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Abstract: The precipitation phase (i.e., rain and snow) is important for the global hydrologic cycle
and climate system. The objective of this study is to evaluate the precipitation-phase partitioning
capabilities of remote sensing and reanalysis modeling methods on the global scale. Specifically,
observation data from the National Centers for Environmental Prediction (NCEP) Automated Data
Processing (ADP), from 2000 to 2007, are used to evaluate the rain–snow discrimination accuracy
of the Integrated Multi-Satellite Retrievals for Global Precipitation Measurement (IMERG) and the
fifth-generation reanalysis product of the European Centre for Medium Range Weather Forecasts
(ERA5). The results show that: (1) the ERA5 performs better than the IMERG at distinguishing
rainfall and snowfall events, overall. (2) The ERA5 has high accuracy in all continents except for
South America, while the IMERG performs well only in Antarctica and North America. (3) Compared
with the IMERG, the ERA5 can more effectively capture snowfall events at high latitudes but shows
worse performance at mid-low latitude regions. Both the IMERG and ERA5 have lower accuracy
for rain–snow partitioning under heavy precipitation. Overall, the results of this study provide
references for the application and improvement of global rain–snow partitioning products.

Keywords: snowfall; precipitation phase; temperature; NCEP ADP; statistical evaluation

1. Introduction

The precipitation phase is important for the global hydrologic cycle, weather forecasts,
and climate system because snowfall and rainfall have distinct effects on land surface water
and energy fluxes [1,2]. Snow accumulation increases surface albedo and delays the transfer
of precipitation to surface snowmelt runoff, infiltration, and streamflow. Rain increases
soil moisture and evaporation, resulting in runoff [3]. In some snow-dominated mountain
areas, snowfall is an important water resource as a large amount of water is stored as snow
in the cold season and then released as the snow melts in the warm season [4].

Global warming has been reported to increase the frequency and intensity of rain-on-
snow events [5], leading to a reduction in snow equivalent accumulation and an acceleration
of ice melt [6]. It has also led to warmer winter temperatures and resulted in more rainfall
instead of snowfall [7]. In addition, this decrease in snowfall and increase in rainfall may
lead to a decrease in surface albedo and an accelerated rise in surface temperatures [6,8,9].
The change of temperature also leads to the heterogeneity of precipitation on the global
scale. In their study, Shi and Liu [7] showed that trends vary among different regions
and the ratio of the number of snowfall events to precipitation events is decreasing in the
middle and low latitudes, while increasing at the high latitudes in the Northern Hemisphere.
Therefore, accurately discriminating the precipitation phase is vital for understanding the
land hydrological processes, water resource management, and climate change [10].
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Ground observations, remote sensing, and reanalysis models are the three major ways
to obtain precipitation phase information. The surface precipitation phase is mainly related
to near-surface air temperature and atmospheric moisture [11], which are measured using
both land and ocean observational instruments. The discrimination of the precipitation
phase has been widely studied using ground observations of variables such as near-surface
air temperature [3,12,13], dewpoint temperature, and wet-bulb temperature [14–18]. Previ-
ous work has shown that, in general, the wet-bulb temperature—which accounts for the
effects of the air moisture content—exhibits better performance than air temperature [15,19].
Jennings et al. [2] suggest that the precipitation phase could be better classified using air
temperature and air humidity, rather than by using air temperature-only methods for
large-scale land surface models. Additionally, surface pressure appears to influence the
precipitation phase in some lower-pressure regions, yet the extent of this influence on the
global scale is still not clear [3,15].

Satellite remote sensing is currently the only means for observing the precipitation
phase on the global scale, as the coverage from meteorological stations, ocean-based buoys,
and weather radars is limited [15]. Precipitation is one of the most difficult hydrological
variables to estimate due to its high spatiotemporal heterogeneity [20]. Rain gauges and
ocean-based ships and buoys are the traditional tools used to measure precipitation at
point or regional scales [21]. However, they cannot provide continuous precipitation phase
data on the global scale because of the uneven spatial distribution, low station density, and
measurement uncertainty [22]. With the rapid development of remote sensing technologies,
satellite-based precipitation data show greater potential in measuring precipitation phases
on the global scale. Globally, precipitation phase products rely mainly on data from
microwave (MW) sensors on board low-earth-orbit satellites [23,24]. Both active and
passive microwave sensors can provide direct and accurate liquid and solid precipitation
measurements due to their sensitivity to rain and ice particles [19,24]. However, the
accuracy of the precipitation-phase partitioning of MW products is still low, especially in
the high latitudes [16]. This is because the related snowfall-estimate algorithms are still
immature [25–28].

The launch of the Global Precipitation Measurement (GPM) satellite has improved
the quality of global liquid and solid precipitation estimates [27–29]. The Integrated
Multi-Satellite Retrievals for GPM (IMERG) [30,31] algorithm adopts the parameterization-
scheme method, developed by Sims and Liu [15], to estimate the precipitation phase. The
near-real-time and non-real-time IMERG products use the reanalysis meteorological data
(i.e., wet-bulb temperature and atmospheric moisture) produced by the Japan Meteorologi-
cal Administration (JMA) and the European Centre for Medium-Range Weather Forecasts
(ECMWF) to distinguish the precipitation phases based on the temperature threshold
method [30]. So far, the IMERG is the only satellite product that realizes global precipi-
tation phase distinction. However, the IMERG products lack reliable precipitationphase
partitioning performance, which is mainly due to a lack of ground observation data [31].

Reanalysis products can provide spatiotemporal estimates of precipitation phases
and snowfall amounts over the globe, which is particularly meaningful for ungauged
areas. They distinguish the precipitation phases at different spatial scales using data
assimilation systems and numerical weather models, which are characterized by strong
physical mechanisms [32]. For example, the fifth-generation reanalysis product of the
European Centre for Medium Range Weather Forecasts (ECMWF), the ERA5, is used to
determine variations in precipitation at global or regional scales [33–37]. Compared with
its predecessor, the ERA-Interim, the ERA5 has a more advanced assimilation system and
higher spatiotemporal resolution [38,39]. With the above advantages, ERA5 products are
widely used in snowfall estimation. For example, Liu et al. [40] compared the ERA5 daily
snowfall product with automatic weather stations (AWSs) and synoptic CloudSat snowfall
data and showed that the ERA5 can capture extreme snowfall events effectively over the
Antarctic. Nouri and Homaee [41] assessed snowfall days to rainfall days (SDWD) using
the ERA5 snowfall dataset in mountainous, data-scarce areas of Iran, and found that SDWD
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decreased negligibly in the regions that had an average air temperature below −2.8 ◦C, and
that ERA5 had a reliable performance in analyzing snow-related metrics. However, recently,
several studies have shown that the ERA5 reanalysis precipitation-event estimates have
uncertainties [42–44] and its precipitation-phase partitioning accuracy on a global scale is
still unclear. Moreover, to our knowledge, no study has evaluated the direct precipitation-
phase partitioning dataset of the ERA5 reanalysis products and the accuracy of these
applications. The IMERG can represent rain–snow classification based on the temperature-
threshold method [15], and the ERA5 can represent rain–snow classification based on
numerical models with atmospheric physics. The comparison of the IMERG and ERA5
products can resolve the uncertainties of the different precipitation-phase partitioning
methods and help researchers determine the most appropriate rain–snow partitioning
method for local and large-scale studies.

The objectives of this study are as follows: (1) to evaluate the rain–snow partitioning
ability of the IMERG and ERA5 precipitation phase products against the National Centers
for Environmental Prediction (NCEP) Automated Data Processing (ADP) observation
dataset, from 2000 to 2007, on the global scale; and (2) to compare the IMERG and ERA5
precipitation phase products on different spatiotemporal scales, air temperatures, and
precipitation intensities, to explore the performance and differences between satellite-based
methods and reanalysis models in different regions and climate conditions. The rest of the
paper is organized as follows. The gauge data, the IMERG, the ERA5, sample preparation,
and statistical metrics are briefly introduced in Section 2. The rain–snow partitioning
performance of the IMERG and ERA5 products at different spatiotemporal scales are
evaluated in Section 3, and their sensitivities to precipitation and air temperature are
compared. The discussion and conclusions are presented in Sections 4 and 5, respectively.

2. Materials and Methods
2.1. Gauge Data

The NCEP ADP observation data are from April 1978 through to February 2007 with
more than 14,000 stations [45]. NCEP ADP data reports were collected from the Global
Telecommunication System (GTS) during time slots centered on the 3-hourly and 6-hourly
analysis times of their global and regional models. There are two types of data in NCEP
ADP dataset: (1) data from land stations, including Surface Synoptic Observations (SYNOP),
Meteorological Terminal Aviation Routine Weather Reports (METAR), and beginning in
the mid-1990s, Automatic Weather Observation System (AWOS) and Automated Surface
Observing System (ASOS) reports; and (2) data from moving ships, fixed ships, Meteoro-
logical Archival and Retrieval Systems (MARS) (moving and fixed), and buoys (moored
and drifting). This study used both land stations and ocean ship/buoy observations for
land and ocean precipitation phase estimations. The NCEP ADP data contain 14,737 land
stations and ocean stations, which include 47.9 million and 1.4 million precipitation records,
respectively. Figure 1 shows the global distribution of NCEP ADP station precipitation
records which are gridded into 1 × 1◦ grids (refer to Section 2.4).

The precipitation phases were classified as rain and snow according to the World
Meteorological Organization’s (WMO) present weather codes [3]. Following Sims and
Liu [15], the observation records with present weather codes 60–99 were classified as
rainfall, except for those with codes 70–79, 85, and 86, which were classified as snowfall.
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and precipitation phases. IMERG computed a simple probability-of-liquid phase, which 
was a fraction between 0 and 100%. The probability of liquid precipitation indicates a 
probability that the precipitation phase is liquid [31]. 

Empirically, there are two ways to achieve rain–snow classification for IMERG: (1) a 
precipitation event is classified as snowfall (or rainfall) if the probability of liquid precip-
itation is lower than (or higher than) 50%; and (2) the snowfall amount is calculated as the 
product of the solid probability (i.e., 1—probability of liquid precipitation) and the total 
precipitation amount. This study chose to use the first method because the probability of 
liquid/solid precipitation is designed for binary classification instead of amount division. 
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The ERA5 is the latest atmospheric reanalysis product at the 0.25° and 1 h resolutions, 

which can be downloaded from the Climate Data Store (CDS; https://cds.climate.coperni-
cus.eu/#!/search?text=ERA5&type=dataset, accessed on 1 March 2021). Four variables are 
used in this study, including precipitation type, total precipitation, snowfall, and 2 m air 
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second method is to divide the snowfall by the total precipitation amount and choose a 

Figure 1. The spatial distribution of NCEP ADP precipitation samples at 1◦ × 1◦ resolution from 1978
to 2007. For each grid box, the value represents the total number of positive precipitation events from
land stations or ocean ships/buoys. Only samples after quality control (refer to Section 2.4) are used.

2.2. IMERG

The IMERG is the Level 3 multi-satellite precipitation product of GPM, which combines
intermittent precipitation estimates from all constellation microwave sensors, IR-based
precipitation estimates from geosynchronous satellites, and monthly gauge precipitation
data [29]. This study used the IMERG Final run product at the 0.1◦ and 30 min resolutions
from 2001 to 2007, downloaded from the PMM website (http://pmm.nasa.gov/data-
access/downloads/gpm accessed on 1 March 2021). Two kinds of IMERG precipitation
estimate data were used here—the total amount of precipitation and precipitation phases.
IMERG computed a simple probability-of-liquid phase, which was a fraction between 0 and
100%. The probability of liquid precipitation indicates a probability that the precipitation
phase is liquid [31].

Empirically, there are two ways to achieve rain–snow classification for IMERG: (1) a
precipitation event is classified as snowfall (or rainfall) if the probability of liquid precipita-
tion is lower than (or higher than) 50%; and (2) the snowfall amount is calculated as the
product of the solid probability (i.e., 1—probability of liquid precipitation) and the total
precipitation amount. This study chose to use the first method because the probability of
liquid/solid precipitation is designed for binary classification instead of amount division.

2.3. ERA5

The ERA5 is the latest atmospheric reanalysis product at the 0.25◦ and 1 h resolu-
tions, which can be downloaded from the Climate Data Store (CDS; https://cds.climate.
copernicus.eu/#!/search?text=ERA5&type=dataset, accessed on 1 March 2021). Four vari-
ables are used in this study, including precipitation type, total precipitation, snowfall, and
2 m air temperature. Two ways to distinguish the ERA5 precipitation phase were compared.
The first method is to classify snowfall and rainfall using the precipitation-type variable and
the WMO Code Table 4.201 (https://apps.ecmwf.int/codes/grib/format/grib2/ctables/
4/201 accessed on 1 March 2021). Precipitation types 1 and 5 represented rainfall and
snowfall, respectively. Other precipitation type codes, i.e., 3 (freezing rain), 6 (wet snow),
and 7 (mixture of rain and snow), were not considered in this study due to their scarcity.
The second method is to divide the snowfall by the total precipitation amount and choose
a snowfall ratio threshold to determine the precipitation phase. In order to reduce the

http://pmm.nasa.gov/data-access/downloads/gpm
http://pmm.nasa.gov/data-access/downloads/gpm
https://cds.climate.copernicus.eu/#!/search?text=ERA5&type=dataset
https://cds.climate.copernicus.eu/#!/search?text=ERA5&type=dataset
https://apps.ecmwf.int/codes/grib/format/grib2/ctables/4/201
https://apps.ecmwf.int/codes/grib/format/grib2/ctables/4/201
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numerous tiny precipitation events of ERA5, the hourly precipitation event threshold was
set to 0.01 mm/h. The comparison shows that the two methods have similar performance
in rain–snow partitioning. This study chose the precipitation-type code method (the first
method) because the NCEP ADP weather observation data and ERA5 precipitation type
data are both instantaneous, while the snowfall and precipitation amount data of ERA5
are cumulative.

2.4. Sample Preparation

To better reveal the performance of IMERG and ERA5 in rain–snow partitioning,
precipitation samples were selected based on three criteria.

(1) When the air temperature exceeded 10 ◦C or was lower than −10 ◦C, there was no
difficulty in distinguishing between rainfall and snowfall. Therefore, the data with air
temperatures below −10 ◦C and above 10 ◦C were deleted. This resulted in 46.3% of
the dataset being eliminated.

(2) Gauge observations with relative humidity (RH) lower than 10% or greater than 100%
were excluded. This is because RH in nature rarely drops below 10% and cannot
exceed 100%, as observed by Jennings et al. [2]. The excluded samples comprise about
0.1% of the dataset.

(3) Almost all snowfall events occurred in the middle (60–90◦ NS) and high latitudes
(30–60◦ NS), so the observation data for 23.5◦ N–23.5◦ S were deleted.

After filtering the dataset, there were a total of 21.4 million precipitation phase ob-
servations, including 21.1 million records over land and 0.3 million records over ocean.
Previous studies by Sims and Liu [15] and Tamang et al. [18] show that land and ocean
have different rain–snow partitioning temperature thresholds. As such, the rain–snow
partitioning products were evaluated for land and ocean separately. In order to match
IMERG products (June 2000 to February 2007), the NCEP ADP data for the period from
June 2000 to February 2007 were used as the validation dataset for IMERG and ERA5. ERA5
precipitation phase data (June 2000 to February 2007) were downscaled from 0.25 to 0.1◦

using the nearest-neighbor method. A total of 13.5 million (land) and 0.07 million (ocean)
NCEP ADP dataset records were retained for evaluation.

2.5. Statistical Metrics

Three categorical metrics were used to evaluate the performance of different rain–snow
partitioning methods, including the probability of detection (POD), the false alarm ratio
(FAR), and the critical success index (CSI) [46–48]. POD represents the fraction of correctly
captured snowfall events of the target dataset. FAR represents the fraction of falsely
reported snowfall events. CSI is a more balanced index, combining the characteristics of
both false alarms and missed events from POD and FAR.

POD =
n11

n11 + n01
(1)

FAR =
n10

n11 + n10
(2)

CSI =
n11

n11 + n01 + n10
(3)

where n11 represents the number of snowfall events observed by both the reference dataset
(NCEP ADP) and the target dataset (IMERG, or ERA5), n10 represents snowfall events
observed by the target dataset but not observed by the reference dataset, and n01 represents
snowfall events observed by the reference dataset but not observed by the target dataset.
The three metrics all vary between zero and one. The perfect value is one for POD and CSI,
and zero for FAR.

This study only included samples that NCEP ADP indicated as being either rainfall or
snowfall, because non-precipitation events are dominant in number and are not suitable for
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calculating the categorical metrics. All metrics were calculated at the 6-hourly scale since
NCEP ADP has both 3-hourly and 6-hourly observations.

3. Results and Discussion
3.1. Spatial Analysis

Figure 2 shows the boxplots of three metrics of ERA5 and IMERG over land and ocean.
The median POD values of ERA5 and IMERG over land were 0.96 and 0.91, respectively.
As for FAR and CSI, IMERG was significantly worse than ERA5. The median CSI values
of ERA5 and IMERG over land and ocean were 0.82 and 0.78, respectively. Based on the
metrics above, it is assumed that IMERG overestimates the number of snowfall events
compared to ERA5.
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Figure 3 shows the spatial distributions of metrics for ERA5 and IMERG products
globally. The spatial distributions of ERA5 and IMERG metrics were similar overall, but
there were some slight differences: (1) POD, FAR, and CSI of ERA5 were better than IMERG
overall, and the same was true over the ocean; and (2) IMERG performed better than ERA5
in mid-latitude land areas (about 35–50◦ N), where the POD of IMERG was about 0.9 and
the POD of ERA5 was about 0.85.
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Similar to Figure 2, Figure 3 shows that ERA5 and IMERG performed significantly
worse over ocean than over land. The sparse ocean gauge networks and fewer observation
records are an important reason for this problem, and the quality of ERA5 and IMERG need
to be improved further to provide more accurate rain–snow partitioning over the ocean.

3.2. Seasonal and Regional Analysis

Figure 4 shows the boxplots of POD for the twelve months for ERA5 and IMERG over
global land and oceans, from 2000 to 2007. Figure 5 shows the mean snowfall ratio and CSI
for the twelve months for ERA5 and IMERG over global land and oceans, from 2000 to
2007. This study defined the seasons as spring (March–May), summer (June–August), fall
(September–November), and winter (December–February) for the Northern Hemisphere
(NH); and spring (September–November), summer (December–February), fall (March–
May), and winter (June–August) for the Southern Hemisphere (SH). ERA5 and IMERG
performed better over the NH land in fall and winter than in spring and summer, especially
from November to March, when the median value of POD was about 0.95. The performance
of IMERG and ERA5 deteriorated with the decrease of snowfall ratio, especially in the
summer of the NH land. As the seasons changed, all products showed a similar trend in
the NH. That is, when the seasonal temperature rose, the POD fell, and when the seasonal
temperature fell, the POD rose. This implies that it is difficult to detect snowfall in warmer
seasons. ERA5 and IMERG products still showed poor performance over the NH oceans.
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Compared to the NH, ERA5 and IMERG products performed better in May to July
over SH land and oceans. However, these products showed significant improvement from
January to March, which was even better than in the NH. Furthermore, the POD over oceans
was still weaker than over land in the SH. The quality of ocean rain–snow partitioning
needs to be improved further to provide more accurate precipitation phase results.
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Figure 6 shows the boxplots of the three metrics of ERA5 and IMERG in five continents.
It is noted that there were relatively few samples in Antarctica, and most of them came
from coastal areas close to Antarctica. Both ERA5 and IMERG products performed best
in Antarctica, while performing worst in the South America. This implies that there is
a significant challenge in discriminating between rain and snow under circumstances of
complex terrain and warm temperatures. ERA5 and IMERG products showed similar
performance for the POD in Antarctica, Asia, North America, and Europe. However, the
FAR results of ERA5 and IMERG products were worse in Asia, Europe, and South America.
This indicates that ERA5 and IMERG have many falsely classified snowfall events in these
continents. Overall, ERA5 demonstrates a more stable performance than IMERG.
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3.3. Sensitivity to Precipitation and Temperature

In order to analyze the sensitivity of ERA5 and IMERG products to the precipitation
total amount, mean air temperature, and snowfall ratio, the CSI and snowfall event num-
bers of IMERG and ERA5 were calculated under different precipitation and temperature
conditions. Figure 7 shows the spatial distribution of the snowfall ratio under different air
temperature ranges for NCEP ADP, IMERG, and ERA5. Overall, the highest snowfall ratio
was outside the temperature ranges of −2.5 to 2.5 ◦C, between which the snowfall ratio
was more than 0.6 in most areas and reached to about 0.9 at high latitudes. The snowfall
probability of all products increased as the temperature range decreased. Compared to
the NCEP ADP and ERA5, the IMERG products underestimated the snowfall ratio at high
latitudes under all temperature limits. This phenomenon explains why IMERG products
show a worse POD performance than ERA5 in high latitudes (Figure 3). The ERA5 slightly
underestimated the snowfall ratio at middle latitudes from −10 to 10 ◦C and −5 to 5 ◦C but
had comparable results with NECP ADP between −2.5 and 2.5 ◦C. Moreover, the ERA5
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and IMERG products both overestimated the snowfall ratio in the south of South America,
probably due to the complex terrain and warm temperature circumstances.
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Figure 8 shows that the metrics for ERA5 and IMERG products with different precip-
itation intensities over global land and oceans. Overall, the ability of IMERG and ERA5
products to distinguish phases of rainfall and snowfall events tended to weaken with the
increase of precipitation intensity. Over land, the POD of ERA5 was relatively higher than
IMERG under the same precipitation intensity. However, while the FAR of ERA5 increased
steadily, the FAR of IMERG fluctuated with the increase in precipitation intensity. This
implies that IMERG and ERA5 have lower accuracy for rain–snow partitioning under
heavy precipitation. The performance of ERA5 and IMERG over oceans was similar to
over land.
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Figure 9 shows the metrics for ERA5 and IMERG products with different air tempera-
tures over global land and oceans. According to Equations (1)–(3), a drop in the POD is
caused by a decrease of n11 (the number of snowfall events observed by both the reference
NCEP ADP and the target dataset) or an increase of n01 (snowfall events observed by
the NCEP ADP but not observed by the target dataset). PODs dropped to almost zero,
indicating fewer snowfall events and more rainfall events in the range of 6 to 10 ◦C. this
was similar to the FAR and CSI. The rain–snow discrimination ability of ERA5, and IMERG
decreased with the increase of air temperature, especially around 0 ◦C. The performance
of all products decreased significantly in the range of −1 to 3 ◦C over land and 0 to 3 ◦C
over ocean.
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Figure 10 shows the snowfall events, rainfall events, and mean air temperature of
IMERG and ERA5 products with different precipitation intensities on the global scale. The
snowfall and rainfall events of IMERG and ERA5 both gradually decreased while the mean
air temperature rose. ERA5 showed more non-precipitation events than IMERG, somehow
indicating that the IMERG products can detect more light precipitation events. As shown in
Figure 10, the IMERG and ERA5 products have similar snowfall event ratios. However, the
mean temperature of ERA5 is obviously lower than IMERG precipitation intensity between
0.1–0.5 mm/h. The possible reasons for this phenomenon are: (1) the IMERG products
overestimate the air temperature for light precipitation; (2) the missing lower temperature
records of IMERG for light precipitation.
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4. Discussion
4.1. Comparison between IMERG and ERA5

The quality of IMERG and ERA5 in rain–snow partitioning on different temporal and
spatial scales was assessed in this study. According to the metrics, the IMERG and ERA5
products show basically the same performance in terms of POD, whereas the IMERG is
significantly worse than the ERA5 over land and ocean for the FAR and CSI. This indicates
that the IMERG tends to overestimate snowfall events when compared with the ERA5 on
the whole. The likely reason for this problem is that the IMERG used a globally uniform
temperature threshold to discriminate snowfall and rainfall events [31].

It was observed that the IMERG and ERA5 products both have a significantly worse
performance over ocean than over land. On one hand, the lack of observation data samples
from the ocean probably contributes to the poor performance of the ERA5 and IMERG,
as the precipitation record number (each grid box) for the majority of ships/buoys is less
than 20, especially in the SH (Figure 1). Compared with terrestrial regions, the lack of
observation samples could directly lead to the decline of the POD and CSI metrics of both
the ERA5 and IMERG products over the oceans. On the other hand, the phenomenon could
be explained by the inability of such datasets (i.e., ERA5 and IMERG) to effectively partition
precipitation phases over oceans, as compared with terrestrial regions. More specifically,
the assumptions and modeling frameworks considered in these surrogates may fail in the
oceanic environments.

4.2. Performance over Mountainous Areas

It is especially important to distinguish the precipitation phases accurately in moun-
tainous areas. Previous studies [51–53] have shown that the special geographical and
climatic conditions have an impact on the rain–snow partitioning over mountainous areas.
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Therefore, the interactions between precipitation intensity and precipitation phases over
mountainous regions are also discussed here.

Figure 11 shows the POD, FAR, and CSI metrics for the ERA5 and IMERG products
at different precipitation intensities over some important mountainous areas on the globe,
i.e., the Tibetan Plateau, the Caucasus Mountains, the Rocky Mountains, and the Andes
Mountains. Overall, the ability of the IMERG and ERA5 products to distinguish the phases
of rainfall and snowfall events over mountains tends to weaken with the increase of precipi-
tation intensity. This finding is consistent over global land and oceans. However, compared
with Figure 8, the rain–snow partitioning performance of the IMERG and ERA5 products
over mountains decreases significantly, with the FAR of both products increasing to ~0.6
and CSI decreasing to ~0.4 over the Tibetan Plateau and Caucasus Mountains. According
to Equations (1)–(3), increased PODs and FARs indicate that the ERA5 and IMERG falsely
classified rainfall events as snowfall events, which significantly underestimated the rain-
fall events in the Tibetan Plateau and Caucasus Mountain areas. The ERA5 and IMERG
perform well in rain–snow partitioning over the Rocky Mountains (CSI is ~0.8 and ~0.7,
respectively) and the ERA5 has a better performance than the IMERG when precipitation
intensity increases. The performance of the ERA5 and IMERG products over the Andes
Mountains changes dramatically with the increase of precipitation intensity. There are two
possible reasons: (1) the complex terrain and warmer temperature circumstances have an
impact on the rain–snow partitioning of the ERA5 and IMERG; and (2) the lack of snowfall
event samples and the inability of the precipitation dataset could result in uncertainty in
precipitation evaluation.
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Figure 11. The POD, FAR, and CSI metrics for ERA5 and IMERG products with different precipita-
tion intensities (mm/h) over four mountainous regions. The panels (a,e,i) are the Tibetan Plateau
(75–105◦ E, 25–40◦ N); the panels (b,f,j) are the Caucasus Mountains (40–47◦ E, 41–43◦ N); the panels
(c,g,k) are the Rocky Mountains (32–63◦ N, 105–125◦ N); and the panels (d,h,l) are the southern
Andes Mountains (68–76◦ W, 24–55◦ S).

However, it is complicated and challenging to accurately distinguish precipitation
phases over mountainous areas with complex terrain and variable climate conditions.
Further studies are required to explore the rain–snow partitioning ability of satellite-based
products and reanalysis models over the important mountainous areas of the globe.
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5. Conclusions

This study evaluated the performance of the IMERG and ERA5 products in precipita-
tion and rain–snow partitioning at the global scale, using the three-hourly and six-hourly
precipitation observation data from over 14,000 gauges, from 2000 to 2007. The IMERG and
ERA5 precipitation phase estimates were compared at different spatiotemporal scales to ex-
amine the capability of detecting snowfall and rainfall events. The performance of different
methods was also investigated under different precipitation intensities and temperature
ranges. The main conclusions are given as follows:

(1) The ERA5 results show better overall performance in distinguishing rainfall and
snowfall events than the IMERG. The median CSI values of the IMERG and ERA5 are
0.78, and 0.82, respectively.

(2) Both the IMERG and ERA5 perform well in winter, but worse in summer. The ERA5
shows good accuracy on all continents except for South America. Both products
demonstrated poor performance in South America, likely due to complex terrain and
warm temperature circumstances.

(3) Compared with the IMERG, the ERA5 is more sensitive to snowfall events at high
latitudes but shows worse performance at mid-low latitude regions. A possible reason
for this phenomenon is that due to the ERA5 having a coarser resolution (0.25 × 0.25◦)
and a simulation based on physical mechanisms, it is more difficult for the ERA5
than the IMERG to accurately capture the complex precipitation phase in low- and
medium-dimensional regions. Moreover, the IMERG performs better than the ERA5 at
middle latitude regions. Both the IMERG and ERA5 have lower accuracy in rain–snow
partitioning under heavy precipitation.

The IMERG represents the temperature-threshold-based method and the ERA5 rep-
resents the atmospheric-model-based method. Therefore, this study provides a com-
prehensive view on the capabilities of existing methods in distinguishing rainfall and
snowfall. Moreover, it is necessary to generate gauge datasets with higher quality and
better spatiotemporal consistency to verify the accuracy of satellite and model datasets in
distinguishing precipitation phases.
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