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Abstract: Reservoirs are artificial ecosystems that modify the hydrological and environmental com-
ponents nearby. The long-term monitoring of fish assemblages in reservoirs may provide key infor-
mation to understand how these artificial ecosystems allow fish population fluctuations and identify
proper conservation strategies. A sentinel-site approach method assessed changes in fish assemblages
in the Feitsui Reservoir (1024 ha) over 14 years, including the periods 2006–2008, 2010–2011, 2016,
2018, and 2020. Fish assemblages, sampled using gill nets, were composed of 38 species (12 families
and 8 orders) with Cyprinidae as the dominant family; the fish fauna were dominated by species of
the family Cyprinidae (71%) and Cichlidae (20.3%). Principal component analysis and nonmetric
multidimensional scaling categorized the assemblages into two groups (cold and warm seasons),
and we identified three parameters that were significantly correlated with the season (p < 0.05): SD
(R = −0.04), Chl-a (R = 0.01), and algal count (R = 0.19); the algal count was higher in the warm
season than in the cold season. The fish assemblage in the cold and warm seasons contained no
exclusive taxa, contributing to the dissimilarity between the groups. The fish assemblage for the
years before and after 2010 indicated partial overlap between the two groups; S. macrops contributed
greatly to the separation of the two periods (>10% each; SIMPER) and O. mossambicus was dominant
in assemblage structures after 2010. Our findings show the importance of long-term fish monitoring
for the investigation of the effects of nonnative fish species on native fish species composition.

Keywords: fish assemblages; long-term monitoring; persistence and stability; Feitsui Reservoir;
temporal distributions

1. Introduction

The degree of spatial and temporal change in fish assemblage patterns may depend on
the magnitude of environmental perturbations. Environmental variation has been identified
as one of the major drivers of fish diversity patterns [1]. River damming has altered the fish
biodiversity of many rivers, leading to considerable consequences concerning the structure
and functioning of those natural ecosystems [2,3]. Fish assemblage structures have been
assessed in many impounded reservoirs, with pronounced variations in assemblages
being observed in different reservoirs [4–6]. Long-term fish assemblages studies have
suggested that fish groups may transition to new states that eventually stabilize over
several decades [7–10], whereas other processes (e.g., species invasions or dam operation)
may cause variations in community structures [11]. Because of this, long-term monitoring is
indispensable; it allows for an understanding of temporal changes in biodiversity. The long-
term monitoring of species assemblage can provide valuable information on the main biotic
forces that affect the structure of ecological communities and can thus enable the detection
and assessment of the anthropogenic mechanisms underlying these processes [12–15].

Habitat fragmentation and flow regulation, which are generally considered separately,
are widely recognized as the two most severe effects of dam construction [16–18]. Dams
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are frequently configured constructed in a row on a single river or basin and thus form a
reservoir waterfall [16]. Generally, four reservoir habitats can be observed in a cascading
reservoir: the natural riverine stretches adjacent to reservoirs, the riverine zone, the transi-
tional zone, and the lacustrine region [16,19,20]. Reservoirs are intermediate environments
between rivers and lakes. Reservoirs are sometimes referred to as hybrid systems, involving
complex interactions, and, therefore, more variable patterns [19]. Dam impoundment in the
reservoir creates habitat environmental heterogeneity, with a longitudinal gradient stream
forming in the upstream–downstream direction, which leads to significant differences in
the physical and chemical characteristics in the riverine zone upstream of the reservoir and
the lacustrine region in the reservoir [21]. Studies have demonstrated that changes in each
physical and chemical feature directly influence the structure of fish assemblages; variations
in characteristics, such as water level, flow velocity, and residence time, may drastically
alter fish accumulation dynamics across the spatial scale, changing from longitudinal (e.g.,
rivers) to vertical (e.g., lakes) and vice versa [19,22–25]. Because of these habitat changes,
reservoir areas are key research areas for determining short- and long-term changes in fish
assemblage structures[5,21,26,27].

Herein, we present a long-term study of fish assemblage in a reservoir in northern
Taiwan (similar to many reservoirs in the region) to assess whether this reservoir also
contains the spatial gradients in fish assemblage attributes and structures that have been
observed in larger reservoirs. Many lotic fish species, following the periodic changes in
the water levels of reservoirs, move between the riverine and transitional region, whereas
carnivorous and planktivorous fishes, which have adapted to lentic habitats, tend to occupy
the lacustrine regions of the reservoirs [20,28]. In this study, we additionally quantified the
long-term effects of the presence of nonnative fish species on native fish assemblages in
reservoirs that have been studied at our sentinel locations based on data obtained through
intensive year-round gillnet sampling.

The aim of this study was to investigate changes in fish assemblage structure in
the Feitsui Reservoir, Taiwan, for 14 years post impoundment, using a sentinel-locations
approach. We analyzed differences in fish assemblage throughout years to identify whether
the long-term variation associated with environmental conditions was evident in the fish
populations by (1) quantifying the extent and dynamics of spatial changes, and changes
in the correlation between water quality and fish, and by (2) identifying changes in fish
assemblage structures due to the influence of exotic fish species.

2. Materials and Methods

The Feitsui Reservoir is the second largest reservoir in Taiwan, at 0.046 × 1010 m3, with
a surface area of 303 km2. All samples in this study were collected in the Feitsui Reservoir
from the same nine fixed stations (Figure 1). Fish congregations were sampled at nine
locations along the river (range of approximately 23 km), overlaying the entire area affected
by the impoundment (i.e., the fluvial, transition, and lacustrine region of the reservoir). All
sites were located upstream from the dam. Location sites 1 and 2 were 1 and 4 km distant
from the dam, respectively (lacustrine region). Sites 3, 4, 5, 6, and 7 were 6, 8, 10.5, 12.5,
and 14 km distant from the dam, respectively (transition region). Sites 8 and 9 were located
17.3 and 20 km upstream of the dam, respectively (fluvial region).

2.1. Environmental Parameters

To characterize the natural conditions in the reservoirs and distinguish the various
sites with respect to their water quality monitoring station, several parameters related to
water chemistry and physics were obtained for all sites. Data for the reservoir and several
water parameters were provided by the Taipei Feitsui Reservoir Administration (sampled
at nine sites) and included Secchi disk depth (SD), water temperature (WT), turbidity, total
dissolved solids (TDS), suspended solids (SS), pH, total phosphorus (TP), dissolved oxygen
(DO), electrical conductivity (EC), concentration of chlorophyll-a (Chl-a), and algal count.



Water 2022, 14, 498 3 of 13

Figure 1. Location of the nine fixed sample stations in the Feitsui Reservoir (black lines).

2.2. Fish Sampling

Fish were sampled with gillnets at least 4–6 times to year during five periods: 2006–2008,
2010–2011, 2016, 2018, and 2020. We used the collected data to inspect patterns of long-term
change in the fish fauna structure for Feitsui Reservoir. Our gillnets could not collect sam-
ples of the small-bodied fishes that are abundant in the reservoir. Therefore, our analyses
were restricted to large-bodied classes and larger-sized species (i.e., large fish >100 mm
total length). For fish sampling, the nets used were the same for the whole sampling,
gillnets (mesh size: 4.5 to 20 cm between opposite knots) were deployed with lengths of
20–60 m and heights of 1.5–4.5 m at each reservoir. Two nets (one surface and one lower)
were set at each site in the morning and were retrieved on the second day (average set
time of 20 h). Different fishing gear was deployed along the vertical regions and cross
sections of the river based on habitat type because of the differences in size and species
selectivity of fishing gear. Fishing gear was positioned at different layers of the water (the
surface, middle, and deep zones and the bed) and other locations (the littoral and open
water zones) in the river cross sections. The bottom nets were set with the lead line directly
on the bottom, and surface nets were set with the top line approximately 0.5 m below the
surface. All fish samples were identified to the species, sorted, and counted following the
Latin-Chinese Dictionary of Fishes Names [29]. For each fish, the total length (in cm) was
measured using a tape ruler (up to 150 cm) and the total weight (in kg) was measured using
an electronic balance (up to 50 kg).

2.3. Data Analysis

PCA (principal component analysis) is a method for common extracting data and
reducing dimensionality. PCA is often used as a preprocessing step for subsequent analyses.
In PCA, variables in the data set are grouped into a smaller set of influential variables
through linear combinations. The original data can then be mapped onto new data vectors
spanned by the principal new uncorrelated (orthogonal) variables, called principal com-
ponents (PCs); the PCs can be used to successfully extract relevant information from the
data. A few PCs with large variance explanation rates can inform the main characteristics
of the raw data via a PCA ordination diagram. This two PCs with the largest variance
explanation rates are selected from the sequence diagram as the coordinate axes, which
enables the distribution of the feature, correlations, and distances between the samples
to be simulated and analyzed. This allows for the description of entire data sets, which
leads to data reduction with a minimal loss of information [30–33]. The per month WT
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and the algal count at water quality monitoring stations on the Feitsui Reservoir from
2006 to 2020 were used to calculate the ten aforementioned indicator eigenvalues. The
above-mentioned indicator eigenvalue for the PCA sequence diagram was used to deter-
mine water quality changes during the cold and warm seasons. The ordination diagram
of PCA was drawn using PRIMER v6 software (Plymouth Marine Laboratory, Plymouth,
UK). We considered a fish assemblage sampled in a given sampling year and performed
nonmetric multidimensional scaling (MDS) ordination. Stress coefficients were counted
as critical values to distance the goodness-of-fit of measure of MDS with respect to data
and distances [34]. The differences in fish assemblages were calculated using an analysis
of similarity (ANOSIM). A similarity percentage (SIMPER) was analyzed to identify the
species most responsible for the differences in species year-groups [34]. The multivariate
analyses were performed with the PRIMER v6 software package, which included MDS,
ANOSIM, and SIMPER modules [35].

3. Results
3.1. Seasonal Environmental Variability

The data used in the PCA were collected over 14 y (from 2006 to 2020) and com-
prised 118 groups of measured values (118 × 10) at the Feitsui Reservoir. According to
the results of the PCA analysis, we selected the following variables as related to fish as-
semblage variation: SD (m), WT (◦C), turbidity (NTU), pH, DO (mg L−1), TDS (mg L−1),
EC (µS cm−1), TP (µg L−1), Chl-a (µg L−1), and algal count (cell mL−1). Our findings
revealed a mean SD of 4.09 ± 1.19 m, WT of 24.13 ± 4.75 ◦C at the surface, turbidity
of 2.18 ± 3.36, pH of 7.52 ± 0.56 at the surface, and DO of 7.65 ± 0.79 mg L−1 at the
surface. EC was always low, with a mean of 66.81 ± 7.52 µS cm−1. The results also re-
vealed a mean TP of 13.20 ± 7.52 µg L−1, Chl-a of 3.81 ± 2.99 µg L−1, and algal count of
26,257 ± 32,378 cell mL−1. Several of the parameters exhibited slight trends over time. SD,
WT, pH, DO, Chl-a, and algal count changed with the cold and warm seasons. WT, pH,
Chl-a, and algal count tended to increase in the warm season and decrease in the cold
season. SD tended to rise with algal count, whereas DO decreased with increased WT.
Turbidity and TP followed no notable trends.

From 2006 to 2020, WT and SD parameters were collected from the study area of
nine stations. A mean WT of below or above 24 ◦C was considered to indicate the cold or
warm seasons, respectively. Notably, the results indicated that the cold and warm seasons
influenced changes in the water quality of the Feitsui Reservoir. In addition to WT, we
identified three parameters that were significantly correlated with the season (p < 0.05): SD
(R = −0.04), Chl-a (R = 0.01), and algal count (R = 0.19). These parameters may be major
sources of the changes in the water quality during the different seasons.

According to the PCA results, out of the 10 main components, only two PCs with
eigenvalues higher than 0.27 were selected for multiple linear regression analysis. These
selected PCs explained 60% of the total variation of variables in the PCA (Table 1). The
component loadings from the PCA for the PCs are presented in Table 2. In Table 2, the bold
loading indicate the highest correlations between variables and corresponding components.
For example, turbidity, TP, and Chl-a, which demonstrated the highest correlation with PC2,
were evaluated as a group, and algal count, which demonstrated the highest correlation
with PC1, was independently assessed. The PC1 of the PCA (Table 1) explained 64.5% of
data variability and correlated primarily with the algal count variable (0.973). The PC2
explained 80.6% of data variability and was associated with the Turbidity (−0.426), TP
(−0.487), and Chl-a (−0.668). The indicators of the ordination diagram reflected the WT
characteristics of the cold and warm seasons (Figure 2). In Figure 2, the blue indicators
represent warm season WT characteristics, and the green indicators represent those of the
cold season. The water quality changed along the PC1 axis; the indicators more closely
associated with the PC1 axis were the increases or decreases in algal count. The algal count
was higher in the warm season than in the cold, indicating that changes in algal count in
the study area were more prominent when the WT was higher. The PC2 axis represents the
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difference in the degree of eutrophication in the reservoir’s upper, middle, and lower zones.
The degree of eutrophication increased as the sample was drawn from further upstream.

Table 1. Descriptive statistics of selected PCs.

PC1 PC2 PC3 PC4 PC5

Eigenvalue 1.12 0.279 0.146 0.115 2.99 × 10−2

Total variance (%) 64.5 16.1 8.4 6.6 1.7
Cumulative variance proportion (%) 64.5 80.6 89.0 95.6 97.4

Table 2. Results of principal component analysis.

Loading of Variables

Variables PC1 PC2 PC3 PC4 PC5

SD −0.076 0.285 −0.200 0.251 −0.261
WT 0.102 −0.062 0.045 −0.007 0.837
Turbidity 0.061 −0.426 0.421 −0.673 −0.193
pH 0.019 −0.012 −0.010 −0.011 0.163
DO 0.007 0.052 −0.010 −0.016 −0.277
TDS 0.025 −0.022 −0.014 0.027 0.102
EC −0.004 −0.058 −0.050 0.000 0.244
TP 0.093 −0.487 0.509 0.694 −0.091
Chl-a 0.154 −0.668 −0.720 0.027 −0.072
Algal count 0.973 0.208 0.019 −0.008 −0.079

Figure 2. PCA axes for cold and warm seasons water temperature matrix (water temperature below
24 ◦C indicates cold season; water temperature above 24 ◦C indicates warm season).

3.2. Fish Species Composition

From 2006 to 2020, we gathered a total of 7247 specimens, comprising 38 species
of 12 families and 8 orders. The fish communities were dominated by species belong-
ing to Cyprinidae (71%) and Cichlidae (20.3%); numerically abundant species included
Sinibrama macrops (12.6%), Hemiculter leucisculus (11.4%), Cyprinus carpio (11%), and Chan-
odichthys erythropterus (10.8%). An interannual variation in fish species between 19 and
29 (mean = 21.4, SD = 4.3) was recorded. The between-years correlation matrix of the fish
species composition obtained from the pairwise test is presented in Table 3. Generally,
the reservoir fish species compositions between years had relatively high and positive
correlations for all 14 year based on the results of the pairwise test listed in Table 3. The
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species composition in 2014 differed significantly from that in the other years; the species
composition in 2016 was also significantly different from that in 2008, 2010, 2011, and
2014. The species composition in 2010 was significantly different from that in 2006, 2007,
and 2020. In addition, the species composition in 2011 was significantly different from
that in 2008 and 2020. SIMPER analysis demonstrated that nine species contributed to
10% of the dissimilarity. The species that contributed to the dissimilarity in 2010, 2011,
2014, 2016, 2018, and 2020 were Hypophthalmichthys nobilis, Carassius cuvieri, S. macrops, C.
carpio, and H. leucisculus; Distoechodon tumirostris; S. macrops, H. leucisculus, C. erythropterus,
and Mozambique tilapia; M. tilapia and C. cuvieri; D. tumirostris, M. tilapia, and Parachromis
managuensis; and S. macrops, P. managuensis, and M. tilapia, respectively (Table 4).

Table 3. Between-years correlation matrix of fish species composition obtained from pairwise test.

Pairwise Test

p-Value 2006 2007 2008 2010 2011 2014 2016 2018

2007 0.537
2008 0.476 0.8
2010 0.017 0.048 0.11
2011 0.127 0.133 0.029 0.19
2014 0.019 0.004 0.029 0.002 0.005
2016 0.167 0.305 0.029 0.024 0.029 0.019
2018 0.024 0.005 0.029 0.005 0.029 0.005 0.029
2020 0.071 0.062 0.029 0.005 0.029 0.010 0.057 0.057

Table 4. SIMPER analysis on the fish species contributing to dissimilarity between species composi-
tion between years.

Species

Contribution to Dissimilarity (%)

G 2006
vs.

G 2010

G 2007
vs.

G 2010

G 2008
vs.

G 2011

G 2006
vs.

G 2014

G 2011
vs.

G 2014

G 2010
vs.

G 2016

G 2011
vs.

G 2018

G 2011
vs.

G 2020

Carassius cuvieri 10.34 10.16
Chanodichthys erythropterus 12.68

Cyprinus carpio 10.26
Distoechodon tumirostris 10.92 11.52
Hemiculter leucisculus 11.23 12.76

Hypophthalmichthys nobilis 13.18
Mozambique tilapia 10.22 10.83 13.68 10.25

Parachromis managuensis 16.47 16.62
Sinibrama macrops 12.67 13.1 17.88

3.3. Long-Term Variation in the Fish Assemblage

MDS indicated differences in the fish assemblage in three data sets (one for each
period): 2008, 2011, and 2014 (Figure 3a). However, the MDS plot of the fish assemblage
for the years before and after 2010 indicated a partial overlap between the two groups
(Figure 3b). The cold and warm seasons contained no exclusive taxa, contributing to
the dissimilarity between the groups (Figure 3c). A stress value of 0.19 indicated that
the two-dimensional plot reasonably represented the multidimensional distances among
data. ANOSIM verified the differences in fish assemblage structures between periods
(Global R = 0.088, p < 0.05; Table 5). Fourteen species, S. macrops, Culter erythropterus,
Hemibarbus labeo, Ctenopharyngodon idella, C. cuvieri, Oxyeleotris marmorata, Aristichthys
nobilis, D. tumirostris, H. leucisculus, Oreochromis sp., Carassius auratus auratus, Cyprinus
carpio carpio, Silurus asotus, and Hypostomus sp., were present in each year. These 14 taxa
constitute 93% of total species abundance during our study. S. macrops contributed greatly
to the separation of the two periods (>10% each; SIMPER).
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Table 5. Cold and warm season similarity analysis (ANOSIM) for pre- and post 2010 years. (p < 0.05).

Feitsui Reservoir Cold and Warm Season Pre and Post 2010 Period Years

Global R 0.088 0.168 0.369
p-value 0.100 0.001 0.001

Through SIMPER analysis, we were able to parse the overall responses of species
populations that significantly contributed to changes in assemblage abundance between
years. We then applied SIMPER analysis to identify species differences in the shift in
assemblages between the years pre- and post 2010. These results indicated that five species
contributed to 53.94% of the dissimilarity in the years pre- and post 2010 (Table 6) and that
nine species decreased in abundance.

Table 6. SIMPER analysis of fish species contributing to similarity between species composition
during pre- and post-2010 years.

Groups Before & After

Average Dissimilarity = 53.94

Species Contrib (%) Cum. (%)

Sinibrama macrops 10.8 10.8
Oreochromis sp. 8.62 19.42
Culter erythropterus 8.07 27.49
Carassius auratus auratus 7.56 35.05
Hemiculter leucisculus 7.29 42.34

Figure 3. Cont.
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Figure 3. Nonmetric dimensional scaling ordination plots of species’ relative abundance in fish of
the Feitsui Reservoir. (a) MDS indicated differences in the fish assemblage in 2008, 2011, and 2014,
(b) MDS plot of the fish assemblage for the years before and after 2010 indicated a partial overlap
between the two groups, (c) The cold and warm seasons contained no exclusive taxa, contributing to
the dissimilarity between the groups.

4. Discussion

Habitat loss and degradation caused by dam construction affect native fish populations
and assemblages [36–38]; reservoirs are dynamic systems, and river–reservoir interfaces
may provide refuge habitats during stochastic events, such as turbid inflows [39], in which
fish use turbid water for cover and food resources [40,41]. This study uses multivariate
statistical techniques to evaluate the spatial and temporal variations in the water quality
of the Feitsui Reservoir. Based on the PCA results, we categorized years into two groups
(cold and warm seasons) and assorted nine monitoring sites into three groups based
on water quality characteristical. The temporal and spatial similarities and groupings
determined in this study could promote the design of an optimal monitoring strategy
that would allow for a lower monitoring frequency, several sampling stations, and related
costs. While employment of PCA and PCs did not result in substantial data reduction, they
enabled us to collect and identify factors and sources accountable for variations in water
quality. Two variables obtained from the PCs indicated that the parameters accountable
for water quality change were mainly related to algal count, Chl-a, TP, and Turbidity. The
discriminant analysis provided favorable temporal and spatial results. Varifactor 1, which
explained 64.5% of the variance, had strong positive loadings (>0.70) on algal count, a
strong negative loading on SD, and a moderately negative loading on EC, which can be
interpreted as resulting from mineral components on the surface water of the reservoirs.
This variable indicates natural sources (inflows, soil weathering, and runoff) for the ionic
groups in the reservoir.

We identified long-term change in the fish assemblage in the riverine zone (upper
reach), transitional zone (midstream), and lacustrine zone (reach lower) environments
in the Feitsui Reservoir. Generally, the effects of impoundment on fish assemblage were
more pronounced in the lacustrine zone than in the lotic. The fish assemblages changed
significantly over time within each habitat type. However, the degree of seasonal variation
was similar; cold and warm season fish populations and assemblages demonstrated no sig-
nificant difference. However, for H. nobilis, C. cuvieri, S. macrops, C. carpio, and H. Leuciscus,
a significant difference (p < 0.05) was observed among their major habitats in the pre- and
post 2010 years, and these differences persisted over time. H. nobilis is a large, deep-bodied
cyprinid introduced from eastern Asia [42,43]. The fish primarily feed on zooplankton
and large-sized phytoplankton with granule sizes of 17–3000 µm [44–47]. This advantage
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confers great influences on the biomass and structure of the planktonic community, which,
conversely, can trigger other trophic cascading effects on other planktivorous fish species
and top predators. C. cuvieri prefers slow running water at lower and middle reaches,
feeds on a wild range of food, including plants, diatom, crustacean, and aquatic insects.
Nakamura (1969) [48] pointed out that the spawning migration of C. cuvieri was often
limited to the waterside of the lake and that the aquatic plant area spread along the Feitsui
Reservoir riverine zone (upper reach) plays an important role as the site. S. macrops can
complete their life history without migration, so would seem not to be affected by dams [49].
S. macrops occurred downstream of the Shuaishui Stream of China [50]. On the other hand,
C. carpio, a freshwater fish native to eastern Europe and central Asia, is one of the most
invasive species in the world. The life-history of carp is one characterized by flexibility,
with long breeding seasons (up to 9 months) and the ability to spawn multiple times each
year [51–53]. The impacts of common carp include the destruction of aquatic vegetation,
which decreases the diversity and abundance of invertebrates [54–56], increased water
turbidity, and eutrophication [57,58]. Lastly, in China, H. leucisculus occupies a wider range
of freshwater habitats, such as rivers, lakes, reservoirs, and even pools [59,60]. The results
of the cluster analysis indicated that the species that most significantly contributed to the
fish assemblage from 2006 to 2020 were H. nobilis, M. tilapia, and C. carpio. The longitudi-
nal patterns in diversity and the distribution of stream fish along upstream–downstream
gradients and the changes in food sources along the river continuum constrain the trophic
groups of aquatic organisms within communities. Fish species of generalized invertivores
are expected in upstream areas, while omnivores, detritivores, herbivores, and piscivores
become more abundant further downstream in a river basin [61–63].

In addition, nonnative species were found to play considerable roles in driving changes
in the composition of fish. In the pre-2014 years, P. managuensis was essentially absent.
However, in 2014–2020, P. managuensis appeared in June and the population increased
rapidly to peak abundance in the fall. P. managuensis is piscivorous and indigenous to
Honduras and Costa Rica, is a highly aggressive piscivore and an alien species for the
Feitsui Reservoir. Introduced by sport fishing and aquaculture activities, they have already
impacted other watersheds where they were introduced. This exotic species are likely to
aggravate biodiversity loss of the Feitsui Reservoir. Agasen et al. (2006) [64] state that
P. managuensis is as a predator that eats small fish and is very aggressive. The increase
in the richness of nonnative fish species over time is a trend observed in many alter
ecosystems [65–67]. We expected to identify a pronounced increase in nonnative fish
species in the reservoir.

P. managuensis was first recorded in the Feitsui Reservoir in 2014. In the following
years, the C. cuvieri population has been declining year on year. According to Effendie
(2002) [68], for P. managuensis, the larger the size of the fish, the more varied the types of
food; small fish tend to eat phytoplankton that is adjusted to the mouth opening, and the
popular foods are Chlorophyta and Charophyta. However, in adulthood animals are also
eaten. Larval fish compete with the larvae of other species, as well as juveniles and adults
of other species when their diets overlap [69–73]. Considering that all riverine fishes feed
on planktonic organisms during their early life stages [73,74], native fish larvae may be
more vulnerable to the food web effects of invasive fish.

Taki (1978) [75] reported that in Southeast Asia, the distributional summit of cyprinids
may contribute to 40% or more of the species in a watershed. In addition, Cyprinidae was
the dominant family in Gangapur Dam [76], India. In Taiwan, Cyprinidae was also the
dominant family, with 38 fish species belonging to 8 orders and 12 families collected in the
Feitsui Reservoir, the majority belonging to Cypriniformes and Cyprinidae (accounting for
21 species). Overall, Cyprinidae account for over 71% of the total fish biomass and almost
72% of the pelagic fish biomass in the Feitsui Reservoir.

Because the bias was identical for all sampling years, our results indicate that the
14-year scale of this study was sufficient to include at least one turnover of individuals
for nearly all specific individuals. The findings regarding the contributions of biotic and



Water 2022, 14, 498 10 of 13

abiotic factors in structuring fish assemblages have meaningful implications with respect
to changes in the overall composition of the aquatic community and link the influence
of these factors to the fish assemblage functional structures in reservoirs. Therefore, we
highlight the need for studies of the effects of human activities on habitats and the available
structures of fish assemblages to guide reservoir management and conservation projects.

5. Conclusions

The assemblages could be categorized into two groups (cold and warm seasons)
through the principal component analysis and a nonmetric multidimensional scaling.
Three parameters, SD (R = −0.04), Chl-a (R = 0.01), and algal count (R = 0.19), were
found significantly correlated with the season. A higher algal count was observed in
the warm season than in the cold season. The longitudinal and vertical gradients were
found for the attributes and the structure of the fish assemblage of the Feitsui Reservoir
as expected. There were four major findings related to the fish accumulation during the
research period: (a) S. macrops had the highest population variation for the years before
and after 2010 (>10%; SIMPER); (b) O. mossambicus was dominant in assemblage structures
after 2010; (c) P. managuensis was first recorded in the Feitsui Reservoir in 2014; and (d) in
the following years, the C. cuvieri population was declining year by year. The latter two
findings reflects the importance of long-term fish monitoring for investigating the effect of
nonnative fish species on native fish species composition.
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