HO2
.+H2O 

[81] 

β-alanine diacetic 
acid 

(β-ADA) 
N

O

HO

O

HO O

OH

 

-COOH 
-C-O 
-OH 

Fe2+⋯β-ADA+HSO5
−→Fe3+⋯β-ADA+SO4

.−+OH− 
SO4

.−+H2O→SO4
2−+OH.+H+ 

Fe3+⋯β-ADA+HSO5
−→Fe2+⋯β-ADA+SO5

.−+H+ 

[83] 

-COOH
C=O

-C-O-OH

Fe2+−NTA + H2O2 → Fe3+−NTA + OH.+OH−

Fe3+−NTA + H2O2 → Fe3+OOH−1NTA + H+

Fe3+OOH−1NTA + H2O2 → Fe2+ONTA + HO2
.+H2O

[81]

β-alanine diacetic
acid(β-ADA)

Water 2022, 14, x FOR PEER REVIEW 9 of 21 
 

 

Table 2. Summary of related properties and reactions of different types of stabilizer materials in AOPs. 

Stabilizer Materials Structure 
Functional 

Groups 
Reactions Reference 

Chelating 
agent 

Ascorbic acid 
(VC) 

OH

OH

HO

O
O

HO

H  

-OH 
-C-O 

VC⋯Fe3+→MDHA⋯Fe2++H+ 
Fe2++HSO5

−→SO4
.−+Fe3++OH− 

SO4
.−+H2O→OH.+HSO4

− 
[82] 

Citrate 
HO

O

OH

O OH

O

HO

 

-COOH 
-OH 

Fe3+-Cit+hv→Fe2++.OOC-C(OH)(CH2COO)2
2− 

.OOC-C(OH)(CH2COO)2
2−→.CሺOHሻሺCH2COOሻ2

2−+CO2 
.CሺOHሻሺCH2COOሻ2

2−+O2→CO(CH2COO)2
2−+HO2

. 
Fe2++HO2

.+H+→Fe3++H2O2 
Fe2++H2O2→Fe3++OH.+OH− 

[25] 

Nitrilotriacetic acid 
(NTA) N

O

OH

O

OH

O

OH  

-COOH 
C=O 
-C-O 
-OH 

Fe2+-NTA+H2O2→Fe3+-NTA+OH.+OH− 
Fe3+-NTA+H2O2→Fe3+OOH−1NTA+H+ 

Fe3+OOH−1NTA+H2O2→Fe2+ONTA+HO2
.+H2O 

[81] 

β-alanine diacetic 
acid 

(β-ADA) 
N

O

HO

O

HO O

OH

 

-COOH 
-C-O 
-OH 

Fe2+⋯β-ADA+HSO5
−→Fe3+⋯β-ADA+SO4

.−+OH− 
SO4

.−+H2O→SO4
2−+OH.+H+ 

Fe3+⋯β-ADA+HSO5
−→Fe2+⋯β-ADA+SO5

.−+H+ 

[83] 

-COOH
-C-O
-OH

Fe2+ · · ·β− ADA + HSO−
5 → Fe3+ · · ·β− ADA + SO.−

4 +OH−

SO.−
4 +H2O → SO2−

4 +OH.+H+

Fe3+ · · ·β− ADA + HSO−
5 → Fe2+ · · ·β− ADA + SO.−

5 +H+

[83]

Epigallocatechin
gallate(EGCG)

Water 2022, 14, x FOR PEER REVIEW 10 of 21 
 

 

Epigallocatechin 
gallate 

(EGCG) 

HO

HO

O

OH
OH

OH

OH

OH
OH

O

O

 

-OH 

Fe3+⋯EGCG+HSO5
−→Fe2+-.OOSO3

−+EGCG+ 
Fe2++HSO5

−→Fe3++SO4
.−+OH− 

Fe2+-OH−+HSO5
−→Fe2+-ሺHOሻOSO3

−+OH− 
Fe2+-ሺHOሻOSO3

−→Fe3+-OH−+SO4
.− 

Fe3+-OH−+HSO5
−→Fe2+-.OOSO3

−+H2O 
2Fe2+-.OOSO3

−+2EGCG+→2Fe2+⋯EGCG+O2+2SO4
.−+2H+ 

[42] 

 
Glutathione 

(GSH) N
HNH2

HO

O O H
N

OH

O

O

SH

 

-COOH 
-NH2 
-SH 

Fe2++H2O2→Fe3++OH.+OH− [85] 

Polymer 

Carboxymethyl 
cellulose 

(CMC) 

ORRO

O

OR

O

n
R= H or CH2CO2H  

-COOH 
Fe0+O2+2H+→Fe2++H2O2 

2Fe0+2H2O→2Fe2++2OH−+H2 
Fe2++H2O2→Fe3++OH.+OH− 

[22] 

Chitosan 
(CS) 

OHO

HO H2N

OH

O

HO
H2N

OH

OO

HO H2N

OH
O

n
OH

 

-COOH 
-NH2 
-OH 

Fe3++H2O2→Fe2++HOO.+H+ 
HOO.+Fe2++H+→Fe3++H2O2 
Fe2++H2O2→Fe3++OH.+OH− 

[87] 

 
 
 

-OH

Fe3+ · · ·EGCG + HSO−
5 → Fe2+ − .OOSO−

3 +EGCG+

Fe2++HSO−
5 → Fe3++SO.−

4 +OH−

Fe2+−OH−+HSO−
5 → Fe2+ − (HO)OSO−

3 +OH−

Fe2+ − (HO)OSO−
3 → Fe3+−OH−+SO.−

4
Fe3+−OH−+HSO−

5 → Fe2+ − .OOSO−
3 +H2O

2Fe2+ − .OOSO−
3 +2EGCG+ → 2Fe2+ · · ·EGCG + O2+2SO.−

4 +2H+

[42]

Glutathione(GSH)

Water 2022, 14, x FOR PEER REVIEW 10 of 21 
 

 

Epigallocatechin 
gallate 

(EGCG) 

HO

HO

O

OH
OH

OH

OH

OH
OH

O

O

 

-OH 

Fe3+⋯EGCG+HSO5
−→Fe2+-.OOSO3

−+EGCG+ 
Fe2++HSO5

−→Fe3++SO4
.−+OH− 

Fe2+-OH−+HSO5
−→Fe2+-ሺHOሻOSO3

−+OH− 
Fe2+-ሺHOሻOSO3

−→Fe3+-OH−+SO4
.− 

Fe3+-OH−+HSO5
−→Fe2+-.OOSO3

−+H2O 
2Fe2+-.OOSO3

−+2EGCG+→2Fe2+⋯EGCG+O2+2SO4
.−+2H+ 

[42] 

 
Glutathione 

(GSH) N
HNH2

HO

O O H
N

OH

O

O

SH

 

-COOH 
-NH2 
-SH 

Fe2++H2O2→Fe3++OH.+OH− [85] 

Polymer 

Carboxymethyl 
cellulose 

(CMC) 

ORRO

O

OR

O

n
R= H or CH2CO2H  

-COOH 
Fe0+O2+2H+→Fe2++H2O2 

2Fe0+2H2O→2Fe2++2OH−+H2 
Fe2++H2O2→Fe3++OH.+OH− 

[22] 

Chitosan 
(CS) 

OHO

HO H2N

OH

O

HO
H2N

OH

OO

HO H2N

OH
O

n
OH

 

-COOH 
-NH2 
-OH 

Fe3++H2O2→Fe2++HOO.+H+ 
HOO.+Fe2++H+→Fe3++H2O2 
Fe2++H2O2→Fe3++OH.+OH− 

[87] 

 
 
 

-COOH
-NH2
-SH

Fe2++H2O2 → Fe3++OH.+OH− [85]

Polymer

Carboxymethyl
cellulose(CMC)

Water 2022, 14, x FOR PEER REVIEW 10 of 21 
 

 

Epigallocatechin 
gallate 

(EGCG) 

HO

HO

O

OH
OH

OH

OH

OH
OH

O

O

 

-OH 

Fe3+⋯EGCG+HSO5
−→Fe2+-.OOSO3

−+EGCG+ 
Fe2++HSO5

−→Fe3++SO4
.−+OH− 

Fe2+-OH−+HSO5
−→Fe2+-ሺHOሻOSO3

−+OH− 
Fe2+-ሺHOሻOSO3

−→Fe3+-OH−+SO4
.− 

Fe3+-OH−+HSO5
−→Fe2+-.OOSO3

−+H2O 
2Fe2+-.OOSO3

−+2EGCG+→2Fe2+⋯EGCG+O2+2SO4
.−+2H+ 

[42] 

 
Glutathione 

(GSH) N
HNH2

HO

O O H
N

OH

O

O

SH

 

-COOH 
-NH2 
-SH 

Fe2++H2O2→Fe3++OH.+OH− [85] 

Polymer 

Carboxymethyl 
cellulose 

(CMC) 

ORRO

O

OR

O

n
R= H or CH2CO2H  

-COOH 
Fe0+O2+2H+→Fe2++H2O2 

2Fe0+2H2O→2Fe2++2OH−+H2 
Fe2++H2O2→Fe3++OH.+OH− 

[22] 

Chitosan 
(CS) 

OHO

HO H2N

OH

O

HO
H2N

OH

OO

HO H2N

OH
O

n
OH

 

-COOH 
-NH2 
-OH 

Fe3++H2O2→Fe2++HOO.+H+ 
HOO.+Fe2++H+→Fe3++H2O2 
Fe2++H2O2→Fe3++OH.+OH− 

[87] 

 
 
 

-COOH
Fe0+O2+2H+ → Fe2++H2O2

2Fe0+2H2O → 2Fe2++2OH−+H2
Fe2++H2O2 → Fe3++OH.+OH−

[22]

Chitosan(CS)

Water 2022, 14, x FOR PEER REVIEW 10 of 21 
 

 

Epigallocatechin 
gallate 

(EGCG) 

HO

HO

O

OH
OH

OH

OH

OH
OH

O

O

 

-OH 

Fe3+⋯EGCG+HSO5
−→Fe2+-.OOSO3

−+EGCG+ 
Fe2++HSO5

−→Fe3++SO4
.−+OH− 

Fe2+-OH−+HSO5
−→Fe2+-ሺHOሻOSO3

−+OH− 
Fe2+-ሺHOሻOSO3

−→Fe3+-OH−+SO4
.− 

Fe3+-OH−+HSO5
−→Fe2+-.OOSO3

−+H2O 
2Fe2+-.OOSO3

−+2EGCG+→2Fe2+⋯EGCG+O2+2SO4
.−+2H+ 

[42] 

 
Glutathione 

(GSH) N
HNH2

HO

O O H
N

OH

O

O

SH

 

-COOH 
-NH2 
-SH 

Fe2++H2O2→Fe3++OH.+OH− [85] 

Polymer 

Carboxymethyl 
cellulose 

(CMC) 

ORRO

O

OR

O

n
R= H or CH2CO2H  

-COOH 
Fe0+O2+2H+→Fe2++H2O2 

2Fe0+2H2O→2Fe2++2OH−+H2 
Fe2++H2O2→Fe3++OH.+OH− 

[22] 

Chitosan 
(CS) 

OHO

HO H2N

OH

O

HO
H2N

OH

OO

HO H2N

OH
O

n
OH

 

-COOH 
-NH2 
-OH 

Fe3++H2O2→Fe2++HOO.+H+ 
HOO.+Fe2++H+→Fe3++H2O2 
Fe2++H2O2→Fe3++OH.+OH− 

[87] 

 
 
 

-COOH
-NH2
-OH

Fe3++H2O2 → Fe2++HOO.+H+

HOO.+Fe2++H+ → Fe3++H2O2
Fe2++H2O2 → Fe3++OH.+OH−

[87]



Water 2022, 14, 1498 10 of 18

4.2.2. Fe-Si Bonding with SiO2 as Porous Supporting Materials for Iron-Based Materials to
Increase Fe2+

SiO2 is a typical porous media material with stability and can be used as a supporting
material for iron-based materials modification [3,88,89]. The unique silicon framework
structure can form stable iron–silicon bonds with iron ions, which further promotes the
catalytic performance of iron-based materials in AOPs. Ferroudj et al. used SiO2 as support
for magnetic nanoparticles to achieve good catalytic performance in a heterogeneous H2O2
system [88]. The particle size of Fe dispersed in the inner cavity of the silicon skeleton was
small and firmly combined with silicon skeleton due to the stability of the silicon skeleton,
which significantly improved the efficiency in removing pollutants [3,90]. Additionally, the
existence of silica promoted the cycle of Fe3+/Fe2+ in the iron-based composite material
and promoted the content of effective Fe2+ [19]. Shukla et al. reported that SiO2 could
promote the redox of Fe3+/Fe2+ by enhancing the stable combination between iron and
silicon, although SiO2 did not participate in the oxidation reaction [19]. The OH. and
HO2

. produced during the redox process were the prominent radicals that degrade target
pollutants (Equations (26) and (27)).

SiO2−Fe3++H2O2 → SiO2−Fe3+−H2O2. → SiO2−Fe2++HO2
.+H+ (26)

SiO2−Fe2++H2O2 → SiO2−Fe3++2OH. (27)

5. Key Properties and Commercialization Challenges of Iron-Based Materials in AOPs
5.1. Key Properties of Iron-Based Materials in AOPs

Modified iron-based materials have a variety of morphologies, including spherical,
rod-like structure, core-shell structure, rock-like morphology, elongated hexagonal struc-
ture, the tubular and cambiform structure, etc. (Table 3). The critical properties of the
modified iron-based materials showed that they obtained a larger BET surface area and
a smaller lattice size, which further alleviated the agglomeration of the iron-based mate-
rials (Table 3) [86]. Meanwhile, the larger BET surface area and smaller lattice size could
provide more catalytically active sites, enhancing the catalytic performance of composite
iron-based materials in AOPs [41,64]. Moreover, stability is a crucial characteristic of het-
erogeneous catalysts in AOPs [86,88]. The composite materials achieved over 80% of the
cycling degradations after the recycling used in AOPs (Table 3).
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Table 3. Characteristics of iron-based materials in AOPs.

Composite Material

Initial Iron-Based Materials Modified Composite Iron-Based Materials Stability of Composite Materials

Reference
Morphology

Properties

Morphology

Properties
Number of Cycles of
Composite Materials

Degradation
Efficiency at the Last

Cycle
BET Surface

Area
(m2 g−1)

Lattice Size
(nm)

BET Surface
Area

(m2 g−1)

Lattice Size
(nm)

Fe3O4@β-CD
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Iron-based materials have the characteristics of environmental friendliness [92], variety
of morphologies, recyclability, and potential in photocatalysis, which enable iron-based
materials to prioritize in AOPs compared with the other commercial products [26,39,91].
First of all, iron-based materials are more available to be obtained in the environment [92].
Secondly, the various morphologies give iron-based materials a higher catalytic efficiency
over other materials [19,39]. Thirdly, it can be easily removed from water by a simple
magnetic separation method and reused [88,91,93]. Finally, it can extend the photocatalytic
ability of TiO2, which is widely used in wastewater treatment, from UV light irradiation to
the visible light region [94,95]. Meanwhile, iron-based materials also have great photocat-
alytic potential in AOPs [26]. Therefore, heterogeneous AOPs based on iron-based materials
enable wide-ranging commercialization in wastewater treatment [12,96]. However, the
current research is mainly on a laboratory scale. Due to the lack of relevant research in prac-
tical AOPs-based wastewater treatment, iron-based materials still have some challenges in
the commercial application of AOPs.

5.2. Commercialization Challenges of Iron-Based Materials in AOPs

Firstly, in the current experimental research, iron-based materials need to consume
many solvents during the production process, which is not environmentally friendly [97,98].
Meanwhile, high pyrolysis temperature increases energy consumption during material
preparation [46]. Therefore, developing a more environmentally friendly and simple prepa-
ration method for iron-based composites is still a challenge in the commercial application
of iron-based materials in AOPs.

Secondly, the research in the laboratory is mainly to evaluate the cost-effectiveness
of iron-based materials by evaluating the catalytic activity and reusability in AOPs [15].
The higher catalytic activity and longer reusability obtained in the laboratory may indicate
the lower operating costs in AOPs [12,15]. Meanwhile, related experimental studies have
confirmed that iron-based materials could generate H2O2 in situ in Fenton-based or electro-
Fenton-based AOPs, reducing the dosing of oxidants [26,99], which may further reduce
the operating cost of iron-based materials in the Fenton- or electro-Fenton-based AOPs.
However, more pilot-scale experiments on the iron-based materials in natural industrial
wastewater should be conducted, which benefits the more comprehensively evaluate the
operating cost of materials in the commercial application in AOPs [96].

The management of these materials in the laboratory focuses on separating and
recycling from water [15,49]. The materials are generally separated from water by filtration,
centrifugation, magnetic sedimentation, etc., and further recycled [88,91]. The laboratory
results indicated that the magnetic recycling method was the most effective way to reuse
these materials [92]. However, there is still a lack of relevant data on the recycling effect
of magnetic separation technology in actual wastewater treatment. Therefore, developing
an efficient separation and recovery technology in practical wastewater treatment is also a
challenge that limits the commercial application of iron-based materials in AOPs.

Modified iron-based composites have the advantages of cost-effectiveness, environ-
mental friendliness, morphological diversity, high catalytic activity, and easy recycling
and reuse. However, developing a green and simple preparation method for iron-based
materials is still a challenge in current research. In the future, we should pay more attention
to developing environmentally friendly preparation methods and more efficient separation
methods of iron-based materials and produce more cost-effective composite materials for
commercial applications in practical wastewater treatment.

6. Conclusions

The modification of iron-based materials significantly elevates the catalytic ability
of iron-based materials in AOPs. The modified materials promote the catalytic potential
of iron-based materials in AOPs through various mechanisms. Firstly, the electron-rich
functional groups of the modified materials play an essential role in the electron transfer
and the recombination of iron ions. Secondly, the bimetallic system, the FeS layer formed
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by sulfide modification, the unique quinone structure of organic matter, and the hybrid
carbon-based support materials have excellent electron transfer performance. Finally,
environmentally friendly chelating agents, biopolymers, and porous support materials of
SiO2 have significant advantages in forming iron chelates or iron complexes.

Using environmentally friendly materials to modify iron-based materials can further
increase iron-based materials’ environmentally friendly potential and sustainability. Further
evaluations include improving the cost and enhancing the health risks of modified iron-
based materials in environment. In the dual carbon background, developing low-cost and
high-efficiency iron-based composites for the degradation of refractory organic pollutants
in AOPs is still worth exploring. Thus, using the relative advantages of different modified
materials to develop iron-based materials with composite modification methods may be an
excellent choice to improve the application of iron-based materials in the environment.

To promote the commercial application of iron-based materials in AOPs, we need to
pay attention to the following issues: (1) it is necessary to conduct the further research on
the green, environmentally friendly and simple preparation technologies of iron-based
materials and exploit more cost-effective recycling processes of these materials; (2) the more
cost-effective iron-based catalysts and iron-based composites should be further researched
and performed in practical wastewater treatment; (3) photochemical AOPs are considered
to be a clean, relatively cheap, simple, and generally more efficient process than chemical
AOPs, therefore, the development of iron-based materials in photo-based AOPs is also an
option for future commercial application of iron-based materials.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w14091498/s1, Figure S1: The classification (percentage) of
published papers based on organic pollutants, oxidation types, and iron-based materials; Table S1:
Search strategy of keywords is based on the Web of Science; Classification of published papers based
on searches of the Web of Science databases. Table S2: The functional modification type of iron-based
materials is based on the literature classification; Supplementary Excel File S1: The detailed data of
organic pollutants, oxidation types, iron-based materials, and modification types based on literature
collected by Web of Science.
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