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Abstract: Wastewater recycling efficiency improvement is vital to arid regions, where crop irrigation
is imperative. Analyzing small, unreplicated–saturated, multiresponse, multifactorial datasets from
novel wastewater electrodialysis (ED) applications requires specialized screening/optimization
techniques. A new approach is proposed to glean information from structured Taguchi-type sampling
schemes (nonlinear fractional factorial designs) in the case that direct uncertainty quantification is
not computable. It uses a double information analysis–affinity propagation clustering and entropy
to simultaneously discern strong effects and curvature type while profiling multiple water-quality
characteristics. Three water quality indices, which are calculated from real ED process experiments,
are analyzed by examining the hierarchical behavior of four controlling factors: (1) the dilute flow,
(2) the cathode flow, (3) the anode flow, and (4) the voltage rate. The three water quality indices
are: the removed sodium content, the sodium adsorption ratio, and the soluble sodium percentage.
The factor that influences the overall wastewater separation ED performance is the dilute flow,
according to both analyses’ versions. It caused the maximum contrast difference in the heatmap
visualization, and it minimized the relative information entropy at the two operating end points.
The results are confirmed with a second published independent dataset. Furthermore, the final
outcome is scrutinized and found to agree with other published classification and nonparametric
screening solutions. A combination of modern classification and simple entropic methods which are
offered through freeware R-packages might be effective for testing high-complexity ‘small-and-dense’
nonlinear OA datasets, highlighting an obfuscated experimental uncertainty.

Keywords: nonlinear factorial screening; wastewater recycling; water quality index; electrodialysis;
affinity propagation clustering; surprise; entropy; heatmaps

1. Introduction

Water is a substance that attracts continual attention because, while it is abundant in
nature, only a small portion is suitable to cover human needs [1,2]. Nowadays, the demand
for clean water is unprecedented. This is mainly due to an increasing world population
and improving living standards—as evinced from broadly evolving consumerism—but
also to daunting environmental deterioration on a global scale. Therefore, there is an
international drive toward ensuring water availability through sustainable management
of resources [3,4]. Polluted water resources pose various chemical challenges to scientists
and engineers who strive to comprehend the complexities behind the indigenous sepa-
rations phenomena. Thus, modern wastewater treatment methods and techniques are
obliged to adapt to the new paradigms. Among the many routes of handling such difficult
problems, “the improved water quality through effluent treatment” and the “improved
water efficiency through application of the 5R principles: reduce, reuse, recover, recycle,
replenish” are highly recommended pathways for workable action [3]. There are several
methods and techniques to confront the filtration problem in wastewater supplies [5]. The
electrochemical approaches have been an effective way to control water processing and
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separation activities [6,7]. Particularly important is the efficient use and reuse of wastewater
reserves in irrigating crops as it has been well addressed in several current reviews [8–10].
However, there are circumstances—agricultural irrigation in semi-arid and arid zones—
where unfiltered, partially treated and even filtered wastewater bodies could pose several
potential risks to food production sustainability and eventually to public health [11]. As
the looming water scarcity causes the unavoidable exploitation of extant wastewater stocks,
it becomes vital that optimized nutrient recovery be accomplished to balance the water
reuse cycles [12,13]. The screening/optimization of water quality may inevitably include
numerous resource origins that correspond to a wide range of water uses, from hydroponic
neutralization to heavy metal removal applications [14–16]. This is due to the critical
effect that wastewater irrigation has on regulating carbon and water neutral crops [17,18].
The screening/optimization of the water quality status requires extensive modeling to
ensure quantification of the experimental uncertainty in the performed trials [19,20]. Re-
cent studies take advantage of machine-learning engines to predict groundwater quality,
presuming there are sufficient datasets to infer the underlying tendencies in the intricate
chemical systems [21–24]. Nevertheless, environmentally oriented screening/optimization
investigations may not always generate those ample datasets—for several reasons that ma-
chine learning algorithms need to thrive on [25]. This is because the resulting multivariate
datasets are perhaps programmed to be intentionally brief—often using fractional factorial
designs (FFDs) for planning [26]—if they are to eventually be frugal and hence, permissible.

A comprehensive wastewater electrodialysis (ED) study has been published that
intended to discover how three key water quality indices were optimally adjusted for
irrigating farms in arid zones [27]. Since the purpose of the study was to upscale the
designed experimental units to larger operations, the researcher implemented structured
Design of Experiments (DOE) to speed up data generation. Thus, a small data trial-
planning scheme was selected from a family of nonlinear Taguchi-type orthogonal arrays
(OAs) [28,29]. The motive was to substantially reduce the total number of trials and
rapidly obtain useful information that otherwise would be extremely difficult to theorize
for several reasons: (1) the complexities arising from the chemical/physical characteristics
of the cation/anion exchange membrane ED cell, (2) the widespread wastewater sample
nonuniformity due to the three main drainage sources, (3) the stochastic nature of the
studied ED process, (4) the unknown interrelationships, if any, among the examined water
quality indices, and (5) the necessity for pragmatic trial economy. With only nine prescribed
recipes to be executed, the intention was to screen as many as four controlling factors that
are widely known to potentially influence ED-based processes [27]. A pre-planned minimal
effort was accounted for to synchronously diagnose any curvature effects for each of the
examined controlling factors. The typical reduction in the overall trial volume was generous
compared to alternative full-factorial schemes. As a matter of fact, the implemented L9(34)
OA selection was suppressed by almost 90% of the data requirements of a respective full-
factorial scheme. In addition, the decision in the study was not to replicate the specific
recipe combinations but to further curtail the time and costs of experimentation.

What has been narrated above is in full agreement with the contemporary trends of
data-driven lean and green manufacturing philosophies [30–32]. Data-centric engineering
fast-tracks practical and cheap solution options to minimize production waste [33,34]; a
strong motivation toward a cleaner environment forms the main tenets behind the lean
and green initiatives. Generally speaking, the DOE approach encourages the overall
utilization minimization of materials and resources, which is also in congruence with the
concepts of sustainability [35,36]. DOE promotes simplicity and frugality in an attempt to
gain specialized operational knowledge; it is meant to be immediately applicable to the
point of use. The industrial philosophy behind the lean green initiatives is clearly also in
harmony with the principles of sustainable chemical systems [37,38]. Specifically, DOE’s
OA-based screening sampler schemes automatically adhere to the ‘green sampling’ principle
#5 which favors sample/materials minimization [39]. Furthermore, DOE simultaneously
satisfies the requirements of a key metric in green chemistry, through principle #4, the
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minimization of chemical waste [40,41]. One may go on and claim that even principle #6
is fulfilled through the use of FFD and OA samplers. The high throughputs of examined
parameters the FFD and OA samplers are equipped to handle at the same time make this
especially true at the saturated/unreplicated array condition and for larger experimental
plans [26,42]. By reducing the trials while increasing the number of candidate influences, a
high-throughput trade-off is attained using FFD/OA plans. By exchanging the expected
large-sample processing demands (principle #6) to simultaneously screen a larger number
of effects, fractional-multifactorial-OA recipe formulations perform less experimental work,
succeeding in profiling an equivalent group of parameters. Thus, they offer additional
savings in materials, labor, and time. Since optimized OA plans, in terms of minimizing
total trial volume, are saturated plans, and further economized if implemented in the
‘unreplicated’ condition, a great number of techniques have been developed to service
FFD/OA under such conditions [43]. Among the more popular methods and techniques
to approach the saturated–unreplicated fractional-multifactorial problems are the classic
half-normal plot [44], the Lenth test [45], and the Box–Meyer method [46]. Ordinary tools
such as the analysis of variance (ANOVA) and the general linear model (GLM) cannot be of
immediate use because a combination of saturation and unreplication permits no estimation
of the experimental error. This problem becomes even more pronounced when there is a
multivariate output to be modelled. For screening designs, the method of Derringer and
Suich [47], using a combination of regression and desirability analysis, has found great
appeal. and it has been implemented by commercial statistical software packages.

Screening analysis of nonlinear Taguchi-type datasets poses the extra impediment of
dealing with additional settings during the profiling process. Moreover, modelling multiple
water quality indices that may or may not correlate between them creates a more complex
situation. The resulting data structure presents an even more clouded outlook, relying on
the fact that indices intended for interpreting crop cultivation water quality performance
may be available in ratio or percentage form; the percentage scale is a bounded scale that
ranges between 0% and 100%. Additionally, robustness issues should be raised as the
recorded datasets from ordinary separation processes, such as the ED, are collected from
stochastic phenomena with transient trajectories [48].

Undoubtedly, the greatest practical incentive of using DOE in the industry is to man-
age to carry out the dual tasks of multifactorial screening and parameter optimization in a
single experimental endeavor, as it was initially conceived through the classical Taguchi
methods several decades ago [28,29]. It is still very desirable to apply DOE methods in mod-
ern manufacturing, while accomplishing both aims—screening and optimization. However,
it is an arduous project for most companies to gain practical knowledge from DOE without
substantial expertise in structured experimentation [49,50]. Part of this discrepancy stems
from the fact that even the basic methods appear to engineers rather mystifying to imple-
ment. Empirical data are best examined by embracing diversity. If both stochastic and
algorithmic methods are used cooperatively, any prediction disagreements between them
are further scrutinized to discover the hidden causes [51]. DOE cannot be alienated from
such circumstances, particularly in the phase of screening where the concepts of classifica-
tion and optimization are combined to separate the influential factors from the weak [48,52].
A primary challenge for this work is mooted on the operability of screening methods.
It is particularly focused on probing those multifactorial profilers that are intended to
induce maximum (small) data exploitation. Maximum data utilization occurs under the
unreplicated and saturated conditions [43]. An additional motivation is raised from past
research findings regarding the necessity for improved reliability of predictions among
different methods and across different software packages [53]. Unreplicated–saturated OA
screening methods present an idiosyncrasy that diverges from the classical treatments of
analysis of variance [54]. ANOVA estimates statistical significance by taking into account
the magnitude of a variance due to a specific factor against the (remaining) experimental
error variance. In contrast, unreplicated–saturated screening pits the effects directly against
each other; those that do not conform with a statistically inert group are declared active.
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Grouping effects is based on some affinity behavior, which becomes more pronounced for
the weak effects. The sparsity assumption favors the occurrence of trivial influences in
OA sampling schemes [43]. Then, it becomes obvious that reliable screening could involve
robust comparisons based on both the magnitude of uncertainty in the trials as well as the
relative factor strength as communicated among the examined factors [55]. The former
feature is solely encountered in the classical ANOVA methods, and the latter are only
found in the prevalent unreplicated/saturated OA/FFD methods. Uncertainty, then, is the
sieve that separates strong from weak effects in ANOVA. In contrast, factorial irregularity
is the sieve that tags strong effects in familiar unreplicated/saturated OA/FFD-profilers.
Consequently, this dual group statistical detachment (inert/active) may appear relatively
binding within each group or be perceived as perhaps promoting factor dependence [56].
On the contrary, algorithmic methods could provide ‘mechanism-free’ information to con-
firm results that have been obtained by various stochastic data models [51]. The purpose
of this study is to use classification-based algorithms to perform a nonlinear multiresponse
multifactorial screening. Multivariate screening techniques are generally in demand to
chemometrics because of the overall assistance empirical methods offer in lowering pro-
duction costs [57,58]. This is particularly welcomed today because the circular economy
is deeply connected to operational sustainability through smart, lean, and green frame-
works [59,60]. It is water quality indices that will be synchronously screened for a novel
ED process using affinity propagation clustering and entropic methods [61,62]. This work
offers freeware solver approaches by resorting to proven R-packages [63,64]. It also adds
an interesting case study contribution in exhibiting the use of the R-based DOE toolbox
in analyzing OA-inspired datasets in chemometrical problems [65,66]. The case study
datasets include two independent experimental OA trials to allow for confirmation of
the predictions [27]. The experimental ED setup has been well described, and its novel
application in improving wastewater filtration for crop irrigation in arid areas has been
published recently. The rest of the paper is organized by introducing a methodology to
prepare and analyze nonlinear OA datasets using DOE, affinity propagation clustering,
and entropic methods in an R-based statistical software environment. Next, in the Results
section, the outcomes of the double information analysis are presented and contrasted. A
Discussion section provides a confirmation part that verifies the outcomes with a second
independent dataset as well as a critical review of the outcomes of the new method against
past predictions from statistical and other empirical modeling methods. A Conclusion
section summarizes the key points of this work.

2. Materials and Methods
2.1. The OA Sampler Structure

A typical OA plan organizes an expedient product/process screening/optimization
study by properly prescribing the settings of a group of as many as m examined controlling
factors [26]. An OA sampler is a table that specifies the execution of a minimum of n num-
ber of recipes to collect enough information to determine the strength of the investigated
effects. For linear dependencies, the maximum throughput for an OA sampler is attained
at the saturation condition, i.e., in the case where the number of runs and the number of
controlling factors are related by the equality: n = m + 1. We assume that the conditions of
saturation as well as unreplication are present in the developments that follow. Unreplica-
tion is construed to be the condition whenever there is only one opportunity to collect an
observation—a sole experimental run is conducted. In case the saturated OA design should
encompass potential curvature effects, to a minimal extent, then, the condition between
the number of runs and the number of factors becomes n = 2 × m + 1. In this allotment, a
third factor setting is added, and it is located within the studied range [28,29]. The overall
consequence of implementing a saturated–unreplicated OA sampling plan is to impose the
obvious constraint of ‘dataset smallness’ in the information generation cycle. An abstract
depiction of an OA matrix is shown in Table 1. The examined controlling factors are coded
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as: Xj for 1 ≤ j ≤ m, and their respective factor settings are correspondingly coded as xij for
1 ≤ i ≤ n, and 1 ≤ j ≤ m.

Table 1. A general arrangement of an OA matrix.

Controlling Factors

run # X1 X2 . . . Xm
1 x11 x12 . . . x1m
2 x21 x22 . . . x2m
.
.
.

.

.

.

.

.

.
. . .

.

.

.
n xn1 xn2 . . . xnm



It is considered that the outcome of a given ith run may be synchronously quantified
by the measured responses of as many as c product/process characteristics, Rk for 1 ≤ k ≤ c.
Then, their corresponding coded entries (output) could be denoted as: rik, for 1 ≤ i ≤ n and
1 ≤ k ≤ c. From an informational point of view, the ith run introduces an ith sequence as
input which identifies with the strict particulars of the ith recipe, and it is written as follows:

ith run (factorial recipe)-input sequence:

Then, the multiresponse output after the execution of the ith factorial recipe will be:

ith run multiresponse entries:

2.2. The Unsupervised Analyzer

The input–output relationship resulting from conducting the nonlinear OA sampling
plan is analyzed by the affinity propagation clustering approach [27] that furnishes ex-
emplar information in the partitioned clusters. The structured multiresponse dataset is
converted to a two-point similarity matrix, s(i, j), where each data point i relays its affinity to
the exemplar point j. To initiate cluster memberships, preference values are usually selected
from the computed similarities that possess larger magnitudes. In the required two-way
messaging process, a data point solicits candidate exemplars for potential membership
through a responsibility matrix, r(i, j) and affirms membership suitability through the
availability matrix, a(i, j). Since screening is the primary goal of this exercise, the end-point
correlations across runs and their relationships to the formed ‘most-distant’ clusters are
of much value. The practical and popular informational portrayal of their tendencies are
easily visualized through an assorted heatmap. As a second means of testing, a classic
comparison ought to involve the relative entropy evaluation on the resulting clusters from
the affinity propagation method. In brief, if the ith cluster has ni members (n = ∑c

i=1 ni),
xjik, where the number of clusters is 1 ≤ i ≤ c, with factor setting label jk|jk ε {1, 2, . . . , s}
for a total number of s settings in the kth controlling factor, 1 ≤ k ≤ F, for the total number
of F factors in the selected OA plan. Then, the surprise for the kth factor, the ith cluster and
the nijk members is:

uik = − log2(pik) with pik = ∑s
jk=1 nijk/ni

The expected relative surprise (relative entropy) will be [62]:

H = ∑c
i=1 pikuik/ log2(n)
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2.3. The Water Quality Case Study

The case study reflects a real published attempt to manage wastewater treatment
using two electrodialysis setups [27]. The quality of the filtrated water was anticipated
to be suitable for irrigation in arid areas. The unique screening/optimization effort was
modelled by implementing a classical nonlinear Taguchi-type OA plan. The selected four-
factor three-level nine-run L9(34) OA was conducted in two modes for practical purposes.
Since the OA-specified runs were executed once, the collected dataset was available in the
unreplicated conditions. In addition, in the first electrodialysis setup, the OA plan was
arranged to carry the maximum load of investigated factors. The trial planner was saturated
with the four controlling factors: (1) A–the dilute flow, (2) B–the cathode flow, (3) C–the
anode flow, and (4) D–the voltage rate. In the second electrodialysis setup, the anode
flow was irrelative. Therefore, the dataset from the first setup was intended to generate a
prognosis [27], and the second (independent) dataset was to be utilized for confirmation on
the prognostic outcome. It is very important to mention that what made this case study so
unique was that despite the inherent data smallness, the collected output was characterized
by three water quality indices, which are meaningful in cultivating crops. The three water
quality indices are: (1) RS–the removed sodium content (%), (2) SAR–the sodium adsorption
ratio, and (3) SSP–the soluble sodium percentage (%). All three water quality indices
have been described in detail in earlier publications, and they were found statistically
uncorrelated among them [27,48,52]. Thus, the experimental design was programmed to
deliver a multiresponse output. Subsequently, the screening/optimization modelling was
formulated according to a nonlinear multiresponse multifactorial unreplicated–saturated
OA dataset. This means that screening prognostics are to be generated against unknown
uncertainty. No degrees of freedom are available for quantifying the statistical error.

2.4. The Methodological Steps

The proposed methodology is accordingly summarized:

(1) Define the wastewater quality characteristics that monitor the direction of the ED
progress and quantify the recycling efficiency improvement.

(2) Select the proper group of the ED process controlling factors that are deemed relevant
to regulating the influent wastewater condition, and directly screen the multivariate
effluent tendencies.

(3) Determine a practical operating range for each of the controlling factors, such as to in-
duce adequate variability, that could potentially detect a presence of curvature effects.

(4) Select a suitable OA sampling plan [26,28,29] that economically accommodates the
nominated group of controlling factors (from step 2).

(5) Execute the prescribed OA runs (step 4) and compile the multiresponse dataset.
(6) Apply affinity propagation clustering [61,63] to corral the cluster members from the

multiresponse dataset.
(7) Ensure convergence of the estimations of the predicted exemplar preferences and fitness

(maximizing overall net similarity) to proceed in determining the cluster hierarchy.
(8) Prepare the cluster dendrogram and the visualized clustering result, including the

designated exemplar points. Pinpoint on a similarity–matrix heatmap the contoured
clustering performance to assess the correlation between potential operational limits.

(9) Provide a double verification of the strong effect predictions (from step 8) by reassess-
ing the clustering outcomes by their estimated relative surprise measure, leading to a
relative entropy measure for each labelled cluster [62].

(10) Confirm the results with additional independent datasets.

2.5. The Computational Aids

The computational work was carried out on the free statistical software R (v. 4.1.2) [64].
The module ‘param.design()’ from the R-package ‘DoE.base’ (v. 1.2) provided the nonlinear
OA sampler. The R-package ‘cluster’ (v. 2.1.2) was utilized in grouping memberships. The
affinity propagation approach, which offered exemplar-based agglomerative clustering
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capabilities, was implemented through the R-package ‘apcluster’ (v. 1.4.9) [61,63]. The
transformation of distances to similarities was mediated by maintaining the exponent in
the default mode (Laplace kernel) in the apcluster function (negDistMat similarity matrix).
The generated graphs delivered convergence performance for the fitness score, the sum of
exemplars, and the sum of similarities. Primary graphical information was supplied by
a standard dendrogram, displaying the cluster hierarchy, the exemplar-based groupings
and the assorted heatmaps to quickly recognize contrasting factor settings. The R-package
‘entropy’ (v. 1.3.1) was used to estimate the cluster entropies.

3. Results

The convergence performance of the affinity propagation clustering algorithm (the R-
package ‘APCluster’) [63] for the three water quality index datasets (Table 4 in ref. [27]) was
successful, and it is shown in Figure 1. For the nine tested samples, the input preference, the
sum of similarities, the sum of preferences, and the net similarity were found to be −7.59,
−26.59, −22.78, and −49.37, respectively. This resulted in three clusters (dendrogram in
Figure 2) with exemplar OA runs: 1, 4, and 9. More specifically, cluster #1 (exemplar 1)
included OA runs # 1, 2, and 3; cluster #2 (exemplar 4) included OA runs 4, 5, 6, and 8;
and cluster #3 (exemplar 9) included OA runs 7 and 9. Cluster #3 was observed to be
the most dissimilar with respect to the other two. There is an association to this behavior
that mainly relates to the influence of dilute flow (Table 3 in ref. [27]) on the most affected
water quality index—the removed Na+ response (Table 4 in ref. [27]). This becomes more
pronounced when observing the full clustering two-response plot matrix in Figure 3. The
first water quality index (removed Na+) generates the required clustering impetus when
compared to the other two indices. From Figure 4, the mini-data groups that are formed
from OA runs 3, 5, and 7, 9, respectively, appear to create the most antithetical contrast
across all runs in the cluster heatmap visualization; it implies that the stronger clustering
drive emanates from the removed Na+ response and, hence, it identifies the dilute flow as
the primary controlling factor. The third setting (fixed at 10 L/h) of the dilute flow (Table 3
in ref. [27]), provides a great response separation with respect to the other two adjustments.
Since this behavior remains indistinguishable for the first two settings, the dilute flow
might be optimally regulated in the prescribed factorial landscape at the setting of 2 L/h. A
post-verification is accomplished by executing the R-package ‘APCluster’ for a two cluster
scheme (Figure 5).

Figure 1. Similarity convergence for: (green) sum of exemplar preferences; (purple) sum of similarities
to exemplars; and (red) fitness.
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Figure 2. The cluster dendrogram for the ED-process (the three water quality indices dataset).

Figure 3. Clustering result for two-response combinations (three-cluster scheme) of the three water
quality indices (V1 = removed Na+, V2 = SAR, V3 = Na+ ratio).
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Figure 4. Cluster heatmap of the nine OA runs simultaneously taking in account the response of the
three water quality indices.

Figure 5. Clustering result for two-response combinations (two-cluster scheme) of the three water
quality indices (V1 = removed Na+, V2 = SAR, V3 = Na+ ratio).
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In this case, the two exemplars partner to cluster #1 (exemplar 3) with OA run cluster
members: 1, 2, 3, 4, 5, 6, and cluster #2 (exemplar 7) with OA run cluster members: 7, 8, 9.
For the two-cluster post-verification scheme, the input preference, the sum of similarities,
the sums of preferences, and the net similarity were found to be −9.0, −44.90, −18.0, and
−62.9, respectively. The same final screening outcome seems to also be supported by the ver-
ification attempts by a nonparametric solver and a recent microclustering-denominalization
technique [48,52]. Finally, a pure informational approach using the relative surprise of the
clustered OA runs (for the three-cluster scheme) and then the expected relative surprise
(relative entropy) mirrors the same conclusions as listed in Table 2. We observe that the only
settings with the minimum information are the end points of the dilute flow, furnishing
additional design evidence about the strong influential status of this controlling factor.

Table 2. Relative entropy for clustered factor settings.

Factor/Setting P(X) Relative Entropy
A1 1 0.00
A2 0.75/0.25 0.41
A3 1 0.00
B1 0.33/0.33/0.33 1.00
B2 0.25/0.25/0.5 0.75
B3 0.5/0.5 1.00
C1 0.33/0.33/0.33 1.00
C2 0.25/0.25/0.5 0.75
C3 0.5/0.5 1.00
D1 0.33/0.33/0.33 1.00
D2 0.25/0.25/0.5 0.75
D3 0.5/0.5 1.00

4. Discussion

To confirm the results from the previous section, a second independent dataset was
investigated on the same three water quality indices of the ED process (Table 10 in ref. [27]).
The convergence performance of the affinity propagation clustering algorithm on the
dataset was successful and is shown in Figure 6. For the nine tested samples, the input
preference, the sum of similarities, the sum of preferences, and the net similarity were found
to be −23.70, −39.91, −71.10, and −111.01, respectively. This resulted in three clusters
(dendrogram in Figure 7) with exemplar OA runs: 3, 7, and 8. More specifically, cluster #1
(exemplar 3) included OA runs # 1, 2, and 3; cluster #2 (exemplar 7) included OA runs 4,
5, 6, 7, 9; and cluster #3 (exemplar 8) comprising the single OA run 8. Again, cluster #3 is
observed to be the most dissimilar with respect to the other two. There is an association
to this behavior that mainly relates to the influence of dilute flow (Table 9 in ref. [27])
on probably all three water quality indices (Table 10 in ref. [27]). Surprisingly, the full
clustering two-response plot matrix in Figure 8 demonstrates the separation of all water
quality indices. All responses affect the clustering process. From Figure 9, the mini-data
groups that are formed from OA runs 8 and 1, 2, 3, respectively, appear to create the most
opposing effect across all runs in the cluster heatmap visualization. It identifies the dilute
flow as the primary controlling factor. The low setting (2 L/h) OA runs of the dilute
flow (Table 9 in ref. [27]), ensure the great response separation with respect to the high
endpoint adjustment.

The same final screening outcome agrees with the verification attempt by a recent
microclustering-denominalization technique [52]. The classical (informational) check was
repeated using the relative surprise concept for the clustered OA runs to obtain the expected
relative surprise (relative entropy). The conclusions match the overall result as is easily
observed from Table 3. Again, it is the end-point settings of the dilute flow that minimize
information and, hence, reaffirm its only dominant status in the final ED process design of
relevant controls. From Table 3, it becomes apparent that one setting from each of the other
examined factors delivers minimum information (B3 and C3). Nevertheless, no contrast
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is witnessed for those two factors as the performance for the other two settings is well
over 50%.

Table 3. Relative entropy for clustered factor settings (confirmation dataset).

Factor/Setting P(X) Relative Entropy
A1 1 0.00
A2 0.6/0.4 0.42
A3 1 0.00
B1 0.33/0.33/0.33 1.00
B2 0.4/0.4/0.2 0.65
B3 1 0.00
C1 0.33/0.33/0.33 1.00
C2 0.4/0.4/0.2 0.65
C3 1 0.00

Figure 6. Similarity convergence for: (green) sum of exemplar preferences; (purple) sum of similarities
to emplars; and (red) fitness (confirmation dataset).

Figure 7. The cluster dendrogram for the confirmation ED-process dataset (the three water quality indices).
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Figure 8. Clustering result (confirmation dataset) for two-response combinations (three-cluster
scheme) of the three water quality indices (V1 = removed Na+, V2 = SAR, V3 = Na+ ratio).

Figure 9. Cluster heatmap of the nine OA runs simultaneously taking into account the response of
the three water quality indices (confirmation dataset).
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5. Conclusions

Wastewater filtration is extremely important for arid regions. Recently, electrodialysis
has been suggested as a potential option to resolve the intricate phenomena in a manner
competitive to other separation methods. ED process trials on polluted wastewater stocks
of various origins may be lengthy to carry out and arduous to stochastically interpret.
Using modern affinity propagation clustering and regular entropic methods ‘small-and-
dense’ multiresponse, OA datasets were profiled against several controlling factors, while
statistically examining the potential effects of curvature in each of them. A re-examined
real case study, which was published recently, involved three water quality characteristics
pertinent to crop irrigation performance and four controlling factors that were assumed
might regulate the filtration performance of an innovative electrodialysis apparatus. The
dense dataset was generated from nine specific recipes as prescribed by the selected
Taguchi-type L9(34) OA sampling scheme. The proposed approach managed to detect the
strong influence of the diluted flow in the ED cell trials. It additionally furnished visual
representation of the pertinent effect of polarity across factor settings. A combination of
expert-level freeware R-packages was utilized to instill credibility in the probing style as
well as to facilitate reproducibility checks and convenience in completing the analysis steps.
The approach may supplement other techniques in predicting ‘hard-to-handle’ FFD/OA
datasets in the case that the overall experimental error is not assessable. Future work could
involve denser FFD/OA matrices with mixed-level variables that produce mixed-type
datasets by blending nominal and continuous variables.
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