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Abstract: Reduced water quality due to the eutrophication process causes large economic losses
worldwide. Multi-source remotely-sensed water quality monitoring can help provide effective
water resource management. The research evaluates the retrieval of the water quality parameters:
chlorophyll-a (Chl-a), total suspended matter (TSM), and chromophoric dissolved organic matter
(CDOM), over optically different water types. Cross-sensor performance analysis of three satellite
data sources: Sentinel-3 Ocean Land Color Imager (OLCI), Sentinel-2A Multi-Spectral Instrument
(MSI), and Landsat-8 Operational Land Imager (OLI), acquired during a 45 min overpass on the Nile
Delta coast on 22 March 2020 was performed. Atmospheric correction using the case 2 Regional
Coast Color (C2RCC) was applied using local water temperature and salinity averages. Owing to the
lack of ground-truth measurements in the coastal water, results were inter-compared with standard
simultaneous color products of the Copernicus Marine Environment Monitoring Service (CMEMS),
OLCI water full resolution (WFR), and the MODIS Aqua, in order to highlight the sensor data relative
performance in the Nile Delta’s coastal and inland waters. Validation of estimates was carried out
for the only cloud-free MSI data available in the 18–20 September 2020 period for the Burullus Lake
nearly contemporaneous with in situ measurements in the 22–25 September 2020. Inter-comparison
of the retrieved parameters showed good congruence and correlation among all data in the coastal
water, while this comparison returned low positive or negative correlation in the inland lake waters.
In the coastal water, all investigated sensors and reference data showed Chl-a content average of
3.14 mg m−3 with a range level of 0.39–4.81 mg m−3. TSM averaged 7.66 g m−3 in the range of
6.32–10.18 g m−3. CDOM clarified mean of 0.18 m−1 in the range level of 0.13–0.30 m−1. Analysis
of the Mean Absolute Error (MAE) and the Root Mean Squared Error (RMSE) clarified that the MSI
sensor was ranked first achieving the smallest MAE and RMSE for the Chl-a contents, while the EFR
proved superior for TSM and CDOM estimates. Validation of results in Burullus Lake indicated a
clear underestimation on average of 35.35% for the Chl-a induced by the land adjacency effect, shallow
bottom depths, and the optical dominance of the TSM and the CDOM absorption intermixed in turbid
water loaded with abundant green algae species and counts. The underestimation error increased at
larger estimates of the algal composition/abundance (total counts, Chlorophyacea, Euglenophycaea,
and Bacillariophycaea) and the biological contents (carbohydrates, lipids, and proteins), arranged in
decreasing order. The largest normalized RMSE estimates marked the downstream areas where the
inflow of polluted water persistently brings nutrient loads of nitrogen and phosphorous compounds
as well as substantial amounts of detrital particles and sediments discharged from the agricultural
and industrial drains and the land use changes related to agricultural practices, resulting in the
increase of water turbidity giving rise to inaccurate Chl-a estimates.

Keywords: chlorophyll-a; water quality; sensor performance; Burullus Lake; Nile Delta; Egypt

1. Introduction

Coastal and inland water conditions, in particular, the chlorophyll-a (Chl-a) content
and its accurate estimation controlling parameters, such as the total suspended matter
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(TSM) and the chromophoric dissolved organic matter (CDOM), are fundamental for ef-
fective monitoring of the water quality. Risk assessment of deteriorated water quality is
vital to set preventive or ameliorative measures that can lead to better understanding and
disclosing sources of contamination and anthropogenic effects, along with the prevailing
eutrophication and climate change forces [1–3], which is a priority to the near shore commu-
nities who rely on such water resources. Eutrophication can lead to an increase in hypoxia,
fish deaths, and the presence of harmful algae [2,4]. The Chl-a content is a proxy of the
algae biomass content, which have applications in human nutrition, animal feed, pollution
control, biofertilizer, and waste water treatment [5–8]. Algae has also proved promising as
the best alternative sustainable renewable energy and fuel bioresource [9–11].

The algal biomass composition and abundance, and hence the Chl-a levels, fluctuate
in space, and are strongly affected by many individual or combined climatic factors (e.g.,
cloud cover extent and position, surface winds, rainfalls in winter, light levels in summer,
and the water temperatures) over time. Periodic monitoring of the Chl-a levels at suitable
temporal scales as a water quality indicator is vital for efficient water resource management.

In situ periodic monitoring in many cases is often hampered by limited financial
and infrastructural investments, spatial constraints, high costs, and the significant time
required. Further, the ever-evolving dynamicity due to environmental changes enhances the
optical complexity and the ongoing rapid transitions in water conditions, raising significant
challenges, particularly in the retrieval of complex case 2 water quality products. In these
waters, biological attributes are a mixture of relatively high concentration of Chl-a, TSM, and
CDOM [12], which degrade the performance of Chl-a retrieval. Within the spatiotemporal
context, remote sensing of multi-sensor data integration and inter-comparison appraising
the use of advanced processing techniques to enhance the spectral responses from the
biomass water constituents could become most promising for long-term water quality
monitoring by efficient estimation of the Chl-a, TSM, and CDOM concentrations and hence
the water primary productivity on a global scale, which have recently become pivotal for
effective water quality assessment and management (e.g., [13–16]). Therefore remotely-
sensed monitoring in the status of algal abundance provides a vital alternative, which
overcomes the spatiotemporal limitations and the costly conventional and irreproducible
in situ water quality inventories [17].

The algal growth is the fastest on earth and the difficulty of inventorying ground-
truth data contemporaneous to satellite data acquisition can be best solved by the inter-
comparison of multi-sensor data acquired within the algae growth time interval of 6 h,
which is the case of the present research in the coastal waters.

Chl-a content measures the phytoplankton biomass, which is of significant importance
in the primary production, carbon cycling modeling, and in monitoring the eutrophication
of inland waters [18]. TSM is of common occurrence in the case 2 waters, in which optical
properties are typically controlled by phytoplankton, yellow substances, and suspended
sediments together, and is a key parameter describing water quality [19,20]. Aliphatic and
aromatic polymers with strong optical absorption for ultraviolet and short visible light
constitute the colored dissolved organic matter (CDOM) of such waters [21,22]. It directly
relates to aquatic ecosystem processes [23], drinking water safety [24], and contaminant
transport [25]. Allochthonous inputs of terrestrial materials [26] and autochthonous pro-
duction by phytoplankton, benthic algae, and aquatic macrophytes [27,28] are two major
sources of CDOM in aquatic ecosystems, and photobleaching and microbial decomposition
are the major sinks [29,30]. Aquatic biota growth depends largely on the CDOM decom-
posed and released compounds, the levels of which are good indicators for the carbon
cycling and climate change [31].

Thus, the spatiotemporal distribution and the mutual joint analyses of the Chl-a, TSM,
and the CDOM water constituents are necessary for analyzing water quality dynamics and
for disclosing their driving factors, which can lead to better understanding, management,
and sustainable protection of the aquatic ecosystems.
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Chl-a reflects green and reduces the short wavelength response while it absorbs most
of the violet-blue and orange-red wavelengths [32]. The Chl-a concentration relies greatly
on the absorption and scattering characteristics of the algae and the way these optical
properties affect the top of the atmosphere water-leaving reflectance by the satellite sensor.
Accurate estimation of the water-leaving reflectance (pw) directly related to the inherent
optical properties (IOPs) can be performed using an effective atmospheric correction (AC)
algorithm for remote sensing and to reduce the effect of the atmospheric path radiance.
The AC algorithm also uses bio-optical models that relates to the water-leaving reflectance
spectra either directly to Chl-a content (empirical algorithms), or to their inherent opti-
cal properties (IOPs) and other optically active materials in the water (semi-analytical
algorithms), based commonly on radiative transfer model simulations and theoretical
relationships [33]. The C2RCC has been successfully applied in coastal and inland waters
for estimating the IOPs and then the water optical substances concentrations [34–36].

Generally, the total top of atmosphere signal is induced by 80–90% of the atmosphere
at the blue-green wavelengths (400–550 nm), making accurate atmospheric correction a
challenge in this spectrum region. Moreover, the significant variation of the atmospheric
path signal makes its approximation problematic [37]. The black pixel assumption is
valid only in the near-infrared (NIR) region in open ocean waters where ocean waters
become totally absorbent [38]. This assumption is invalid in turbid closed waters, and
this makes the AC a difficult task for this bio-optical type of waters [39,40]. The top-of
atmosphere reflectance ρtoa(λ) is a composite of many parameters, such as the Rayleigh
reflectance [41], the multiple scattering aerosols reflectance [42], the aerosols–molecules
interaction reflectance [43], the sun glint reflectance [44], the whitecaps reflectance [45],
the water-leaving reflectance [46], the direct transmittance [47], and the diffuse transmit-
tance [48]. Pre-processing compensates for the gas absorption, the whitecaps, and the
sun-glint corrections [45,48]. Then, the Rayleigh correction is carried out to obtain the
Rayleigh-corrected reflectance. Therefore, the AC algorithm determines and removes the
contribution of aerosols.

Recent publications have demonstrated the applicability of Landsat-8, Sentinel-2, and
Sentinel-3 data for water resource monitoring either individually (e.g., S2 MSI in [49–53])
or combined [54–57]. The influence of variations in the concentration of Chl-a and TSM is
vivid on oyster physiological response using Sentinel-2A [49]. The utility of Sentinel-2A’s
near-infrared (NIR) bands attempted to use empirical methods for the retrievals of Chl-a in
a hyper-eutrophic reservoir in Brazil [50]. The applicability of Sentinel-2A data for water
quality mapping has been demonstrated in [52]. Fine-scale hydrodynamic processes in
the eastern Black Sea and Mediterranean region have been investigated using Landsat-
8 and Sentinel-2A imagery [54]. Sensitivity analysis on the contributions of different
optically active components in the spectral bands of Landsat-8, Sentinel-2, and Sentinel-3
and asserted difficulties in the retrievals of colored dissolved organic matter (CDOM)
absorption using Landsat-8 and Sentinel-2 band configurations was addressed in [55].
Sentinel-2/Landsat-8 product consistency and implications for monitoring aquatic systems
have been approved in the literature (e.g., [56]).

Nonlinearity exists between the contents of the water constituents and the water color
for the highly reflective case 2 waters. Therefore, for effective measurements in such water
type, it is vital to rely on the use of sensors with high dynamic spectral ranges and high
signal-to-noise ratio (SNR) [58] requiring sophisticated processing and analysis techniques.

Empirical (statistical regression (e.g., [59]) or endmember selection (e.g., [60]), ana-
lytical (simplified solutions of the radiative transfer function), semi-analytical methods
(a combination of empirical and analytical), spectral inversion procedures (e.g., [61]), which
match spectral measurements to bio-optical forward models, are common models for esti-
mating remotely-sensed water color parameters. Studies based on empirical algorithms
are easier to get and much more common because of its simplicity and availability among
those algorithms. However, empirical algorithms are often area and time dependent due to
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no rigorous theoretical basis to support them, which indicates that the models here could
not be directly used for other waters [62].

Further, the fast microalgae growth variation hinders accurate estimation of their Chl-a
and the biomass content due to the dynamic light regime and intensity, which enhance
and fluctuate the photosynthetic efficiency inducing the microalgae growth rate and hence
productivity (Chl-a and biomass concentration), which can be 4 to 4.5-folds higher under
continuous illumination conditions [63,64].

The Nile delta coast of Egypt is an important region where periodic monitoring of
water quality is of interest. A systematic study with a long-term perspective appraising the
synoptic view and revisit time of remote sensing, and its inherent ocean color products, is
needed to characterize the spatiotemporal variability of the water conditions affecting its
quality related to the algal abundance, and the harmful algal blooms.

Therefore, the overarching focus of this research is to evaluate the effectiveness of
the C2RCC in optically varying water types (marine coastal water and inland lakes) in
the Nile Delta by analyzing the performance of the Sentinel-3 OLCI, Sentinel-2 MSI, and
Landsat-8 OLI acquired during a 45 min overpass on the Nile Delta coast on 22 March 2020
for retrieving the Chl-a content and the factors affecting their retrieval, i.e., the spectral
scattering of the TSM, and the absorbing CDOM contents, through the inter-comparison
of the retrieved estimates with the standard reference CMEMS, S3 OLCI, and MODIS
data products. The inter-comparison is appraised to examine its validity as an alternative
approach to overcome the lack of ground-truth data to derive average and range levels
estimates in the coastal water. Further objectives pursued were to validate the products
from the MSI data for the inland Burullus Lake water acquired in the 18–20 September 2020
period, as the only available cloud-free sensor data that is nearly contemporaneous with
in situ Chl-a measurements carried out during the 22–25 September 2020 period, and to
demarcate common factors hindering accurate retrieval of the water quality parameters in
the complex inland lake.

In this research, the relevant data sources used and the preprocessing routines for
Sentinel-3 OLCI, Sentinel-2 MSI, and Landsat-8 OLI imagery are firstly described. Next,
the C2RCC used for atmospheric correction is explained. Finally, the results in overlapping
region of the studied data footprints are discussed in light of the validity of the retrieved
water parameters and the estimation error sources both for the marine and the inland
waters based on inter-sensor comparison of the 45 min sensed time data and validation in
the local inland lake.

2. Materials and Methods
2.1. Study Area

The region of interest is located on the Mediterranean coast of the Nile Delta and its
fringes with a special focus on the Burullus Lake environment representing the inland lake
waters (Figure 1). Higher values of biomass, and consequently of Chl-a, may be found in
areas influenced by watercourses runoff into the study area, which was selected because
of its complex water dynamics and its dense anthropogenic pressure. Burullus Lake is
the second largest of the northern coastal lakes along the Mediterranean coast of Egypt,
covering about 420 km2 commonly used for fishing and recreation activities. The lake is
covered by floating vegetation, isolated sand bars, urban areas, and agriculture lands.

The physical and biological characteristics of the lake has been recently documented
by Masoud et al. [65]. The lake water showed a depth average of 130.5 cm with a range
level of 0.90–2 m, alkaline pH (7.78–8.92), and average salinity of 4.33 gm/L with a range
of 0.3–17.19 gm/l. The phytoplankton displayed a high level of variation in the number
of taxa (145 species) and abundance with maximum counts of 1005 × 103 units.L−1 to
a minimum of 340 × 103 units.L−1. Six groups of freshwater forms dominated by the
Chlorophyceae, Bacillariophyceae, Cyanophyceae, Dinophyceae, Euglenophyceae, and
Silicoflagillate, were arranged in decreasing order of abundance.



Water 2022, 14, 593 5 of 25

Water 2022, 14, x FOR PEER REVIEW 5 of 26 
 

 

of 0.3–17.19 gm/l. The phytoplankton displayed a high level of variation in the number of 
taxa (145 species) and abundance with maximum counts of 1005 × 103 units.L−1 to a mini-
mum of 340 × 103 units.L−1. Six groups of freshwater forms dominated by the Chloro-
phyceae, Bacillariophyceae, Cyanophyceae, Dinophyceae, Euglenophyceae, and Silico-
flagillate, were arranged in decreasing order of abundance. 

 
Figure 1. Location map of the study area. Sampling points used for regression analysis is shown in 
black filled circles. Bathymetry data with 50 m contour interval are of GEBCO. The inset map is a 
courtesy of the world imagery of ESRI. 

2.2. Satellite Data and Image Processing 
Different data sets of S3A/OLCI, S2A/MSI, and L8/OLI imagery were searched and 

allocated for atmospheric correction assessment (Figure 2). The imagery file naming, pro-
cessing levels and sensing time are shown on Table 1. The sensing time period was 45 min 
for the three data sets, starting from 7:51 to 8:36 AM acquired on 22 March 2020. Image 
processing was carried out for the Landsat-8 Operational Land Imager (OLI) and for two 
Sentinel sensors developed by the European Space Agency (ESA) as part of the Coperni-
cus Earth Observation Programme for the monitoring of natural water bio-optical prop-
erties: Sentinel-2 Multi-Spectral Instrument (S2-MSI) and Sentinel-3 Ocean and Land 
Color Instrument (S3-OLCI) [66,67]. The sensors slightly vary in the bandwidths and their 
spectral locations, as indicated in Table 2. 

Figure 1. Location map of the study area. Sampling points used for regression analysis is shown in
black filled circles. Bathymetry data with 50 m contour interval are of GEBCO. The inset map is a
courtesy of the world imagery of ESRI.

2.2. Satellite Data and Image Processing

Different data sets of S3A/OLCI, S2A/MSI, and L8/OLI imagery were searched
and allocated for atmospheric correction assessment (Figure 2). The imagery file naming,
processing levels and sensing time are shown on Table 1. The sensing time period was
45 min for the three data sets, starting from 7:51 to 8:36 AM acquired on 22 March 2020.
Image processing was carried out for the Landsat-8 Operational Land Imager (OLI) and
for two Sentinel sensors developed by the European Space Agency (ESA) as part of the
Copernicus Earth Observation Programme for the monitoring of natural water bio-optical
properties: Sentinel-2 Multi-Spectral Instrument (S2-MSI) and Sentinel-3 Ocean and Land
Color Instrument (S3-OLCI) [66,67]. The sensors slightly vary in the bandwidths and their
spectral locations, as indicated in Table 2.

Water 2022, 14, x FOR PEER REVIEW 6 of 26 
 

 

 
Figure 2. Natural color image over the Nile Delta of the Sentinel-3 OCLI WFR/EFR, Landsat-8 OLI, 
and Sentinel-2 MSI varying in the sensed time of 45 min over the Nile Delta Coast of Egypt. 

Table 1. Remote Sensing data acquired over North of the Nile Delta of Egypt. 

 Sensor Product Name Level Sensing Date/Time 

C
oa

st
al

 W
at

er
 

S3 OLCI 
Earth Observation Full 

Resolution Product (EFR) 

S3B_OL_1_EFR_20200322T075148_2020
0322T075448_20200323T120250_0180_03

7_035_2340_LN1_O_NT_002.SEN3 
Level-1 

22 March 2020 
07:51:48.398789 

S3 OLCI 
Water Full (OL_2_WRF) 

Resolution products (WFR) 

S3B_OL_2_WFR_20200322T075148_202
00322T075448_20200323T134658_0180_0

37_035_2340_MAR_O_NT_002.SEN3 
Level-2 

22 March 2020 
07:51:48.398789 

Landsat-8 
OLI 

LC08_L1TP_177038_20200322_20200326
_01_T1 

Geometrically 
corrected 

22 March 2020 
08:29:26 

S2 MSI 1C 

S2A_MSIL1C_20200322T083621_N0209
_R064_T36RTV_20200322T104149.SAFE 
S2A_MSIL1C_20200322T083621_N0209
_R064_T36RUV_20200322T104149.SAFE 
S2A_MSIL1C_20200322T083621_N0209
_R064_T36SUA_20200322T104149.SAFE 
S2A_MSIL1C_20200322T083621_N0209
_R064_T36STA_20200322T104149.SAFE 

Level 1C 
22 March 2020 
08:36:21.024Z 

MODIS A2020082111000.L2_LAC_OC.nc Level 3 11:10:00.976Z 

In
la

nd
 

W
at

er
 S2 MSI 1C S2A_MSIL1C_20200918T083621_N0209

_R064_T36RTV_20200918T101859.SAFE 
Level 1C 18 September 2020 

S2 MSI 1C S2B_MSIL1C_20200920T082629_N0209_
R021_T36RUV_20200920T104059.SAFE 

Level 1C 20 September 2020 

Table 2. Visible NIR spectral band characteristics of the studied data as depicted on their user hand 
books. 

OLI S2 MSI S3 OLCI 
30 m 10 m 20 m 60 m 300 m λ Range (nm) Function 
λ (nm) λ (nm) λ (nm) λ (nm) λ (nm)   

    400 392.5–407.5 Aerosol correction, improved parameter retrieval 
    412.5 407.5–417.5 Yellow substance and detrital pigments (turbidity) 

440  B1 443 442.5 437.5–447.5 Chlorophyll-a absorption max. 
490  490 B2  490 485–495 High Chl and other pigments 

    510 505–515 Chl, sediment, and turbidity 
560 560 B3  560 555–565 Chl reference (Chl minimum) 

    620 615–625 Sediment loading 

Figure 2. Natural color image over the Nile Delta of the Sentinel-3 OCLI WFR/EFR, Landsat-8 OLI,
and Sentinel-2 MSI varying in the sensed time of 45 min over the Nile Delta Coast of Egypt.



Water 2022, 14, 593 6 of 25

Table 1. Remote Sensing data acquired over North of the Nile Delta of Egypt.

Sensor Product Name Level Sensing Date/Time

C
oa

st
al

W
at

er

S3 OLCI
Earth Observation Full

Resolution Product (EFR)

S3B_OL_1_EFR_20200322T075148
_20200322T075448_20200323T120250

_0180_037_035_2340_LN1_O_NT
_002.SEN3

Level-1 22 March 2020
07:51:48.398789

S3 OLCI
Water Full (OL_2_WRF)

Resolution products (WFR)

S3B_OL_2_WFR_20200322T075148
_20200322T075448_20200323T134658

_0180_037_035_2340_MAR_O_NT_002.SEN3
Level-2 22 March 2020

07:51:48.398789

Landsat-8
OLI

LC08_L1TP_177038_20200322_20200326
_01_T1

Geometrically
corrected

22 March 2020
08:29:26

S2 MSI 1C

S2A_MSIL1C_20200322T083621_N0209
_R064_T36RTV_20200322T104149.SAFE
S2A_MSIL1C_20200322T083621_N0209
_R064_T36RUV_20200322T104149.SAFE
S2A_MSIL1C_20200322T083621_N0209
_R064_T36SUA_20200322T104149.SAFE
S2A_MSIL1C_20200322T083621_N0209
_R064_T36STA_20200322T104149.SAFE

Level 1C 22 March 2020
08:36:21.024Z

MODIS A2020082111000.L2_LAC_OC.nc Level 3 11:10:00.976Z

In
la

nd
W

at
er

S2 MSI 1C S2A_MSIL1C_20200918T083621_N0209
_R064_T36RTV_20200918T101859.SAFE Level 1C 18 September 2020

S2 MSI 1C S2B_MSIL1C_20200920T082629_N0209
_R021_T36RUV_20200920T104059.SAFE Level 1C 20 September 2020

Table 2. Visible NIR spectral band characteristics of the studied data as depicted on their user
hand books.

OLI S2 MSI S3 OLCI

30 m 10 m 20 m 60 m 300 m λ Range (nm) Function

λ (nm) λ (nm) λ (nm) λ (nm) λ (nm)
400 392.5–407.5 Aerosol correction, improved parameter retrieval

412.5 407.5–417.5 Yellow substance and detrital pigments (turbidity)
440 B1 443 442.5 437.5–447.5 Chlorophyll-a absorption max.
490 490 B2 490 485–495 High Chl and other pigments

510 505–515 Chl, sediment, and turbidity
560 560 B3 560 555–565 Chl reference (Chl minimum)

620 615–625 Sediment loading
665 665 B4 665 660–670 Chl (2nd Chl abs. max.), sediment, yellow substance

673.5 670–677.5 For improved fluorescence retrieval

681.25 677.5–682 Chl fluorescence peak, red edge
B5 705 708.75 703.75–713.75 Chl fluorescence baseline, red-edge transition
B6 740 753.75 750–757.5 O2 absorption/clouds, vegetation

761.75 760–762.5 O2 absorption band/aerosol correction

764.75 762.5–766.25 Atmospheric correction

767.75 766.25–768.75 O2 used for cloud top pressure, fluorescence
over land

783 B7 778.75 771.25–786.25 Atmos. corr./aerosol correction

865 842 865 B8 B8A 865 855–876 Atmos. corr./aerosol corr., clouds, pixel
co-registration

B5 885 880–890 Water vapor absorption reference band.
900 895–905 Water vapor absorption (max. reflectance)

B9 940 940 930–950 Water vapor absorption, atmos./aerosol correction.
1020 1000–1040 Atmos./aerosol correction.

The Landsat-8 signal-to-noise ratio (SNR) has been shown to increase significantly with
narrower bandwidth compared to Landsat’s previous missions in the red and near-infrared
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(NIR), among others, and attains radiation resolution, increasing to 16 bits with a 16-day
repeat cycle. All advances have attributed to improved pigment discrimination ability,
which have proven useful for estimating concentrations of Chl-a in water bodies [53,68].

The Sentinel-2 Multi-Spectral Instrument (S2MSI) attains a high 12-bit radiometric
resolution, wide spatial and temporal resolution; the location and bandwidth are narrower
compared to the OLI data and has a wide field of view (FoV) that generates spectral images
composed of 13 bands at high SNR and varying wavelengths (Table 2). The use of S2-MSI
images has been common in monitoring lakes and rivers and in developing predictive
models for Chl-a (e.g., [69–74]). Cloud-free imageries were only available from the S2MSI
acquisitioned within the same week of in situ sampling from 55 stations, on 18 September
2020 for the western part, and on 20 September for the eastern part of the inland Burullus
Lake, that was validated against ground-truth in situ data.

The Sentinel 3 OLCI has two sets of data: unprocessed earth full resolution (EFR)
data and the processed for water full resolution products (WFR). The OLCI large number
of bands improve the atmospheric correction over the optically-complex waters [75], O2
gas absorption correction, and the water constituents’ retrieval. The ready-to-use OLCI
Chl-a data have two products derived by applying the Neural Network (NN) Inverse
Radiative Transfer Model (e.g., [76–78]) and the Ocean Color 4 for MERIS (OC4Me) of the
chlorophyll-a (Chl-a), a semi-analytical model that is based on a polynomial algorithm
that uses a maximum band ratio approach of reflectances at 443, 490, and 510 nm over
the 560 nm [79] based on the analysis of AOPs measured in situ over the past decades in
various oceanic regions (e.g., [79,80]).

The surface Chl-a of the Copernicus Marine Environment Monitoring Service (CMEMS),
S3 WFR, and the MODIS are used as reference standard for evaluation. The Chl-a concentra-
tion of the coastal water estimated on 22 March 2020 sampled daily at a spatial resolution
of 0.042 degrees is analyzed from the CMEMS data available at (https://resources.marine.
copernicus.eu/product-detail/MEDSEA_ANALYSISFORECAST_BGC_006_014, last ac-
cessed 1 January 2022). The remotely-sensed water geochemical parameters of the pH,
alkalinity, dissolved inorganic carbon, zooplankton biomass, chlorophyll-a, phytoplankton
biomass, nitrate, phosphate, silicate, and ammonia is used for correlation and regression
analysis. The MODIS Aqua measurements Level 3 (4 km), downloaded from the ocean
color website (https://oceancolor.gsfc.nasa.gov/) were acquired on 22 March 2020 from
11:10 to 11:14 a.m.

A flowchart explaining the adopted methods and associated steps is shown on Figure 3.
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All sensor data were first masked for clouds and cloud shadows, and subsequently
atmospherically corrected using the C2RCC atmospheric correction scheme. The algorithm
runs on the visible-NIR bands (Table 2) commonly used for water color retrieval, with
5 bands for the OLI data, the MSI has 9 bands out of the sensor 13 bands at 10-60 m grid
spacing, while OLCI has the 21 spectral bands in this region at a resolution of 300 m [81].
The satellite imageries were geometrically corrected to the UTM Zone 36, resampled, to

https://resources.marine.copernicus.eu/product-detail/MEDSEA_ANALYSISFORECAST_BGC_006_014
https://resources.marine.copernicus.eu/product-detail/MEDSEA_ANALYSISFORECAST_BGC_006_014
https://oceancolor.gsfc.nasa.gov/
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10 m resolution for MSI, 30 m for OLI, and 300 m for OLCI EFR; all were then subset to
the study area. The land and cloud covers were masked using the metadata associated
with the imageries. The atmospheric correction was then applied by appraising the use of
the C2RCC algorithm implemented in the Sentinel Application Platform (SNAP) version
5.0 with the Sentinel-3 Toolbox Kit Module (S3TBX) version 5.0.1 for the three sensor
data sets. Simply, C2RCC is based on water radiative transfer modeling and the vector
successive order of scattering (SOS) atmospheric model with aerosol optical properties
derived from NASA AERONET-OC measurements [82,83]. The artificial neural network
technology [84,85] is used where for every sensor data, a subset of bands is set as neural
nets; the main net derives water-leaving reflectance ‘ρw(λ)’ and the top-of-atmosphere
(TOA) ρtoa(λ) radiances after atmospheric correction with an elaborate bio-optical ocean–
atmosphere model using a large database of water-leaving reflectances and relating to the
optical properties from various coastal areas around the world. Subsequently, the trained
neural nets parametrize the inverse relationship between inherent optical properties (IOPs)
and reflectances (water-leaving ρw(λ) from the ρtoa(λ)), allowing the retrieval of certain
water quality parameters, such as chlorophyll-a, TSM, and the CDOM [86].

For all combination of the IOP components, based on a large world database of radia-
tive transfer simulations in natural waters as “truth”, and the trained IOP inversion net as
“estimate”, the difference between truth and estimate gives the uncertainty per IOP per pixel
in the image [82], defined here as the associated error of the water color constituent. C2RCC
proved applicable to a wide range of satellite sensors, such as SeaWiFS, MERIS, MODIS, OLI,
MSI, and OLCI [85], and efficient in many world case studies for the retrieval of Ocean Color
estimates; detailed information on processing is given in Brockmann et al. [85].

For the C2RCC implemented in SNAP, the local relationship between IOPs and con-
centrations of optical substances in the water that are regionally variable can be adjusted
by adapting the ancillary parameters to local waterbody specific inherent optical prop-
erties (sIOPs), such as salinity, temperature, ozone, air pressure as well as the specific
IOPs, namely the Chl-specific absorption coefficient and the specific scatter of TSM at
442 nm. For this study, the coastal water salinity was set to 39 PSU and the water tem-
perature was set to 21.5 ◦C as common values for the study area in the Mediterranean
Sea stated in several studies, which is different from the default setting (e.g., [87]) and
the sea surface data of the European Organization for the Exploitation of Meteorological
Satellites (EUMETSAT) for temperature; [88] for salinity). EUMETSAT data is available
at https://www.eumetsat.int/S3b-sst-processing-baseline, last accessed 1 January 2022.
The values of temperature and salinity of the studied period and the examined area
investigated using the Copernicus products sampled hourly at a spatial resolution of
0.042 degrees (https://resources.marine.copernicus.eu/?option=com_csw&view=details&
product_id=MEDSEA_ANALYSISFORECAST_PHY_006_013, last accessed 1 January 2022)
were comparable to the values set for the analysis. The average values of temperature and
salinity of Burullus Lake were set from in situ measurements [65], sampled in the period
22–25 March 2020 as 28.8 ◦C and 4.32 PSU, respectively.

After the AC and prior to pixel extraction, MSI and OLI pixels were resampled to
300 m and registered to match the OLCI georeferenced image to allow inter-comparison.

2.3. Inter-Sensor Comparison and Validation in Burullus Lake

Due to a lack of ground-truth data for the March 2020 sensor data, metrics of the
Pearson correlation coefficients (r), least-square coefficient of determination (R2) of multi-
variate regression analyses, along with the mean absolute error (MAE), and the root mean
square error (RMSE) were employed and evaluated for sampling location points among the
three sensor-based empirical models and compared with the standard measurements of the
CMEMS, OLCI WFR, and MODIS data in order to examine the accuracy and cross-method
consistency of water quality products.

The MAE and the RMSE metrics indicate the relative error of estimates and account
for the proportionality of the errors with the concentration of the constituents.

https://www.eumetsat.int/S3b-sst-processing-baseline
https://resources.marine.copernicus.eu/?option=com_csw&view=details&product_id=MEDSEA_ANALYSISFORECAST_PHY_006_013
https://resources.marine.copernicus.eu/?option=com_csw&view=details&product_id=MEDSEA_ANALYSISFORECAST_PHY_006_013
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Equations (1) and (2) are used for estimating the MAE and RMSE, respectively.

MAE =
1
N

N

∑
i=1
|xi − yi| (1)

RMSE =

√√√√ 1
N

N

∑
i=1

(xi − yi)
2 (2)

where N is the number of sample points, yi is the estimated water color parameter from the
three data sets, and xi is the value of water color value of the standard products.

Sampling of 275 locations in the coastal water and 30 points in the inland Burullus
Lake were extracted from the overlapping region of the data footprints through on-screen
digitizing selected to cover varying optical contents, water depths, and varying distances
from the downstream areas of the inland watercourses. For validation in the inland
lake water, in situ data from 55 sampling points across Burullus Lake, collected during
22–25 September 2020, were used [65] for evaluating the water products retrieved from the
S2 MSI image acquired on 18–20 September 2020, where r, R2, RMSE have been quantified.

3. Results
3.1. Distribution of Retrieved Water Color Parameters

Retrieved water color parameters of Chl-a, TSM, and CDOM along with their asso-
ciated errors are shown for the S2MSI (Figure 4), selected for display to attain the finest
resolution of 10 m among all data. The distribution of the retrieved parameters for the S3
OCLI (WFR and EFR), OLI, and MODIS are shown in the Supplementary file to this article.
The distribution of water content was uneven with the maximum concentrations marked
by the inland lake water and the downstream areas located in front of the outlet of the
northern lakes into the coastal water, close to the shoreline.
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The Chl-a content showed a gradual decrease with a depth pattern parallel to the
coastline, where local highs are located in front of the Rosetta and Damietta promontories
and Boughaz El-Burullus (Figure 4). The patterns of concentrations in all investigated
sensors and reference data were congruent and showed similar trends in the coastal water
and varied widely in the inland lake and fish farm waters.

Assessing the retrieved parameters for the 275 sampling points in the coastal water
clarified that the Chl-a content averaged 3.14 mg m−3 in the range level of 0.39–4.81 mg m−3

for all data. TSM clarified a mean of 7.66 g m−3 ranging from 6.32 g m−3 to 10.18 g m−3.
CDOM averaged 0.18 m−1 with a range level of 0.13–0.30 m−1 (Table 3).

Table 3. Summary Statistics of the Chl-a, TSM, and CDOM contents estimated from the EFR, MSI,
and OLI along with the reference standard CMEMS, WFR, and MODIS for the 275 sampling points in
the coastal water.
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FR

(N
N

)

W
FR

(O
C

4M
e)

M
O

D
IS

EF
R

M
SI

O
LI

C
hl

-a
(m

g
m
−

3 )

Min 0.08 0.08 0.13 0.15 0.06 0 0.04
Max 2.13 18.86 30.22 18.51 21.52 17.64 14.46

Mean 0.39 3.92 4.81 3.37 2.69 4.06 2.76
Std. error 0.03 0.25 0.38 0.27 0.19 0.39 0.25
Variance 0.13 16.78 38.1 16.26 9.49 20.55 13.41

Stand. dev 0.36 4.1 6.17 4.03 3.08 4.53 3.66
25 prcntil 0.12 0.19 0.32 0.3 0.21 0.18 0.18
75 prcntil 0.52 7.35 6.83 4.37 4.19 7.86 3.39
Skewness 2.1 0.69 1.92 1.57 2.79 0.79 1.66
Kurtosis 5.45 −0.59 3.87 1.87 12.52 −0.5 1.88

TS
M

(g
m
−

3 )

Min 0.32 0.16 0.05 0.12 0.16
Max 45.03 51.21 63.63 28.85 51.21

Mean 10.18 6.32 7.77 7.7 6.32
Std. error 0.67 0.47 0.72 0.55 0.47
Variance 115.43 59.84 73.64 64.47 59.84

Stand. dev 10.74 7.74 8.58 8.03 7.74
25 prcntil 1 0.64 0.78 0.54 0.64
75 prcntil 19.56 9.28 12.71 14.43 9.28
Skewness 0.76 2.38 2.3 0.63 2.38
Kurtosis −0.67 8.38 11.3 −1.06 8.38

C
D

O
M

(m
−

1 )

Min 0.02 0.01 0 0.01 0.01
Max 2.12 0.75 0.78 0.66 0.75

Mean 0.30 0.13 0.21 0.13 0.13
Std. error 0.02 0.01 0.02 0.01 0.01
Variance 0.12 0.01 0.04 0.02 0.01

Stand. dev 0.34 0.12 0.2 0.13 0.12
25 prcntil 0.04 0.01 0.02 0.01 0.01
75 prcntil 0.5 0.2 0.38 0.23 0.2
Skewness 1.91 1.54 0.6 1.24 1.54
Kurtosis 5.53 4.65 −0.9 1.42 4.65

NB: Values are highlighted from largest (red) to smallest (blue). Significance level of p = 95% is adopted.

With focus on the large scale of 10 m S2MSI data (Figure 4), as was clear on all sen-
sor data, bloom areas of Chl-a, TSM, and CDOM characterize the Rosetta promontory
and Boughaz El-Burullus which discharge large amounts of water of intense nutrient
loads into the sea, in particular, nitrogen and phosphorous compounds of vital impor-
tance to phytoplankton growth and productivity. A recent study by [65] indicated that
Burullus Lake is demarcated with wide Chl-a blooms (av. 83.4 mg.m−3 and range levels
of 53.76–129 mg.m−3) intensified by the inflow from agricultural drains in the east, and



Water 2022, 14, 593 11 of 25

a fresh Nile water canal in the west. Chl-a concentrations of 2.144 mg m−3 indicated a
phytoplankton bloom in the Southern Ocean [89].

Based on this value, marked blooms can be easily mapped and their controlling factors
can be spatially better understood. These blooms, as indicated in our recent study, can be
used in efficient monitoring of the harmful algal blooms and their biological contents of
carbohydrates, lipids, and protein can be utilized for the phytoplankton bioenergy potential
mapping practices.

3.2. Inter-Sensor Data Comparison

Inter-comparison of retrieved parameters applying C2RCC over optically different
water types proved successful in the open coastal water, while revealing problems for the
inland lake water with estimating accurate variables induced mostly by the adjacency effect
and the optical dominance of the CDOM absorption, which cause lower reflectances.

3.2.1. Correlation Analysis

Correlation analysis for 275 sampling points visually selected to cover varying depths
along the coastal waters clarified that the Chl-a contents attained the most inferior coeffi-
cients for the reference CMEMS and the estimated OLI contents among all data (Table 4).
MSI ranked first with strongest significant coefficients of Chl-a contents among all data
(r = 0.65–0.97) with stronger correlation against WFR (NN) (r = 0.97) followed by EFR
(r = 0.95), MODIS (r = 0.88), WFR (OC4Me) (r = 0.84), OLI (r = 0.80), and CMEMS (r = 0.65).
In terms of the TSM, EFR clarified the strongest positive coefficients against the WFR (NN)
(r = 0.94), MSI (r = 0.92), and OLI (r = 0.69), arranged in decreasing order.

Table 4. Pearson’s correlation coefficients of the coastal water quality parameters estimated from
EFR, MSI, and OLI against the reference standard CMEMS, WFR, and MODIS parameters (n = 275).
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CMEMS
WFR (NN) 0.49

WFR (OC4Me) 0.44 0.73
MODIS 0.49 0.73 0.94

EFR 0.35 0.87 0.72 0.77
MSI 0.65 0.97 0.84 0.88 0.95
OLI 0.56 0.6 0.51 0.5 0.42 0.80

TS
M

WFR (NN)
EFR 0.94
MSI 0.84 0.92
OLI 0.93 0.69 0.87

C
D

O
M

WFR (NN)
EFR 0.79
MSI 0.93 0.80
OLI 0.60 0.51 0.80

NB: Values are highlighted from largest (red) to smallest (blue). Significance level of p = 95% is adopted.

MSI proved second in rank where it showed strong positive correlation against WFR
(r = 0.84) and OLI (r = 0.87). MSI proved superior over all sensors for estimating the
CDOM content against WFR (NN) (r = 0.93), EFR (r = 0.80), and OLI (r = 0.80). Correlating
the Chl-a contents among estimated and reference data (Table 5 and Figure 5) against
the coastal water geochemistry (CMEMS) clarified a decreasing trend with depth, with
strongest correlation marked by the WFR (NN) and MSI data (r => 0.80). MSI estimates
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are by far the strongest significant positive coefficients against all parameters, following in
rank that against the reference CMEMS Chl-a contents (Table 5).

Table 5. Pearson’s correlation coefficients among estimated and reference Chl-a contents and coastal
water geochemistry (CMEMS).

D
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FR

(N
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FR

(O
C
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IS
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R

M
SI

O
LI

Depth
CMEMS −0.55

WFR (NN) −0.81 0.49
WFR (OC4ME) −0.66 0.44 0.68

MODIS −0.68 0.49 0.69 0.93
EFR −0.68 0.35 0.85 0.67 0.74
MSI −0.80 0.65 0.97 0.83 0.87 0.95
OLI −0.55 0.56 0.56 0.47 0.46 0.37 0.79
pH −0.61 0.93 0.54 0.55 0.56 0.41 0.74 0.61

Alkalinity mol m−3 −0.73 0.78 0.63 0.57 0.59 0.49 0.84 0.66
Dissolved inorganic carbon mol m−3 0.30 −0.81 −0.22 −0.36 −0.37 −0.12 −0.49 −0.4

Zooplankton Biomass −0.69 0.92 0.61 0.58 0.59 0.47 0.78 0.64
Chl-a mg m−3 −0.55 1 0.49 0.44 0.49 0.35 0.65 0.56

Phytoplankton Biomass mmol m−3 −0.47 0.98 0.41 0.36 0.41 0.28 0.56 0.50
NO3

− mmol m−3 −0.50 0.85 0.48 0.37 0.39 0.37 0.59 0.46
PO4

−3mmol m−3 −0.35 0.67 0.36 0.21 0.22 0.29 0.39 0.30
SiO4

−4mmol m−3 −0.55 0.91 0.51 0.44 0.46 0.39 0.67 0.53
NH4

+mmol m−3 −0.55 0.81 0.48 0.54 0.53 0.37 0.72 0.58
NB: Values are highlighted from largest (red) to smallest (blue). Significance level of p = 95% is adopted.
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Figure 5. Graphical representation of the Pearson’s correlation coefficients of estimated Chl-a contents
against the CMEMS coastal water geochemical parameters.
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3.2.2. Regression Analysis

The satellite sensors also clarified overall good performance in the retrieval of Chl-a,
TSM, and CDOM in the visible and NIR bands, which proved optimal in deriving the
water color parameters. Regression analysis of the Chl-a contents of the EFR, MSI, and OLI
against the reference standard CMEMS, WFR, and MODIS clarified that the MSI estimates
are advantageous over all data followed by EFR, where OLI came last in rank (Figure 6).
MSI showed best fits against WFR (NN) (R2 = 0.94), MODIS (R2 = 0.77), WFR (OC4Me)
(R2 = 0.71), and CMEMS (R2 = 0.43), in decreasing order.
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Regression analysis of the TSM and CDOM (Table 6) clarified that the TSM estimates of
MSI proved advantageous over all sensors with best fits (R2) in the range level of 0.82–0.91,
being maximum against OLI (R2 = 0.91), followed by WFR (R2 = 0.86), and EFR (R2 = 0.82).
CDOM estimates best fitted with WFR (R2 = 0.73), OLI (R2 = 0.70), and EFR (R2 = 0.42),
in a decreasing order. The R2 proved low for the retrieved parameters in Lake Burullus
compared to that in the coastal marine water (Table 7).

Table 6. Coefficients of determination (R2) of the retrieved TSM and CDOM parameters in the coastal
water (n = 275).

EFR OLI MSI

TSM CDOM TSM CDOM TSM CDOM

WFR 0.90 0.63 0.66 0.63 0.86 0.73
EFR 0.70 0.30 0.82 0.42
OLI 0.91 0.70
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Table 7. Coefficients of determination (R2) of the retrieved parameters in Lake Burullus (n = 30).

. EFR MSI OLI

Chl-a TSM CDOM Chl-a TSM CDOM Chl-a TSM CDOM

WFR 0.59 0.10 0.09 0.32 0.27 0.36 0.18 0.14 0.01

EFR 0.45 0.011 0.003 0.00 0.00 0.02

OLI 0.07 0.632 0.22

Values of Chl-a are shown in green, TSM in red, and CDOM in orange.

3.2.3. Retrieval Performance Analysis Metrics

Over all the investigated sensors with local water salinity and temperature inputs in
the coastal water, MSI ranked first achieving the smallest MAE and RMSE for the Chl-a
contents, while the EFR proved superior with lowest MAE and RMSE for TSM and CDOM
estimates (Table 8).
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CMEMS
WFR (NN) 3.38 5.13

WFR (OC4Me) 4.2 0.93 7.31 4.27
MODIS 2.37 0.47 1.04 4.38 2.67 2.35

EFR 2.14 1.15 2 0.62 3.61 2.3 4.73 2.41
MSI 1.73 0.49 0.50 0.12 0.90 3.81 1.3 2.7 1.32 2.3
OLI 1.65 1.19 2.18 0.77 0.15 0.67 3.48 3.45 5.61 3.34 3.29 2.12

TSM WFR (NN) 1.17 1.54 1.78 2.54 5.27 4.29
CDOM WFR (NN) 0.20 0.21 0.22 0.37 0.43 0.44

NB: Values are highlighted from largest (red) to smallest (blue).

3.3. Burullus Lake Water Quality Parametrs

Spatial distribution of the water quality parameters for the Chl-a, TSM, and CDOM
content in Burullus Lake is shown on Figure 7.

The in-situ data indicated that the Burullus Lake water is hypertrophic with a wide
variation of Chl-a blooms (av. 83.4 mg.m−3 and range levels of 53.76–129 mg.m−3). The
MSI-estimated that Chl-a showed a range level of 0.08–38.52 mg.m−3 with average of
27.83 mg.m−3 (Table 9). This confirmed a clear underestimation in the level range of
0.1–59% and average of 35.35% of the Chl-a, which becomes large at larger in situ Chl-a
concentrations. Correlation analysis shown on Table 10 indicated that the MSI-derived
Chl-a contents are much affected by the TSM (r = 0.71) and CDOM (r = 0.68) contents. Fair
to weak, either positive or negative coefficients are clarified between the estimated water
quality parameters against the in situ measured lake water variables (e.g., TDS, T◦C, algal
composition and abundance, and biological contents of Chl-a, proteins, carbohydrates,
and lipids).
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Table 9. Summary statistics of the MSI Chl-a, TSM, and CDOM contents and the in-situ measured
chlorophyll-a in Burullus Lake.

S2 MSI In-Situ

Chl-a TSM CDOM Chlorophyll a (mg.m−3)
Min 0.08 0.33 0.11 53.76

Max 38.52 35.31 0.78 129.03

Mean 27.83 20.47 0.52 83.43

Std. error 1.03 1.46 0.02 2.57

Stand. dev 7.55 10.73 0.16 19.09

25 prcntil 26.59 11.21 0.38 66.05

75 prcntil 32.04 29.79 0.64 97.03

Skewness −2.09 −0.46 −0.72 0.39

Kurtosis 4.65 −1.15 −0.35 −0.61
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Table 10. Pearson’s correlation coefficients of in situ measured and S2 MSI-derived water quality
parameters in Burullus Lake.
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MSI Chl-a (mg.m−3)
TSM 0.71

CDOM 0.68 0.37
TDS 0.07 0.17 −0.25
T◦C −0.17 −0.24 −0.38

Bacillariophyceae −0.2 −0.37 −0.08
Chlorophyceae −0.11 −0.22 −0.19

Euglenophyceae −0.35 −0.56 −0.22
Total algae −0.25 −0.46 −0.23

Measured Chlorophyll a (mg.m−3) −0.16 −0.36 −0.21
Proteins (mg/L) −0.24 −0.49 −0.21

Carbohydrates (mg/L) −0.22 −0.36 −0.33
Lipids (mg/L) −0.16 −0.25 −0.24

NB: Values are highlighted from largest (red) to smallest (blue). Significance level of p = 95% is adopted.

3.4. Validation and RMSE Characterization

The RMSE between measured and estimated Chl-a content was then estimated, nor-
malized between minimum and maximum values, and regressed against some lake water
variables to characterize possible factors enhancing the disagreement magnitudes at the
55 sampling stations taking the spatial distribution of the in situ measured Chl-a contents
as reference. The normalized RMSE was then mapped and lake water factors inducing
retrieval of water quality parameters were identified and characterized.

Regression analysis of the normalized RMSE against algal composition and abun-
dance (counts) and algae biological contents in Burullus Lake (Figure 8) clarified the
determination coefficient with best fit against total algal counts (R2 = 0.66), followed by the
Chlorophyacea (R2 = 0.41), Euglenophycaea (R2 = 0.38), and Bacillariophycaea (R2 = 0.30).
The NRMSE showed best fit against the in situ measured Chl-a content (R2 = 0.85), carbo-
hydrates (R2 = 0.72), lipids (R2 = 0.67), and proteins (R2 = 0.59), in decreasing order. The
underestimation increased at larger estimates of algal composition and abundance, and
biological contents.

The largest Chl-a contents associated with largest normalized RMSE estimates marked
the downstream areas where the inflow of polluted water persistently brings nutrients
loads of nitrogen and phosphorous compounds as well as substantial amounts of detrital
particles and sediments flowing from the agricultural and industrial drains into the lake
shallow zones from the south and east causing re-suspension of bottom sediments in the
water column, resulting in the increase of water turbidity, and giving rise to inaccurate
Chl-a estimates (Figure 9). These areas attained the largest contents of algal composition
and abundance of total algal counts dominated by Chlorophyacea, Euglenophycaea, and
Bacillariophycaea, which clarify largest biological contents of carbohydrates, lipids, and
proteins. The intense environmental pollution marked by intense eutrophication dominates
large error-prone areas mostly linked to climatic, hydrologic fluctuation of the drain water
flows most affected by wind direction and turbulent water intermixing regimes, and
associated nutrient load discharged from land use changes to fish farms and the related
agricultural practices south of the lake. The dynamicity in shallow (<2 m depth) water
spatio-temporal turbidity and associated pollution loads hindered accurate estimates of the
lake water quality parameters from the S2 MSI imagery applying the C2RCC algorithm.
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4. Discussion

The used multi-sensor data proved promising to a large extent of success for the
retrieval assessment of the complex case 2 coastal water quality parameters, including
Chl-a, TSM, and CDOM. Mean of 3.14 mg m−3, 7.66 g m−3, and 0.18 m−1 with range levels
of 0.39- 4.81 mg m−3, 6.32–10.18 g m−3, and 0.13–0.30 m−1 were estimated for the Chl-a,
TSM, and CDOM, respectively. In situ Chl-a data available from recent local reports and
literature clarified good agreement with the mean and the range level estimated in the
present research. The Egyptian Environmental Affairs Agency (EEAA) report in 2019 for
the Mediterranean coast of Egypt (https://www.eeaa.gov.eg/en-us/mediacenter/reports/
projectstudies/eimp.aspx, last accessed on 28 January 2022) clarified a yearly Chl-a average
of about 2 mg m−3 and range level of 0.42–5.33 mg m−3. In addition, in situ monthly
Chl-a from March 2019 to February 2020 at the beaches in Alexandria [90], located on the
western part of the study area’s coastal water clarified an average of 2.47 with a range level
of 1.37–3.19 mg m−3. Further, in situ Chl-a measurements for 692 points distributed in
the Mediterranean Sea showed a range level of 0.01–4 mg m−3, which were comparable
to Chl-a estimated from the S3 OLCI and the CMEMS data acquired between the years
2016–2018 [91].

Sensor differences in spatial and spectral samplings, induced and disclosed how well
the sensors are suited for the seamless generation of the water quality parameters. The
C2RCC provided the pixel-wise certainty level of the estimated parameter concentration
and also the associated uncertainty. The certainty maps provide a support to understand
the challenges in ocean color monitoring by the studied sensors where these certainty maps
can be used as a mask, to disregard areas with relative high uncertainties, and keep the
estimates, where the computed statistical measures are valid. C2RCC was originally devel-
oped for marine waters using bands at the blue and green regions of the electromagnetic
spectrum [92].

In the coastal water, close and parallel to the shoreline, C2RCC proved promising
where at shallow depths, nutrient loads (e.g., nitrogen and phosphorous compounds of
vital importance to the phytoplankton growth) flow into the sea from the Nile branches and
outlets of the coastal inland lakes, the increasing trends of which can indicate the coastal
aquatic ecosystems’ eutrophication.

C2RCC failed to give accurate results, with an underestimation of the Chl-a concen-
trations in an irregular shallow (<2 m depth) hypertrophic lake with toxic phytoplankton
blooms due to high CDOM, which strongly absorbs in the blue region, and masks the
Chl-a absorption [93,94]. This is affected by turbidity loaded with TSM and CDOM in the
downstream areas of drains flowing into the lake as well as by the coastline adjacency
posing invalid mixed pixels caused by molecular and aerosol scattering where the target
pixels are affected by an increase of signal due to the proximity of a neighboring bright
land surface, and mostly induced by the shallow bottom sediment reflectance. Similar
results and conclusions were drawn from eutrophic lakes in Lithuania [95] and in CDOM-
dominated waters in Estonia and Sweden [96], and in similar turbid Italian lakes [97], which
consolidate the validity of the C2RCC in varied regions. In summary, TSM is retrieved well
from all data at a content below 10 gm−3, while Chl-a seems to be retrieved rather well at
concentrations below 5 µg m−3. The clear underestimation of Chl-a at larger concentrations
in Burullus Lake has also been observed using MSI and OLCI data above optically-complex
worldwide lake waters (e.g., [98,99].

The ever-enhancing spatial, spectral, and radiometric resolutions, and the signal-to-
noise ratio of the Landsat-8 and Sentinel-2/3 over existing ocean color capable missions,
such as the MODIS, validated their joint evaluation in studying heterogeneous coastal
and inland waters, where the typical 1 km coarse resolution of existing global sensors
cannot resolve the fine spatial and the spectral dynamics of the water constituents. This
further consolidates their environmental monitoring capabilities for aquatic ecosystems,
especially in coastal environments. Further, the incorporation of the new red edge of
increased spectral reflectances, results from the presence of partly submersed vegetation

https://www.eeaa.gov.eg/en-us/mediacenter/reports/projectstudies/eimp.aspx
https://www.eeaa.gov.eg/en-us/mediacenter/reports/projectstudies/eimp.aspx
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(e.g., [100,101]) or algal bloom surface expressions (e.g., [102,103]), with various edge
spectral bands at varying spatial resolutions; three for the MSI sensor: B5 (705 nm) of
10 m, B6 (740 nm) of 20 m, and B7 (783 nm) of 60 m; and eight bands for the OLCI sensor
(673.5–778.75 nm), compared to the OLI sensor, improve the accuracy of estimating various
water bio-optical variables [104,105].

The spectral enhancement reduces artifacts and biases in Chl-a retrieval due to residual
glint, stray light, atmospheric correction errors, and white or spectrally-linear bias errors.
Moreover, with the potential for higher temporal resolution of about 2–3 days of the three
sensors, it is now possible to integrate and fuse the products from these satellites’ higher
temporal monitoring of aquatic systems. Currently in-orbit Sentinel-2A/B twin satellites
provide a five-day revisit time at the equator and even less time at higher latitudes, enabling
continuous synoptic monitoring for water quality in small areas where the Sentinel-3 OLCI
300 m spatial resolution is not sufficient. In addition, a multi-sensor approach using both
Sentinel3/2 is also suitable for the operational complete monitoring over broader coastal
regions. The distinct improved performance of the S2 MSI and S3 OLCI (EFR) over Landsat-
8 OLI is expected due to the lack of necessary optical feature along the red edge spectral
region (700–750 nm). Furthermore, the phytoplankton usually forms very elongated and
thin slicks of varying widths, a few to tens of meters, so S3 OCLI’s spatial resolution (300 m)
is not sufficient to resolve the patchiness which has been achieved by S2 MSI, due to its 10 m
spatial resolution. The advantage of using next-generation optical sensors such as S2 to
supplement the information gathered from in situ observations of water quality dynamics
is of key importance (e.g., [106,107]).

5. Conclusions

In this study, the efficiency of multi-sensor data was tested against reference standard
CMEMS, OLCI WFR, and the MODIS measurements. Despite unavoidably owing to the
lack of ground-truth data, the inter-comparison of the multi-sensor and reference data
proved promising in spatially quantifying the water quality estimates, where the aver-
age values and range levels of water quality parameters of the coastal water were very
close for all sensor and reference data. For all data, Chl-a, TSM, and CDOM averaged
3.14 mg m−3, 7.66 g m−3, and 0.18 m−1 with ranges of 0.39–4.81 mg m−3, 6.32–10.18 g m−3

and 0.13–0.30 m−1, respectively. Spatial patterns of retrieved water content proved con-
gruent with similar trends in the coastal water and varied widely in the inland lake and
fish farm waters. The uneven distribution of water content showed local highs marked
the inland lakes and their downstream areas in the coastal water, evidently in front of the
Rosetta and Damietta promontories and Boughaz El-Burullus.

Intensive eutrophication is clarified by comparing the coastal water quality estimates
to that of the inland Burullus Lake water. Additionally, MSI-retrieved Chl-a when validated
against in situ data highlighted the common factors leading to the C2RCC underestimation
of the retrieved parameters in the inland Burullus Lake water. Overall, Chl-a is retrieved
better than other water constituents for all investigated data followed by TSM and CDOM.
Local water salinity and temperature inputs into the C2RCC clarified the suitability of
the MSI products, which came first in rank achieving the lowest MAE and RMSE for the
Chl-a retrieval in the coastal water that was followed by the EFR and then by the OLI. EFR
retrieved the TSM and CDOM much more effectively compared to the MSI and OLI.

In Burullus Lake, validation of MSI Chl-a retrieval against ground truth data confirmed
a clear underestimation in the level range of 0.1–59% and average of 35.35%. The error
increases at larger Chl-a concentrations, which is more affected by increasing TSM and
CDOM contents. The RMSE estimated in the inland lake showed a more varied and
strong effect on the error magnitude of the lake water’s physical characteristics, such as
turbidity loaded by nutrients along with composition and abundance of the Chlorophyacea,
Euglenophycaea, and Bacillariophycaea, which clarify the largest biological contents of
carbohydrates, lipids, and proteins.
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This research demonstrated the strong advantage of S2 MSI (10 m) and the S3 OLCI
(300 m) data for the retrieval of Chl-a and the TSM/CDOM, respectively, as well as their
better spectral, spatial, and temporal resolution than that of OLI. Therefore, in terms of
their frequency and synoptic observations, the value added by the Copernicus products
is of paramount importance for water quality monitoring plans and for ecological and
management purposes at local, regional, and national scales.

Ocean observation technology is ever evolving; our analysis consolidates a rationale
for water color estimates indicative of the pattern distribution of phytoplankton biomass
Chl-a content that remains the best proxy for studies of primary productivity with successful
application on the Nile Delta coastal waters where in situ measurements are lacking. Hot
spots of maximum chlorophyll-a are related to the suitable growth conditions (nutrient
input during column mixing periods), and reflect an increase in algal biomass and the
primary productivity in front of watercourses discharging large nutrient loads into the sea.

The research keeps abreast of the advanced atmospheric correction algorithm, C2RCC,
for retrieval of the coastal water quality parameters from three operational ocean and land
color images within a 45 min overpass time on the Nile Delta within 4 h on 22 March 2020.
The data inter-comparison enabled the evaluation of the algorithm with success in the
coastal waters and highlighted the reasons for its pitfall in the inland lake waters that can
be used for monitoring long-term changes. Moreover, results of the remotely-sensed water
quality products prove indispensable for further community-wide validations and ensure
performance under different environmental conditions.

In conclusion and compared to previous studies, the current study further confirms
the suitability of the visible and NIR bands in the prediction of chlorophyll-a in complex
case 2 waters. The concentration of chlorophyll-a presenting the active optical properties
in the visible and near-infrared wavelengths, estimated using the C2RCC, indicated the
abundance of algae in the area.

Future research will be devoted to the detailed estimation of Burullus Lake’s water
color parameters using the same three sensor data sets employed in this research at different
seasonal times but with in situ spectroscopic measurements of the water physico–chemical
characteristics and the algal biomass types, abundances, and compositional biological
contents. Furthermore, various atmospheric correction algorithms will be evaluated. This
is to find out key relationships among these parameters and investigate their coherence
with those data of possible determination from the remote sensing data in this region,
which is undergoing fast ecological changes in the context of a changing climate leading
to environmental, social, and economic impacts. It has a promising potential to be peri-
odically employed for cost-effective water-quality monitoring and leads to a reliable and
continuously updated database for better water management plans in a GIS environment.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/w14040593/s1, Figure S1: Retrieved water color parameters of (a) Chl-a, TSM, and CDOM
from S3 OCLI (WFR), and (b) their associated errors, Figure S2: Retrieved water color parameters
of (a) Chl-a, TSM, and CDOM from S3 OCLI (EFR), and (b) associated errors, Figure S3: Retrieved
water color parameters of (a) Chl-a, TSM, and CDOM from OLI, and (b) and their associated errors,
Figure S4: Retrieved Chl-a of the MODIS Aqua acquired on 11:14:59 Am in 22 March 2020.
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