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Abstract: Antibiotics are the most common pharmaceutical compounds, and they have been exten-
sively used for the prevention and treatment of bacterial diseases for more than 50 years. However,
merely a small fraction of antibiotics is metabolized in the body, while the rest is discharged into the
environment through excretion, which can cause potential ecological problems and human health
risks. In this study, the elimination of seventeen antibiotics from real livestock wastewater effluents
was investigated by UV/TiO2 advanced oxidation process. The effect of process parameters, such
as TiO2 loadings, solution pHs, and antibiotic concentrations, on the efficiency of the UV/TiO2

process was assessed. The degradation efficiency was affected by the solution pH, and higher
removal efficiency was observed at pH 5.8 and 9.9, while the catalyst loading had no significant
effect on the degradation efficiency at these experimental conditions. UV photolysis showed a good
removal efficiency of the antibiotics. However, the highest removal efficiency was shown by the
UV/photocatalyst system due to their synergistic effects. The results showed that more than 90%
of antibiotics were removed by UV/TiO2 system during the 60 min illumination, while the corre-
sponding TOC and COD removal was only 10 and 13%, respectively. The results of the current study
indicated that UV/TiO2 advanced oxidation process is a promising method for the elimination of
various types of antibiotics from real livestock wastewater effluents.

Keywords: livestock wastewater treatment; antibiotics; advanced oxidation processes; UV/TiO2

photocatalysis

1. Introduction

The huge increase in the human population in the last several decades in the world
has increased the demand for more food resources, which has led to rapid growth in
the livestock industry [1–3]. However, because livestock animals were likely prone to
bacterial infections, it has led to increased antibiotics usage for preventing bacterial infec-
tions and promoting the sustainable growth of livestock animals [4–7]. Approximately
100,000–200,000 tons of antibiotics were annually used all over the world [8]. Furthermore,
the production of antibiotics has greatly increased in recent years. For instance, in China
alone, the annual antibiotics usage increased by more than 10 times over a decade, i.e.,
rising from 6000 tons to 78,200 tons during 2003–2013 [9,10]. It is expected that antibiotics
consumption will further increase by two-thirds (i.e., 105,600 tons) by 2030. Another study
reported that antibiotic consumption from 2017 to 2030 in 41 countries was estimated to
be 104,079 tons by 2030 [7]. These situations suggest that antibiotics can be consistently
detected in the environment [11]. Livestock wastewater effluents represent one of the most
common sources of antibiotics in the environment [12,13]. The concentration of antibiotics
detected in the environment varied from ppt (ng/L) to ppb (µg/L) level [14–16], but the
eco-toxicity was detected at ppm level (mg/L) [17,18].

Water 2022, 14, 958. https://doi.org/10.3390/w14060958 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w14060958
https://doi.org/10.3390/w14060958
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0002-8636-2859
https://doi.org/10.3390/w14060958
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w14060958?type=check_update&version=2


Water 2022, 14, 958 2 of 20

The physicochemical properties of antibiotics include high molecular weight com-
pounds, various structures and bioavailability depending on hydrophobicity. Because of
this, they do not decompose completely in the human or animal body, influencing their
transport in the environment [19]. Due to their persistent and non-biodegradable nature,
antibiotics may likely accumulate in aquatic systems, plants, and animals [9]. Photocatalyst
resistant bacteria may be introduced into the environment, which can directly or indirectly
invade the human body [20]. In addition, only a small fraction of antibiotics is absorbed
or metabolized in the body, while the rest are released into the environment through ex-
cretion [21]. Anthony et al. reported that 10–20% of the antibiotics were metabolized in
the body [9], or an average metabolic rate may only be 30% [20]. It was also reported
that 25–75% of the taken antibiotics were excreted from the bodies [22]. Antibiotics are
non-biodegradable in the environment [23]. Owing to their polar structure, antibiotics are
not absorbed on the subsoil [24] and hence persist in the environment for a long time [25].
Consequently, the widespread use of various antibiotics caused different adverse effects in
humans, including dermatitis, gastrointestinal symptoms, carcinogenicity, reproductive
effects, and teratogenicity [26–28]. The Center for Disease Control and Prevention (CDC)
reported that antimicrobial-resistant bacteria caused diseases in more than 2,000,000 people
in the US, and about 700,000 deaths were annually caused due to antimicrobial-resistant
bacteria all over the world [29]. Therefore, it is of great importance to apply reliable
treatment technologies to completely remove antibiotics from livestock wastewater.

Different wastewater treatment processes, including biological and physicochemical
methods (i.e., coagulation, adsorption, membrane separation etc.), have been long em-
ployed for treating livestock wastewater effluents [2,30–38]. Although these treatment
processes were usually economic, major disadvantages included longer reaction time
(i.e., month) by the biological methods [2]. Some physicochemical treatment processes
demonstrated drawbacks, including low efficiency and high operating expenses in terms
of plant construction and disposal of the produced sludge [35]. The conventional biological
and physicochemical methods can only partially destroy antibiotics [38]. In the case of
South Korea, Kim et al. researched the characteristics of influent and effluent wastewater,
including four types of antibiotics of monitored concentration with five types of treatment
plants such as sequencing batch reactor, liquid-phase flotation, membrane bioreactor, biore-
actor plus ultrafiltration (BIOSUF) and bio best bacillus systems. Although the result of this
study was obtained removal efficiency of at least 90%, some of them such as chlortetracy-
cline (483.7 µg/L→11.5 µg/L), sulfamethazine (251.2 µg/L→20.8 µg/L) and sulfathiazole
(230.8 µg/L→28.2 µg/L) were not completely removed [11]. Therefore, new treatment
methods are essentially required to develop reliable technologies for the complete removal
of residual antibiotics after the biological process.

Advanced oxidation processes (AOPs) are promising alternatives to conventional
wastewater treatment processes that can readily decompose antibiotic molecules or im-
prove their biodegradability [37]. AOPs, such as ozonation, UV/H2O2, Fenton’s reaction,
electrochemical processes, photocatalysis etc., have been extensively used in many envi-
ronmental remediations, especially for treating refractory organic pollutants [39–43]. The
AOPs are usually characterized by the generation of reactive oxygen species, such as hy-
droxyl radicals (•OH) [44], which can attack and transform complex organic compounds,
including antibiotics, into eco-friendly end-products, i.e., CO2, H2O etc. [45,46]. The AOPs
have shown fast reactivity and high efficiency for the degradation of antibiotics [26,47].
Ozone oxidation has been used for disinfection and oxidation of organic pollutants, and the
decomposition rate increases as the pH increases [48]. However, as the ozonation process
progresses, the pH decreases, and the generation of •OH decreases, thereby decreasing the
process efficiency [37]. Fenton’s oxidation is a metal-catalyzed oxidation reaction in which
iron is the catalyst [49], and the main disadvantage is the low pH requirement in order to
prevent iron precipitation [34]. The electrochemical process had the disadvantage of a high
operation cost [40].
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Among the AOPs, TiO2 photocatalysis has gained more attention for the decompo-
sition of recalcitrant organic pollutants in the environment [22]. The TiO2 photocatalyst
can be activated by light with energy higher than the band gap energy of TiO2, i.e., 3.2 eV.
When TiO2 was irradiated with ultraviolet (UV) light, different reactive oxygen species
were generated through reactions of electron (e−)-hole (h+) pair, H2O, and O2 [44]. As a
photocatalyst, TiO2 is an inexpensive and non-toxic material [17,50]. Moreover, TiO2 is
photochemically stable with no mass transfer restrictions and a commercially approved
material [51] that does not generate secondary pollutants [37]. However, it is difficult to
remove and regenerate the photocatalyst [17], and several studies have solved the problem
by combining other materials such as graphene or LDH with TiO2. There were many
studies in the literature about UV/TiO2 photocatalytic degradation of individual antibiotics
in water systems [40,48]. However, simultaneous degradation of an extended number
of antibiotics (mixture of antibiotics) by UV/TiO2 system, especially in the real livestock
wastewater effluents, has not been reported so far.

In this study, the degradation of seventeen antibiotics (i.e., ceftiofur, clopidol, en-
rofloxacin, erythromycin, florfenicol, lincomycin, oxytetracycline, penicillin-G, penicillin-
V, sulfadiazine, sulfamethazine, sulfamethoxazole, sulfathiazole, tetracycline, tiamulin,
trimethoprim, and tylosin) in the real livestock wastewater effluents (i.e., Jeollanam-do,
Korea), by UV/TiO2 system was investigated. The effects of water quality and process
parameters, such as TiO2 loadings, solution pHs, and antibiotic concentrations, on the effi-
ciency of the UV/TiO2 system were assessed. The degradation efficiency of antibiotics by
only UV or photocatalyst alone was also investigated for comparison purposes. Moreover,
mineralization of the antibiotics in livestock wastewater was determined by measuring
the reduction in UV254 absorbance, and COD as well as TOC removal. Although factory-
scale testing must also be performed prior to application at the industrial level, this study
introduces lab-scale experiments. Since we tried to thoroughly understand aspects of pho-
tocatalysis in the treatment of real livestock wastewater effluents, all seventeen antibiotics
together were spiked in the wastewater effluent. Moreover, UV/TiO2 photocatalysis as a
quaternary treatment process was applied for removing antibiotics in livestock wastewater
effluent for the first time. The results of the study are expected to provide useful scientific
information on the elimination of antibiotics from real livestock wastewater effluents by
using an environmentally friendly UV/TiO2 system.

2. Materials and Methods
2.1. Materials

The antibiotics used in this study, i.e., ceftiofur, clopidol, enrofloxacin, erythromycin,
florfenicol, lincomycin, oxytetracycline, penicillin-G, penicillin-V, sulfadiazine, sulfamet-
hazine, sulfamethoxazole, sulfathiazole, tetracycline, tiamulin, trimethoprim, and tylosin,
were purchased from Sigma-Aldrich (St. Louis, MO, USA). The chemical formula and
molecular structure of the antibiotics are presented in Table 1. The wastewater was collected
from a real livestock wastewater treatment plant in Jeollanam-do, Korea. The characteristics
of the wastewater are described in Table 2. The effluent was stored in a refrigerator prior to
the degradation experiments or analysis. The TiO2 used as a photocatalyst was Aeroxide
P25. The pH of the reaction solution was adjusted by using 1 M NaOH or 1 M HCl solution.
All chemicals were used as received.
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Table 1. Chemical formula and molecular structure of the antibiotics.

Antibiotics Name Chemical Structure

Ceftiofur C19H17N5O7S3
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Table 1. Cont.

Antibiotics Name Chemical Structure
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Table 2. Characteristics of real livestock wastewater, obtained from a livestock wastewater treatment
plant in Jeollanam-do, Korea.

pH Conductivity
(mS/cm)

Total Organic
Carbon
(mg/L)

Chemical
Oxygen
Demand
(mg/L)

UV254
(cm−1)

Color
(mg/L Pt-Co)

Total
Phosphorus

(mg/L)

Total
Nitrogen

(mg/L)

7.1 ± 0.1 778 ± 3 69 ± 1 262 ± 2 0.351 ±
0.002 30 ± 2 0.05 ± 0.01 5 ± 1

2.2. Analytical Methods

The degradation analysis of the antibiotics was conducted by using Liquid Chro-
matography Mass Spectrometry (LC-MS, Agilent 6460, Agilent, Santa Clara, CA, USA) and
UV-Vis spectrophotometer (Thermo Fisher ScientificG10S, Thermo, Waltham, MA, USA),
described in our previous paper [52].

The total organic carbon (TOC) was measured using a TOC-LCPH/CPN analyzer (SHI-
MADZU, Tokyo, Japan). Chemical oxygen demand (COD) was analyzed by CODCr analy-
sis [17].

2.3. Characterization of TiO2 Photocatalyst

The morphological characterization of TiO2 photocatalyst was investigated by using
a transition electron microscope (TEM, JEM2100F, JEOL, Tokyo, Japan) and a scanning
electron microscope (SEM, S-4300 SE, Hitachi, Tokyo, Japan). The surface of TiO2 was
analyzed by Fourier Transform Infrared Vacuum Spectrometer (FTIR, VERTEX 80V, Bruker,
Karlsruhe, Germany) in the wavenumber ranging from 4000 cm−1 to 400 cm−1 with
resolution of 4 cm−1. The X-ray Diffractometer patterns of TiO2 were measured by using
Multi-purpose X-ray Diffractometer (X’pert Pro MPD, PANalytical, Almelo, Netherland) in
the 2θ from 10◦ to 70◦ utilizing Cu, Kα radiation (λ = 1.54).

2.4. Photocatalytic Degradation Experiments

The photocatalytic experiments were performed in a batch mode photoreactor, con-
sisting of a 500 mL quartz beaker. Figure 1 shows a schematic of experimental setups
for this study. For UV irradiation conditions, two combined UV lamps (254 nm, 20 W,
intensity = 16.8 ± 1.5 mW/cm2) were located on both sides of 500 mL beaker. A quartz
beaker was used since it is transparent to UV light (λ < 254 nm) rather than soda-lime glass
which absorb it [53].
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In the dark experiments, the quartz beaker was covered with aluminum foil to block
all light. The reactors were cooled with a fan during the experiments to avoid the effect of
temperature on the removal of antibiotics. The reaction solution was kept under vigorous
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stirring using a magnetic stirrer for maintaining homogeneity. To prevent further degrada-
tion or any adsorption effect on the sample during sample storage after the sampling, all
taken samples were filtered using syringe filters (ADVANTEC® DISMIC®-13CP, 0.20 µm
pore size, Tokyo, Japan), kept in glass vials, and stored in a refrigerator until sample
analysis. All experiments were performed in duplicate.

3. Results and Discussion
3.1. Characteristics of TiO2 Photocatalyst

As shown in Figure 2a, the TiO2 nanoparticles used in this study were spherical and
approximately 20 nm in diameter. XRD analysis in Figure 2b shows the presence of both
phases of anatase and rutile in the TiO2-P25 sample. Both phases of anatase and rutile in
the sample were confirmed with the measured lattice spacing of 0.35 nm and 0.32, corre-
sponding to the (101) plane of anatase and the (110) plane of rutile, respectively (an insert
of Figure 2c). The specific surface area of TiO2 (AEROXIDE P25) was 35~65 m2/g. When
UV light irradiates energy greater than the band gap (3.2 eV, [52]) of TiO2 photocatalyst,
free electrons (e−) in the valence band (VB) are transferred to the conduction band (CB) of
TiO2, and thus, electron holes (h+) formed in the valence band of TiO2 [54]. The reaction
mechanism of TiO2 is shown through reactions 1–4 [55] and Figure 3. Reaction 2 shows
a reduction process, while reactions 3 and 4 show an oxidation process. The pairs of
e− and h+ generated in CB and VB, respectively, produce oxygen-reactive species •OH
and O2

−, and can remove pollutant compounds by redox reaction on the surface of TiO2.
Characterization of TiO2 was also analyzed by FTIR. As shown in Figure 2d, FTIR analysis
peaks appeared in the range 400–800 cm−1, 1500–1700 cm−1, and 2800–3600 cm−1, and the
main peak was observed at 400–800 cm−1. According to reports, the peaks correspond-
ing to the vibration of Ti-O are confirmed to be in the range 653–550 cm−1 [56], while
those related to Ti-O stretching and Ti-O-Ti bridging stretching modes are in the range
400–700 cm−1 [57]. Maulidiyah et al. also confirmed the presence of peaks of TiO2-P25 at
516 cm−1–677 cm−1 [58].
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TiO2 + hν→ TiO2 (e−) + TiO2 (h+) (1)

TiO2 (e−) + O2 → TiO2 + O2
− (2)

TiO2 (h+) + H2O→ TiO2 + •OH + H+ (3)

TiO2 (h+) + HO− → TiO2 + •OH (4)

3.2. UV/TiO2 Photocatalytic Degradation of Antibiotics in Livestock Wastewater

The degradation of antibiotics in livestock wastewater by UV/TiO2 photocatalysis
was investigated, and the results are shown in Figure 4. As can be seen, most of the studied
antibiotics ([antibiotics]0 = 20–100 µg/L, [TiO2]0 = 0.1 g/L) were effectively decomposed by
TiO2 photocatalysis under UV illumination for 30 min. The degradation of antibiotics in wa-
ter by UV/TiO2 process was mainly due to •OH produced by UV/TiO2 system (reactions
1–4) [59] and/or direct UV photolysis [60]. The results shown in Figure 4 revealed that the
seventeen antibiotics behaved differently towards the UV/TiO2 process, as indicated from
their removal efficiencies using the same reaction conditions. For instance, nine antibiotics,
including ceftiofur, enrofloxacin, oxytetracycline, penicillin-G, penicillin-V, sulfadiazine,
sulfamethazine, sulfathiazole, and tetracycline, were 100% degraded for 30 min of UV
illumination. The degradation efficiency of five antibiotics, i.e., clopidol, lincomycin, tia-
mulin, trimethoprim, and tylosin, by the UV/TiO2 system was around 90%. On the other
hand, the remaining three antibiotics, i.e., erythromycin, florfenicol and sulfamethoxazole,
showed less than 70% removal efficiency after 30 min of the photocatalysis. The difference
in the removal efficiency of the tested antibiotics by the UV/TiO2 process can be explained
on the basis of structural differences [61]. Karaolia et al. showed the solar-light/TiO2 photo-
catalytic degradation efficiency varied among the antibiotics, represented by 87, 10 and 19%
removal of sulfamethoxazole, erythromycin, and clarithromycin, respectively, after 60 min
illuminations [62]. Elmolla et al. showed that the degradation efficiency of amoxicillin,
ampicillin and cloxacillin by UV/ZnO photocatalysis was 44, 60 and 96%, respectively,
after 5 h, using 0.2 g/L ZnO [63]. Elmolla and Chaudhuri [51] reported the degradation
rate constant (k) by UV/TiO2 photocatalysis varied among the antibiotics, represented by
0.007, 0.003 and 0.029 min−1 for amoxicillin, ampicillin and cloxacillin, respectively.
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3.3. Factors Affecting the Efficiency of UV/TiO2 Photocatalysis of Antibiotics

The pH, TiO2 loadings, and antibiotics concentrations have been shown to be among
the most important variables during TiO2 photocatalysis [64]. In the succeeding sections,
the effects of initial concentrations of antibiotics, solution pHs and catalyst loadings on
TiO2 photocatalysis will be discussed.

3.3.1. Effects of Initial Concentration of Antibiotics

The degradation of antibiotics in livestock wastewater by UV/TiO2 process was carried
out by using different initial concentrations of the antibiotics (i.e., 20, 50 and 100 µg/L)
for 30 min under UV illumination, and the results are shown in Figures 5 and 6. As
seen in Figure 5, the degradation efficiency of nine antibiotics, i.e., ceftiofur, enrofloxacin,
oxytetracycline, penicillin-G, penicillin-V, sulfadiazine, sulfamethazine, sulfathiazole, and
tetracycline, was the same when using different concentration levels, i.e., represented by
100% degradation after 30 min of UV illumination. The results showed that the removal
efficiency of the remaining seven antibiotics (i.e., except sulfamethoxazole) was dependent
on their initial concentrations, i.e., the removal efficiency was inversely proportional to the
initial concentration of the antibiotics (Figure 6). This result was consistent with the findings
of Athanasios et al., showing that the degradation efficiency of sulfamethoxazole by solar-
light/TiO2 photocatalysis decreased with the increase in its initial concentrations [65].
Klauson et al. also found the photocatalytic degradation of amoxicillin reduced from 90%
to 30% in 6 h by increasing amoxicillin concentration from 10 to 100 mg/L [66]. A possible
reason could be the increased competition of antibiotic molecules with the reactive oxidizing
species at the high pollutant concentrations [67]. Furthermore, the high concentration of
antibiotics may hinder UV light passage through the reaction solution, thereby decreasing
the intensity of UV light for the activation of TiO2 photocatalyst [64]. Nevertheless, for
sulfamethoxazole, its photocatalytic degradation increased with an increase in its initial
concentration. A previous study by Xekoukoulotakis et al. also found that the reaction
rate for photocatalytic degradation of sulfamethoxazole increased with increasing its initial
concentration in the range of 2.5 to 20 mg/L, consistent with our result [68].
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3.3.2. Effects of Solution pHs

To investigate the antibiotic removal efficiency at different solution pHs, three pHs
of 3, 5.8, and 9.9 were tested. During the experiment, the photocatalyst concentration was
fixed at 0.1 g/L to minimize antibiotic adsorption by the photocatalyst, and the total con-
centration of antibiotics was 50 µg/L. Figures 7 and 8 show the removal of each antibiotic
at different solution pHs after 30 min of UV irradiation. As seen in Figure 7, ten antibiotics,
i.e., ceftiofur, oxytetracycline, penicillin-G, penicillin-V, sulfadiazine, sulfamethazine, sul-
famethoxazole, sulfathiazole, tetracycline, and tylosin were almost completely decomposed
at all the studied pHs. However, other antibiotics have their preference of solution pHs
for photocatalysis. As can be seen in Figure 8, clopidol, enrofloxacin, erythromycin, and
florfenicol demonstrated over 90% removal efficiency under basic conditions, enrofloxacin
showed over 90% removal efficiency at pH 5.8, and lincomycin and tiamulin showed
the highest removal efficiency at pH 3. In the case of trimethoprim, the highest removal
efficiency was achieved at pH 5.8. Furthermore, in the case of trimethoprim, a pKa value of
trimethoprim and TiO2 was 7.2 and 6.7, respectively; these have similar charges, and no
electrostatic interactions occurred [69]. This explained why trimethoprim showed a higher
removal efficiency at pH 5.8 rather than at pH 3 or 9.9.
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Figure 8. The pH value for 90% degradation efficiency of selected antibiotic by using UV/TiO2.
[antibiotics]0 = 50 µg/L, [TiO2]0 = 0.1 g/L.

3.3.3. Effects of Photocatalyst Loadings

The degradation of antibiotics in livestock wastewater by UV/TiO2 process was
carried out at different TiO2 loadings (i.e., 0.1, 0.3, 0.5, and 1.0 g/L) for 60 min of UV
illumination, and the results were shown in Figures 9–13. All the seventeen antibiotics
were spiked in the reactor to achieve a total concentration of 350 µg/L. The results showed
34, 40, 40 and 41% degradation of the antibiotic using TiO2 loadings of 0.1, 0.3, 0.5, and
1.0 g/L, respectively, during 5 min UV illumination (Figure 9). After 60 min illumination,
more than 90% of the antibiotics were degraded with all TiO2 loadings (Figure 10). The
highest degradation efficiency was obtained using 1.0 g/L. Meanwhile, the degradation
efficiency of the individual antibiotics under UV/TiO2 process was investigated by using
different TiO2 photocatalyst loadings, and the results were shown in Figures 11 and 12.
As shown in Figure 11, six antibiotics, i.e., ceftiofur, oxytetracycline, penicillin-V, sulfa-
diazine, sulfathiazole, and tetracycline, had an insignificant effect by TiO2 loadings, and
these antibiotics were completely degraded during 60 min illumination regardless of the
photocatalyst loadings. It seemed that these antibiotics might have weak bonds prone to
relatively easier decomposition, probably due to effective UV photolysis even though TiO2
loading was low, i.e., 0.1 g/L.
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Figure 9. The effect of TiO2 loadings on the degradation of total antibiotics after 5 min UV illumination
at different TiO2 loadings.
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illumination at different TiO2 loadings.
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TiO2 loadings.
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Figure 11 shows that the degradation efficiency of enrofloxacin was 93% at 0.1 to
0.5 g/L, penicillin-G was 91, 93, and 92% at 0.1, 0.3, and 0.5 g/L, respectively, and sul-
famethazine was 96% at 0.1 to 0.5 g/L TiO2 loading, which reached 100% at 1.0 g/L TiO2
loading, in all cases. The degradation efficiency of four antibiotics, i.e., lincomycin, tia-
mulin, trimethoprim, and tylosin, was proportional to TiO2 loading and reached more than
90% degradation at 1.0 g/L. In the case of lincomycin, tiamulin, and trimethoprim, the
degradation efficiency was around 80% using a lower TiO2 loading of 0.1 g/L.

However, the degradation of four antibiotics, i.e., clopidol, erythromycin, florfenicol,
and sulfamethoxazole, was very different from the other antibiotics, since they had a
significant effect by TiO2 loadings, as shown in Figure 12. They were not completely
degraded by UV/TiO2 photocatalysis, even though the TiO2 loading increased up to
1.0 g/L.

Figure 13 shows the adsorption capacity of the photocatalyst when using different
loadings. As the photocatalyst concentration increased from 0.1 to 1.0 g/L, the adsorption
efficiency of the antibiotics increased from 0.1 to 1.2, 4.8, and 12.6%, respectively. In the
case of TiO2 photocatalysis (Figure 13), as the catalyst concentration increased from 0.1 to
1.0 g/L, the degradation efficiency was also increased from 89.5 to 93.2%. For improving
the overall efficiency of antibiotics removal, adsorption is an important parameter. Elmolla
and Chaudhuri [51] found the removal efficiency of amoxicillin, ampicillin and cloxacillin
by UV/TiO2 photocatalysis after 300 min irradiation increased from 42.3 to 58.7, 33.3 to
52.4 and 46.6 to 60.2, by increasing TiO2 concentrations from 0.5 to 2.0 g/L, respectively.

3.3.4. UV254 Reduction in the Wastewater Samples

The reduction in UV 254 nm absorption by antibiotics in the wastewater samples
was measured [70] to confirm the degradation of the antibiotics, which have aromatic
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contents. According to the Lambert–Beer law [71], light absorbance is directly proportional
to pollutants and dissolved natural organic matter concentrations in samples. Using this
law, the changes in concentrations of the antibiotics and dissolved natural organic matter
were monitored. As can be seen in Figure 14, concentration (C/C0) dramatically reduced
when samples were treated with UV/TiO2 photocatalysis. However, there was a plateau
of the degradation of dissolved organic compounds by photocatalysis. The reduction in
UV254 was associated with the degradation of aromatic compounds and the consequent
transformation to smaller molecules, e.g., formic or acetic acids, aldehydes, ketone etc. [52].
The results showed that the degradation of antibiotics by the UV/TiO2 process did not
result in full mineralization of antibiotics, probably due to the complex structures and
strong bonds of the antibiotics. It might be due to competition among antibiotics and
dissolved natural organic matter for the reactive species, during UV/TiO2 photocatalysis.
Further mineralization of the antibiotics was studied from the COD and TOC removal
efficiency in the next section.
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photocatalysis at different TiO2 loadings: (A) 0.1 g/L, (B) 0.3 g/L, (C) 0.5 g/L, and (D) 1.0 g/L.

3.4. Mineralization Studies

The mineralization of toxic organic molecules into innocent inorganic compounds,
such as H2O and CO2, was studied by using different techniques. The mineralization of
the antibiotics was measured from COD and TOC analysis, and the results are shown
in Figure 15. The results showed that 13% COD and 10% TOC removal was achieved in
60 min at photocatalyst concentrations of 1.0 g/L. The results showed that the mineraliza-
tion efficiency (i.e., COD and TOC removal) was far below the degradation efficiency of
antibiotics, consistent with the literature studies [64]. A possible reason was the generation
of smaller molecules and reaction intermediates during the degradation process, which
need extra •OH for their degradation [64]. Elmolla and Chaudhuri [52] found the degrada-
tion efficiency of antibiotics in water by UV/TiO2 photocatalysis was 59% in 300 min, while
the corresponding mineralization efficiency was only 10%, attributed to the same reasons.
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Figure 15 shows the removal of TOC and COD under dark conditions and UV condi-
tions. TOC removal was observed to be only 2, 4, 4, and 3% as photocatalyst concentrations
of 0.1, 0.3, 0.5, and 1.0 g/L, respectively, under dark conditions (Figure 15A). However, un-
der UV illumination, the TOC removal increased up to 10% at 1.0 g/L of TiO2 (Figure 15B).

As shown in Figure 15C,D, the average COD removal was 3% (minimum 1% and max-
imum 6%) in dark conditions. However, the average COD removal reached 13% (minimum
10% and maximum 15%) when under UV illumination. The trend of COD removal was very
similar to TOC removal, indicating the antibiotic could not be fully decomposed by TiO2
photocatalysis under these experimental conditions. However, Xekoukoulotakis et al. [68]
and Abellán et al. [59] observed a nearly complete mineralization of sulfamethoxazole
using UVA/TiO2 photocatalysis.

3.5. Comparison of Different AOPs

The degradation of the seventeen antibiotics was carried out for 30 min under illumina-
tion ([antibiotics]0 = 20 µg/L) under the following conditions: (i) UV only, (ii) photocatalyst
only and (iii) UV/photocatalyst, and the results were shown in Figure 16. As seen, the
degradation efficiency of the antibiotics was followed as: UV/photocatalyst (photocataly-
sis) > Only UV (photolysis) > only photocatalyst (adsorption) (Figure 16). The results were
consistent with the literature studies, showing higher degradation efficiency of meropenem
antibiotics in water by UV/photocatalyst systems rather than UV photolysis [72]. Shankara-
iah et al. [73] reported 45 and 90% degradation of antibiotic norfloxacin in aqueous solution
by UV and UV/TiO2 processes, respectively. The results were attributed to the generation
of •OH by the UV/TiO2 photocatalyst system (reactions 1–4), which can attack most of the
organic molecules in an aqueous solution [74]. On the other hand, the degradation of the
antibiotics by only the UV system was attributed to the UV absorbance and photolysis of
the double bond contained in the molecules (i.e., antibiotics) [60]. The usually high removal
efficiency of antibiotics by UV/TiO2 process rather than only UV might suggest that the
studied antibiotics had a strong affinity towards oxidation by •OH.
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Figure 16. Antibiotic decomposition by using different AOPs, i.e., (i) only UV (ii) only TiO2 photocat-
alyst, and UV/TiO2 photocatalyst.

However, in the case of clopidol, florfenicol, and sulfamethoxazole, the antibiotic
degradation efficiency by the only UV system was superior to the UV/photocatalyst or only
photocatalyst systems (Figure 17). This result could be attributed to any high UV photon
absorption capacity for those antibiotics, whereby the UV photon intensity may decrease
in the presence of photocatalyst, thereby retarding the degradation efficiency. Despite the
fact that the antibiotics were significantly decomposed even under only the UV conditions,
the UV/TiO2 process was more effective in removing all the antibiotics contained in the
livestock wastewater effluent. Several research studies reported low removal efficiency of
antibiotics by UV, Visible or solar photolysis [63,75]. Elmolla and Chaudhuri [63] reported
that UV photolysis resulted in 2.9, 3.8, and 4.9% removal of amoxicillin, ampicillin, and
cloxacillin in an aqueous solution, respectively, under 300 min illuminations. Che et al.
found that ciprofloxacin (CIP) and tetracycline (TC) were resistant towards the visible light
irradiation, represented by less than 5% degradation in 2 h illumination [76]. Meanwhile,
Priyaa et al. reported that ampicillin (AMP) and oxytetracycline (OTC) antibiotics were
quite stable under solar light irradiation, represented by less than 5% degradation in 2 h
illumination [75].
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ods, which needs to be investigated in our future studies. Samuel Moles et al. reported 
reprocessing completely, or an 80% removal of antibiotics from wastewater from pilot-
scale plants, and the catalyst was recovered and reused after retreatment [77]. 

Figure 17. Exceptional behavior of the specific antibiotic towards (i) only UV (ii) only TiO2 photocat-
alyst and UV/TiO2 photocatalyst.

4. Conclusions

The UV/TiO2 photocatalysis was used for the treatment of real livestock wastewa-
ter effluents. The degradation efficiency of antibiotics was only slightly affected by the
photocatalyst loadings at the experimental conditions. However, the removal efficiency
was inversely proportional to the initial concentration of antibiotics. In the case of solution
pHs, due to different speciation and UV absorption of antibiotics, there is a pH preference
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for each antibiotic. However, a high removal efficiency was observed for many antibiotics
regardless of solution pHs.

The degradation efficiency of antibiotics by UV/TiO2 photocatalysis was very high, i.e.,
>90% after 60 min illumination. However, the extent of mineralization was significantly low,
as confirmed by the removal of COD and TOC or the reduction in UV254 absorbance. The
overall degradation efficiency of the antibiotics followed the order: UV/TiO2 photocatalyst
> Only UV > only TiO2 photocatalyst systems. However, it was revealed that low antibiotic
concentrations of some studies were completely decomposed by only UV photolysis as well.

Nevertheless, the AOPs may have a disadvantage of high cost in real-life applica-
tions, which can be largely minimized by the activation of photocatalyst by sustainable
solar light energy, accomplishable through narrowing the band-gape energy by doping of
photocatalyst, and it can be investigated in our future studies.

The separation of photocatalyst after use, particularly regeneration of the photocatalyst
for reuse, is a desirable quality for practical uses. The suspended TiO2 particles can
be separated and/or recovered by filtration, followed by regeneration via calcination.
Alternatively, the replacement of powdered TiO2 photocatalysts with fixed-bed continuous
columns, or especially with catalyst immobilization on supporting materials (e.g., TiO2
thin film on glass plates, beads etc.), is a more convenient approach compared to other
methods, which needs to be investigated in our future studies. Samuel Moles et al. reported
reprocessing completely, or an 80% removal of antibiotics from wastewater from pilot-scale
plants, and the catalyst was recovered and reused after retreatment [77].

The application of UV/TiO2 system for the simultaneous removal of a vast number
of different antibiotics from real livestock wastewater effluents (i.e., one and a half dozen)
is a significant contribution towards the real-life application. However, this research is a
lab-scale test, and thus, a prototype or plant-scale test should be conducted to industrialize
this technology in the livestock wastewater treatment facilities. It was concluded that
UV/TiO2 photocatalysis was a promising technology for the treatment of real livestock
wastewater effluents.
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