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Abstract: Because of changing climatic conditions, uneven distribution of rainfall occurs throughout
India. As a result, dependence on groundwater for irrigation has increased tremendously for
industrial and domestic purposes. In India approximately 89% of agricultural demands are met
through groundwater. Due to increases in population, demand for groundwater and lack of effective
utilization have resulted in rapid depletion of groundwater in most parts of the country. Therefore,
quantifying groundwater resources is a serious concern in populated states of India, because it is
now difficult to supply enough water to every citizen, and will remain so in the future. Because
of difficulties in accessing observation data, researchers have begun to depend on satellite-based
remote sensing information to deal with groundwater variations. The present study deals with
filling the data gap between Gravity Recovery And Climate Experiment (GRACE) and GRACE
Follow On (GRACE FO) missions using multilayer perceptron’s (MLPs) during 2017–2018 to obtain
a continuous terrestrial water storage anomaly (TWSA) series from 2003 to 2020 for Telangana
state, India. The MLP model performed well in predicting the TWSA, with a correlation coefficient
of r = 0.96 between modeled TWSA and GRACE TWSA during the test period. Telangana state
observed negative TWSAs (annual) in the years 2003, 2004, 2005, 2009, 2012, 2015, and 2016–19.
This TWSA series (2003–2020) was then used to evaluate regional groundwater storage anomalies
(GWSAs) in Telangana state, which is considered to be one of the water stress regions in India. The
TWSAs were converted to GWSAs using Global Land Data Assimilation System (GLDAS) parameters.
The Telangana state experienced decreasing GWSA in the years 2005, 2009, and 2012, and from 2015
to 2019, leading to severe droughts. Groundwater well measurements were obtained from the Central
Groundwater Board (CGWB) and converted to GWSA at a seasonal scale. The GWSAs obtained from
GRACE (GWSAGRACE) were converted to seasonal values and compared with GWSAs obtained from
observation well data (GWSAobs). The performance metrics of r = 0.74, RMSE = 5.3, and NSE = 0.62
were obtained between (GWSAGRACE) and (GWSAobs), representing a good correlation among them.
Over the past decade, Telangana state has significantly relied on groundwater resources for irrigation,
domestic, and industrial purposes. As a result, evaluating groundwater storage variations at a
regional scale may help policy makers and water resource researchers in the sustainable utilization
and management of groundwater resources.

Keywords: multilayer perceptron’s; GRACE; GLDAS; terrestrial water storage; groundwater storage;
observation well measurements

1. Introduction

In India, groundwater is the most preferred source for irrigation, domestic, and indus-
trial purposes because of its easy availability and low capital cost. In India, groundwater is
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a valuable natural water resource because it meets approximately 89% of agricultural de-
mands [1]. This percentage will increase further as the population of the country increases.
The country’s growing dependance on groundwater has led to indiscriminate extraction in
different regions throughout India, without proper consideration of recharge of aquifers
and other issues related to the environment, resulting in rapid depletion of groundwater
in most parts of the country [2,3]. The situation has worsened due to uncertainties in the
seasonal water availability caused by climate change, in addition to rising food demand
met by irrigation and agriculture [4,5].

India accounts for 18% of the world’s population and 30% of the world’s irrigated
land [1,6]. Groundwater sources provide about 85% of drinking water in rural areas and
a significant percentage of it in urban areas [7]. Due to a growing population, rapid
urbanization, and changing lifestyles, India is experiencing a severe shortage of water, in
addition to a sharp increase in water demand. The present study deals with groundwater
storage variations in Telangana state, for which the largest river systems include Godavari
in the north and Krishna in the south. Other river systems include Bhima, Penganga, and
Manair. However, the groundwater availability of the study area is rather uneven, with
aquifers ranging from crystalline to sedimentary aquifers [1]. Moreover, due to the uneven
distribution of rainfall because of climate change, groundwater usage has increased tenfold
in different parts of the country [8–10].

Different climate zones, from the driest to some of the wettest regions on Earth,
exist in India based on the pattern of differential precipitation [1]. A large portion of
the region is classified as highly water stressed because of extensive abstraction of the
available groundwater [11]. According to earlier research, India’s groundwater resources
may be seriously threatened if withdrawal continues at this rate [12]. The reasons for
depletion include ineffective water usage habits, poorly maintained irrigation systems, and
insufficient water and power prices, which encourage the misuse of water [13]. Therefore,
quantifying groundwater resources is a serious concern in populated states of India, because
it is now difficult to supply enough water to every citizen, and will remain so in the future.

For scientists and water resource managers, predicting groundwater availability in
India has become harder. In addition to difficulties with accessing observation data from
governmental organizations, this is partially caused by data-related issues such a shortage
of field stations, and scarcity of sufficient quantitative and qualitative data. As a result,
to estimate ground water variations, researchers have begun to depend on satellite-based
remote sensing outputs [9,14]. Using satellite-based observations, previous studies have
reported depletion of groundwater storage (GWS) in most parts of the country [2,15,16].

GRACE, a joint United States–German mission, meticulously tracked changes in
Earth’s gravity field from 2002 to 2017, and GRACE Follow On (GRACE FO) did so from
2018 to the present [14,17]. Terrestrial water storage changes can be estimated once the
influences of atmospheric and oceanic circulation, in addition to solid earth processes,
have been removed from gravitational fields [18]. Using a spherical harmonics-based
methodology, GRACE produced worldwide maps of TWS anomalies with a horizontal
resolution of about 400 km [19]. Recent mass concentration (mascon)-based products have
increased accuracy, with horizontal resolutions close to 300 km [20,21].

The GRACE mission started in the 2002 and ended in 2017. Then, the GRACE FO
mission provided the changes in the Earth’s gravity field from 2018 to the present. Between
the GRACE and GRACE FO missions, an 11-month gap exists due to the change in missions.
Temporal GRACE data are not continuous due to this 11-month gap. Therefore, to obtain a
continuous dataset of GRACE gravity fields, numerous researchers have tried to fill this
gap using statistical and artificial intelligence methods. Ref. [22] filled the gap between the
two missions using a hydrological model. Ref. [23] filled this gap using artificial neural
networks. Ref. [24] reconstructed GRACE TWSA before 2002 using machine learning
methods. The continuous GRACE series can be utilized to assess long-term TWS variations
and for climate-related studies.
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Previously, many studies have used GRACE observations to evaluate GWS variations
in Indian states. Ref. [14] evaluated GRACE GWS variations and compared them with in
situ observation well measurements in Rajasthan, Haryana, and Punjab. Ref. [25] calculated
GWS variations using GRACE and validated the results with in situ groundwater observa-
tion well-based storage for Indian river systems. Ref. [26] calculated GWS variations for
Indian lakes and their relationship with ENSO events. Ref. [27] studied GWS variations
related to aquifer systems for Maharashtra state, India. Ref. [28] evaluated GWS variations
using GRACE and GLDAS for Tamilnadu State, India. Ref. [29] studied the water storage
dynamics using GRACE, hydrological models, and in situ observations for Peninsular
India. Ref. [30] applied data assimilation using GRACE and a land surface model in India.

Recent advancements in machine learning techniques have provided new options in
hydrology and related domains [31]. The development of machine learning technology has
substantially enhanced our ability to mimic and forecast the global environment. Machine
learning approaches have been shown to be effective in solving the most challenging tasks,
such as data prediction and reconstruction. Machine learning techniques, such as artificial
neural networks, deep convolutional neural networks, multiple linear regression, and
autoregressive exogenous models, have been used to reconstruct GRACE TWSA in recent
years [32–35]. In addition, methods such as extreme gradient boosting, the integrated
machine learning model optimized by the whale algorithm, deep learning, and ensemble
deep learning have been adopted to predict groundwater levels for different regions of the
world [36–38].

At a regional level, GRACE-based estimates have been useful in assessing groundwater
variations [17]. Earlier research documented rapid groundwater storage depletion at
regional and basin scales throughout the world using a satellite-based methodology [39,40].
Similar studies have utilized GRACE data to represent groundwater depletion in different
parts of the world [41–43]. Ground-based estimates must be used to assess satellite data
products in order to enhance algorithms for data retrieval approaches. GRACE results
require additional validation studies worldwide since GRACE gravity processing methods
are constantly changing over time [20]. There are very few studies that have compared
GRACE groundwater storage estimations with observation well networks for India [44–46].

Due to a sharp decrease in per capita water availability, India is recognized as a future
problem area in terms of shortage of water and food insecurity [47]. Over the past decade,
Telangana state has relied heavily on groundwater resources for irrigation, domestic, and
industrial purposes. As a result, evaluating groundwater storage variations at the regional
scale may help policy makers and water resource researchers in the sustainable utilization
and management of groundwater resources. In this study, the gap between GRACE and
GRACE FO missions was filled using multilayer perceptron’s, and analysis of groundwater
storage variations was carried out for Telangana state from 2003 to 2020. Assessment of
GRACE GWSAs and validation using ground data have been previously carried out in
some Indian regions, such as Gujarat, North-West India, and the Gangetic basin [44,46].
However, no studies have been specifically conducted to fill the gap between GRACE
and GRACE FO missions, and to evaluate groundwater storage for Telangana state. The
objectives of this study were to: (i) fill the data gap between GRACE and GRACE FO
missions using multilayer perceptron’s to obtain a continuous dataset from 2003 to 2020
for Telangana state, India; (ii) analyze GRACE TWSAs at spatial and temporal scales and
convert them to groundwater storage anomalies (GWSAs) using a land surface model from
2003 to 2020; (iii) analyze observation well measurements at spatial and temporal scales and
convert them into groundwater storage anomalies; and (iv) validate the GRACE GWSAs
with observation well-based GWSAs for Telangana state from 2003 to 2020. To the best
of our knowledge, this is the first study to fill the data gap between the two missions, to
evaluate spatial and temporal GRACE groundwater storage changes, and to validate the
results using an extensive network of in situ observation well data gathered throughout
Telangana state. The results of this study will help hydrologists choose the best GRACE
options for hydrologic applications in studies of regional basins.
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2. Material and Methods
2.1. Study Area

Telangana state, which has a geographical size of 112,077 km2, was the 29th state
formed in India. It is situated between EL 77◦12′ and 81◦50′ and NL 15◦48′ and 19◦54′.
Maharashtra, Chattisgarh, Karnataka, and Andhra Pradesh border the state on its eastern,
southern, and northern borders, respectively, as shown in Figure 1. Telangana state is
mainly drained by two river basins, namely, Godavari and Krishna, and their tributaries.
The state is physio-graphically occupied by western Pedi plains and Eastern Ghats. The
state contains a wide range of soil types, including lateritic soils, black cotton soils, and red
soil. Geographically, Telangana state is in a semi-arid area with a climate that is primarily
hot and dry. The normal annual rainfall is 939 mm and average temperature is 42 ◦C. The
average ground water level of the state is 11.14 mbgl [48].
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2.2. Data
2.2.1. Gravity Recovery and Climate Experiment (GRACE)

Launched on 17 March 2002, the GRACE twin satellites continuously measure the
changes in the Earth’s gravity fields and provide data regarding reservoir storage over land,
in addition to ice, ocean, and earthquake data. Two types of GRACE products are available,
namely, spherical harmonics (SH) and mass concentrations (mascons). In the present study,
the latest release of GRACE monthly mascons (RL 06) processed at the Jet Propulsion
Laboratory (JPL) (https://grace.jpl.nasa.gov, accessed on 20 February 2022) were used
for the evaluation of terrestrial and groundwater storage. Before using the SH data, the
signal strength needs to be reduced in order to smooth it out. In contrast, the analysis can
be done directly using the mascon data. The GRACE mission dataset is accessible from
2002 to 2017; however, the mission was inactive from 2017 to 2018. From 2018 until the

https://grace.jpl.nasa.gov
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present, the GRACE FO mission has reported changes in the Earth’s gravitational field. The
GRACE mascon terrestrial water storage (TWS) dataset was considered from 2003 to 2017,
and GRACE FO was considered from 2018 to 2020, with a spatial resolution of 0.5 × 0.5 at
a monthly time scale.

2.2.2. Global Land Data Assimilation System (GLDAS)

GLDAS produces the optimal fields of land surface states and fluxes by utilizing
satellite-based and ground-based data products with the help of land surface models
and data assimilation techniques [49]. The latest release of GLDAS Noah model i.e.,
NOAH10_M 2.1, products that are consistent with GRACE product was adopted from
2003 to 2020 and used in this study with a spatial resolution of 1◦ × 1◦ (https://disc.gsfc.
nasa.gov/ accessed on 15 February 2022). The GLDAS Noah model products, namely, soil
moisture and canopy water storage, were considered from 2003 to 2020. To ensure GLDAS
products were consistent with the GRACE products, the baseline period was considered
from January 2004 to December 2009, which is the same as that of GRACE. By integrating
soil moisture storage (∆SM) and canopy water storage (∆CWS) from GLDAS, TWSAs were
analyzed [35]. The groundwater storage (∆GW) component, which is absent from the
GLDAS Noah product, was obtained from the GLDAS Catchment Land Surface Model
(CLSM), which has a daily resolution of 0.25◦ × 0.25◦. Monthly anomalies were then
produced by subtracting the mean value for the years 2004 to 2009 [50]. The limitation of
CLSM groundwater storage is that it simulates only shallow groundwater storage. GLDAS
Noah-based TWSA and CLSM-based groundwater storage were utilized as predictors for
GRACE TWSA reconstruction since GLDAS products are as reliable as GRACE products.

2.2.3. In Situ Groundwater Observation Well Measurements

In this study, in situ groundwater well measurements from 210 locations covering
Telangana state were considered from 2003 to 2020, as shown in Figure 1. The Central
Ground Water Board (CGWB, India) provides the observation well measurements for In-
dia for four seasons, namely, (i) post-monsoon rabi (January), (ii) pre-monsoon (May),
(iii) monsoon (August), and (iv) post-monsoon kharif (November). The seasonal groundwater
data were considered in such a way that, out of the four seasons, at least three were available.

2.3. Method
2.3.1. Time Series Decomposition

Decomposition of the GRACE hydrological signal has been a frequent practice in
recent literature, with a number of methodologies being used to achieve different objectives.
The approach that is most frequently used to separate the various modes of GRACE and
forcing data into independent components is Seasonal Trend Decomposition using Loess
Procedure (STL), which was first presented by [51]. The STL technique is a reliable and
computationally effective approach for identifying non-linear patterns in trend estimations
by employing locally weighted regression.

This technique has been used by numerous researchers to break down GRACE TWSAs.
This method was employed by [52] to contrast monthly GRACE TWSAs with rainfall time
series. This technique was used to separate the GRACE time series into long-term, seasonal,
and sub-seasonal portions by [34,53]. The monthly GRACE TWSAs and forcing datasets
were subjected to the STL decomposition procedure in this work, producing decomposed time
series for each dataset. The time series was divided into three sections using the STL method:
trend (in this case, interannual and linear trend portions), seasonal, and residual parts:

Y = Tc + Sc + Rc (1)

where, Y represents time series (GRACE TWSA and forcing datasets), Tc represents the trend
part, Sc represents the seasonal part, and Rc represents the residual part respectively. c is the
cycle-index in the inner loop. The trend part includes interannual and linear components.
Using the linear regression method linear trend is separated from Tc and the interannual is

https://disc.gsfc.nasa.gov/
https://disc.gsfc.nasa.gov/
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generated by subtracting the linear trend from Tc (Interannual = Tc − linear trend). Then the
Equation (1) becomes:

Y = Lc + Ic + Sc + Rc (2)

where Lc = linear trend and Ic = interannual components.

2.3.2. Multilayer Perceptron (MLP)

Artificial neural networks (ANNs) are based on the biological neural network in the
brain, which has a billion connected neurons. ANNs have been utilized to imitate the
dispersed storage qualities and huge parallel processing of the brain due to developments
in information processing [54]. A data processing system called an artificial neural network
(ANN) is made up of a densely connected network of neurons, which are basic processing
units. By connecting to neurons in the subsequent layer, these neurons are arranged
in layers inside the network. The “weight” measures the strength of these connections
between two adjacent layers and is comparable to the signal intensity in a biological neural
network. The weights of the interconnections are changed throughout the training/learning
phase until the inputs yield the desired output. Depending on the training data supplied
to the network, various training rules for weight adjustment are necessary to create the
desired output [32]. A well-known and frequently used ANN model is the multilayer
perceptron (MLP) [32,55]. MLPs have been demonstrated to predict almost any function to
any desired accuracy when given enough hidden units and input. This study implemented
an MLP model to fill the data gap that exist between the two GRACE missions during 2017
and 2018.

A network of connected nodes or neurons makes up the MLP. The output signals
can be changed using a straightforward nonlinear transfer, or activation function, and
the neurons are connected by weights [56,57]. Unit step (Heaviside), linear, and logical
(sigmoid) functions are the most often employed activation functions. The nodes in the
network’s next layer receive the scaled output of a node as an input from the connecting
weights. As a result of the information processing direction, the MLP is described as a
feed-forward neural network [58].

The output layer of the MLP is followed by one or more hidden layers. One layer’s
output feeds into the input of the next layer, etc. The first and last layers of a neural
network are input and output, whereas the other levels serve as hidden layers within
the network. The weight of each neuronal connection varies. The sigmoid perceptron
activation functions are the same for all layers. Depending on the usage, either sigmoid
or linear functions are used for the output layer [32]. The structure of an MLP with input,
output, and hidden layers is shown in Figure 2.
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A backpropagation technique is used in the MLP model, which is considered as a
generalization of the least mean squared rule [59]. Backpropagation is a weight-correction
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approach that propagates errors from the output layer backwards, starting with the previ-
ous layer. The variables chosen, the training dataset, and the quantity of hidden layers all
affect how well the MLP model performs. The nonlinear function may be detected with less
precision if only a few hidden layers are used. Conversely, selecting more hidden layers
can cause the training set to be overfitted. As a result, the optimal number of hidden layers
for the analysis is determined.

A functional mapping between predictors ‘x’ and the target variable ‘y’ is given by the
MLP model as:

y = f (x) + ε (3)

where, f is the mapping and ε is process noise. All of the MLPs created in this study have a
single or double hidden layer. An MLP is created by a series of transformations that combine
layers one by one. First stage is to develop associations between the input and hidden layers.
Let {xi}M

i=1 represents M predictors and a hidden layer containing K hidden neurons.

ak =

M

∑
i=1

w(1)
ki xi + w(1)

k0 , k = 1, . . . , K (4)

where, ak = hidden neuron;
{

w(1)
ki

}M

i=1
= unknown weights with respect to input neuron;

w(1)
k0 = bias term; superscript represents the layer number. Next, the above equation is

passed through a transfer function in order to produce outputs from hidden neurons.

zk = ψ(ak), k = 1, . . . , K (5)

where, zk represents the output; ψ denotes the transfer function i.e., sigmoid function,
which ranges in [0, 1]. Finally, linear transfer functions are used to establish the connection
between the hidden and output layers.

yj =

K

∑
k=1

w(2)
jk zk + w(2)

j0 (6)

where, yj represents the output neuron i.e., model predictions (j = 1, . . . , J);{
w(2)

jk

}K

k=1
= unknown weights of the output layer; w(2)

j0 = bias term. Backpropaga-
tion techniques are used to solve unknowns in Equations (5) and (6) during the training
period in order to acquire the appropriate weights in each layer. For further informa-
tion regarding multilayer perceptron’s, readers are encouraged to read the following
publication [56,59–61].

2.3.3. Groundwater Storage from GRACE and GLDAS

The GRACE TWSA is the combination of water storage components present above
and below the Earth’s surface, as shown below:

TWSAt = GWSAt + SMSAt + CWSAt + SWSAt + SSAt (7)

where TWSAt, GWSAt, SMSAt, CWSAt, SWSAt and SSAt represent terrestrial water storage
anomaly, groundwater storage anomaly, soil moisture storage anomaly, canopy water stor-
age anomaly, surface water storage anomaly, and snow water storage anomaly, respectively,
at any time t.
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For Telangana state, SWSA in the form of reservoir and lake storage is relatively small
when compared with GRACE TWSA and SSA is zero for non-snow regions. Then, the
above equation becomes:

TWSAt = GWSAt + SMSAt + CWSAt (8)

where SMSA and CWSA are obtained from GLDAS Noah model using the following
equation:

SMSAt = SMSt − SMS2004–2009 (9)

CWSAt = CWSt − CWS2004–2009 (10)

where, SMSAt and CWSAt = soil moisture storage and canopy water storage anoma-
lies at time t, SMSt and CWSt = soil moisture and canopy water storages at time t,
SMS2004–2009 and CWS2004–2009 = average soil moisture and canopy water storages consid-
ered with respect to the GRACE base line period (January 2004 to December 2009).

To obtain groundwater storage anomalies (GWSAs), subtract SMSA and CWSA from
TWSA, as shown below:

GWSAt = TWSAt − SMSAt − CWSAt (11)

2.3.4. Groundwater Storage from Observation Well Measurements

The point groundwater well measurements are converted into groundwater storage
anomalies (GWSAobs) and compared with (GWSAGRACE). The procedure to convert
groundwater well measurements into GWSA is presented below. For Telangana state, the
observation well measurements are considered from 2003–2020.

First, the mean water level depth
(
GWL

)
is subtracted from individual seasonal

groundwater well measurement (GWLgroundwater well) at all sites to obtain groundwater
level anomalies (∆h).

∆h= −
(

GWLgroundwater well − GWL
)

(12)

Second, ∆h values are multiplied by average specific yield (Sy) values to obtain
observed groundwater storage (GWSObs) at each observation well. The average Sy value is
considered as 0.022 form [25]:

GWSObs = Sy×∆h (13)

Third, the GWSObs are converted to groundwater storage anomalies (GWSAObs) with
respect to the GRACE base line period (January 2004 to December 2009):

GWSAObs = GWSObs − GWS2004–2009 (14)

2.3.5. Processing of Data

Filling the data gap between two GRACE missions was performed with multilayer
perceptron’s (MLPs). The MLP model was created using five predictors (Noah TWSA,
precipitation, maximum temperature, minimum temperature, and CLSM GWSA) and a
predictand (GRACE TWSA). The GLDAS ∆SM and ∆CWS were added to obtain Noah
TWSA. The input predictors used for the development of MLP model were considered
from 2003 to 2016 (GRACE mission period) and are shown in Figure 3.

The GRACE TWSA and forcing datasets were decomposed into interannual, seasonal,
linear trend, and residual parts using the STL method. The de-seasoned (i.e., residual and
interannual) parts were reconstructed using the best MLP model for the study region. After
the reconstruction, the seasonal component was added back to obtain a complete TWSA
series. The STL-decomposed signals for GRACE TWSA, Noah TWSA, precipitation, and
CLSM GWSA are shown in Figure 4.
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Figure 3. Input precipitation, GRACE TWSA, NOAH TWSA, CLSM GWSA, and maximum and
minimum temperature from 2003 to 2016.

The MLP model was trained using STL-decomposed Noah TWSA, precipitation,
maximum temperature, minimum temperature, and CLSM GWSA (predictors) and GRACE
TWSA (predictand) datasets from January 2003 to December 2013 (~75% of the samples).
The developed MLP model was tested using datasets from January 2014 to December 2016
(~25% of the samples) for the study region. The best MLP model developed using the
training dataset was utilized to fill the data gap between the two missions. Additionally,
GRACE TWSA was predicted until 2020 and compared with the GRACE FO TWSA dataset.
Finally, a continuous time series of TWSA from 2003 to 2020 was generated using the
best MLP model. The training and testing period of GRACE TWSA is shown in Figure 5.
During the training phase, TWSA displayed an increase in interannual variability, but
during the testing period, it decreases (see Figure 5). TWSA increased because of an
increase in precipitation anomalies in South India between 2003 and 2013. [15,62]. Because
of the unpredictability in precipitation over the testing period, decreasing trends in TWSA
were seen. The severe drought in South India from 2015 to 2018 resulted in precipitation
shortfalls of more than 40% and a decline in TWSA [62].
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Figure 4. Decomposed components (i.e., seasonal, linear trend, interannual, and residual) of GRACE
TWSA, Noah TWSA, precipitation, and CLSM GWSA based on the STL decomposition method for
Telangana state.
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Figure 5. The training (red line) and testing (black line) GRACE TWSA.

TWSA was converted into GWSA GWSAGRACE using GLDAS Noah SMSA and CWSA
values from 2003 to 2020. The obtained GWSAGRACE was converted to seasonal values.
Four seasons were taken into consideration, as provided by the Central Groundwater
Board. The point observation well measurements were converted to groundwater storage
anomalies (GWSAobs). Then, the seasonal GWSAGRACE values were validated with seasonal
(GWSAobs) obtained from point observation well data. A statistical metric named Pearson’s
correlation was used to evaluate the correlation between GWSAGRACE with (GWSAobs) for
Telangana state.

3. Results and Discussion
3.1. Model Evaluation at Regional Scale

The regional-scale investigation enabled a detailed assessment of several models for
GRACE TWSA prediction between 2017 and 2018. The de-seasoned (interannual and
residual) predictor and predictand datasets were utilized in training the neural network.
We initially set the training method (Levenberg–Marquardt algorithm), learning rate (0.05),
epochs (1000), and cost function using the trial-and-error method (mean squared error,
MSE). When the MSE was less than 0.001 or when there had been 1000 iterations, the
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training was stopped. The final model parameters and model prediction performance
were recorded after the termination criteria were satisfied. The number of neurons in each
hidden layer varied from 3 to 15, and the range of hidden layers was set at 1 to 2. The most
popular functions in the hydrology field, “tansig,” “logsig,” and “purelin,” were utilized as
the activation functions.

The developed MLP model achieved high accuracy during the training and testing
period. In this section, we analyze the magnitudes and geographical distributions of
commonly used measures, namely, the correlation coefficient (r) generated by the observed
and simulated GRACE TWSA throughout the testing period. The majority of Telangana
state experienced r values of more than 0.8, as shown in Figure 6. During the test period,
the modeled TWSA and GRACE TWSA were compared to more intuitively assess the
reconstructed GRACE TWSA (Figure 7). With a correlation coefficient of 0.96, Telangana
state’s GRACE TWSA and MLP-simulated TWSA showed a strong association. The trained
leading MLP model was used for the prediction of GRACE TWSA from 2017 to 2018.
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The best MLP model was developed using the decomposed predictors, and, using
this best MLP model, the TWSA was reconstructed from 2003 to 2017 and projected until
2020. Figure 8 displays the decomposed original TWSA (training and testing periods)
and the MLP model-developed TWSA (red dotted line) between 2003 and 2017. The
figure demonstrates clearly that the model-based TWSA and the original TWSA matched
each other. The best MLP model was used to fill the data gap between the two missions
(2017 to 2018). The TWSA series was then extended through 2020 using the same model,
and compared with the GRACE FO TWSA. After reconstructing the de-seasoned GRACE
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TWSA, the seasonal component was re-added to retrieve the entire TWSA series from
2003 to 2020 (see Figure 9). Figure 9 shows the GRACE TWSA from 2003 to 2020 for
Telangana state, comprising observed TWSA from 2003 to 2017 (blue line), the MLP model-
based TWSA from 2017 to 2018 (red line), and the GRACE FO TWSA from 2018 to 2020
(green line). Figure 10 shows the GRACE FO TWSA from 2018 to 2020 and the predicted
TWSA using the MLP model from 2017 to 2020. The figure clearly shows that there is
good agreement between the GRACE FO TWSA and the MLP-simulated TWSA, with a
correlation coefficient of 0.93. Further GWSA evaluation and comparison with observation
well-based GWSA was carried out using the TWSA series from 2003 to 2020.
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Figure 7. Comparison of observed and MLP modeled TWSA during the test period.
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Figure 9. GRACE TWSA from 2003 to 2017 (blue line), MLP model-based TWSA from 2017 to 2018
(red line), and GRACE FO TWSA from 2018 to 2020 (green line), representing the TWSA from 2003 to
2020 for Telangana state.
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Figure 10. Comparison of reconstructed GRACE TWSA with GRACE FO TWSA from July 2017 to
December 2020.

3.2. Seasonal and Annual Groundwater Level Measurements

Figure 11 displays the seasonal and annual GWLs for Telangana state from 2003 to
2020 that were acquired from the CGWB. Since the groundwater was accessible within 5 m
of the ground level, there were good groundwater levels in the post-monsoon kharif season.
This is due to the fact that availability of surface water is greater in the post-monsoon season
(October), in the form of reservoirs, lakes, and ponds, which are utilized for irrigation and
domestic purposes. Additionally, rainfall occurring during the monsoon season will add to
the groundwater.

Due to inadequate surface water storage, a large amount of groundwater is used in
the pre-monsoon (May) period. Since May is the hottest month of the year, there is less
surface water availability and more groundwater usage. As a result, groundwater levels
are typically 10 meters below ground level (mbgl) in the pre-monsoon season, as shown
in Figure 11. Groundwater levels during the monsoon season (Aug) ranged from 5 to
7 (mbgl). Surface water is more readily available during this season because most parts of
the nation experience rain during this time. As there is enough surface water available, less
groundwater is used for irrigation and other purposes. Moreover, an increase in GWLs
can be observed in this season. During the post-monsoon rabi season (Jan), groundwater
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levels were at a depth of 6 to 8 mbgl. The groundwater demand during the post-monsoon
rabi season was moderate compared to that of the remaining seasons. The results are in
line with the earlier trend analysis of seasonal groundwater levels for part of Telangana
state [63,64].
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3.3. Spatial Analysis of Seasonal Groundwater Levels from 2003 to 2020

The seasonal groundwater levels (GWLs) obtained from CGWB for the period 2003–2020
were averaged over Telangana state and are presented in Figure 12. The pre-monsoon
season (May) experienced the highest reduction in GWLs compared to the other seasons.
In India, groundwater usage for irrigation, domestic, and industrial purposes is greatest in
May because it is the hottest month of the year. Additionally, since is less surface water
throughout the summer, the majority of India depends on groundwater during the summer
season. The central and western regions of the state experienced the lowest groundwater
level during the pre-monsoon season, which was approximately 33 mbgl (meters below
ground level).

Followed by the pre-monsoon season, the monsoon season experienced a reduction in
groundwater levels in the western and central parts of the state. Since 75% of India’s rain
falls during the monsoon season, the majority of irrigation is carried out during this period.
As a result, a significant amount of water is used for irrigation throughout this season. As
the rainfall is unevenly distributed throughout the country, most irrigation is carried out
using groundwater [15,60]. Therefore, a reduction in groundwater levels can be observed
during the monsoon season.

The post-monsoon rabi and kharif seasons also experienced lower groundwater levels
in the central and western parts of the state. For the post-monsoon rabi season, the
lowest GWL was recorded as 29 mbgl, whereas for the post-monsoon kharif season, this
was 28 mbgl. Telangana is one of the large producers of paddy rice, and more than 50%
of its population depends on irrigation; therefore, groundwater usage is greater in all
seasons. As a result, considerable measures should be taken to reduce the over-exploitation
of groundwater storage in Telangana state.
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3.4. Seasonal and Annual Terrestrial Water Storage Anomalies

The GRACE TWSAs were calculated for four seasons, as for the observation well
data, and the variations are presented in Figure 13. Figure 13 represents seasonal and
annual TWSAs for Telangana state from 2003 to 2020. The monsoon and post-monsoon
kharif seasons exhibited positive TWSAs, whereas post-monsoon rabi and pre-monsoon
seasons displayed negative trends. The lowest TWSA values were observed in pre-monsoon
seasons. The annual values varied from year to year, and negative TWSA values were
observed in the years 2003, 2004, 2005, 2009, 2012, 2015, and 2016–19, leading to severe
droughts in 2003–2005, 2009, 2015–2016, and 2018–2019. Overall, at both the annual and
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seasonal scales, TWSA showed a downward trend from the beginning of the 21st century
in Telangana state.
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Figure 13. Seasonal and annual GRACE TWSAs from 2003 to 2020.

Figure 14 represents the monthly average of TWSA values from 2003 to 2020. The
TWSAs decreased from January to June and increased from July to December. The highest
negative and positive TWSAs were observed in the months of May and September, respec-
tively. In the pre-monsoon season, due to unavailability of surface water resources, excess
usage of groundwater storage can be observed in Figure 13; the opposite pattern can be
observed in the case of the monsoon season. Overall, the TWSAs exhibit decreasing trends
for the first half of the calendar year, and an increasing trend for the second half the year.
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Figure 14. Average monthly GRACE TWSA from 2003 to 2020.

3.5. Spatial Analysis of Annual GRACE Groundwater Storage Anomalies

The monthly GWSA values from GRACE were converted to average annual values,
and spatial maps were derived for Telangana state from 2003 to 2020. The annual GWSA
estimates demonstrated the emergence of intense groundwater depletion zones in the state,
as shown in Figure 15. Telangana state showed decreasing GWSA in the years 2005, 2009,
and 2015–2019. Positive GWSAs were observed in the years 2006, 2007, 2010, 2011, 2013,
and 2014. A negative GWSA represents a decrease in the water storage and the occurrence
of droughts.
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Figure 15. Maps of annual GRACE groundwater storage anomalies (GWSAs) between 2003 and 2020.
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The GWSAGRACE findings are in line with those of earlier research on drought occur-
rences carried out in Southern India [9,16,25,60,62,65]. According to [9,60], Godavari and
Krishna basins suffered droughts during 2003–2005, 2009–2010, 2012–2013, and 2015–2016.
The present study also exhibited similar results as experienced by the state in terms of
decreasing GWSA during these years. The 2015 drought had an impact on crop output and
water availability in Central and Southern regions [66,67]. The 2015–2016 drought affected
a significant portion of South India, and reduced reservoir storage and hydropower output.
Around 330 million people in ten states of India, particularly in Southern India, were
affected by the 2015–2016 drought, which significantly reduced groundwater supplies [68].
According to [62], Southern India (Telangana and Andhra Pradesh) experienced a severe
drought and a worsening water constraint between 2016 and 2018, which was in line with
the decreased GWSA in Telangana state, as shown in Figure 15. Indicating that GRACE
TWSA can be utilized to assess research linked to drought, GRACE GWSA fluctuations in
the current study are compatible with past records of drought occurrences in the Southern
region of India, especially Telangana and Andhra Pradesh states.

3.6. Comparison of GWSAGRACE with GWSAOBS at a Seasonal Scale

The GRACE TWSA was converted into GWSAGRACE and validated with GWSA ob-
tained from observation well measurements GWSAOBS. Pearson’s correlation coefficient
(r) between GWSAGRACE and GWSAOBS is shown in Figure 16. The x-axis represents four
seasons for each year from 2003 to 2020. A significant correlation is observed between
GWSAGRACE and GWSAOBS, with r = 0.74 for Telangana state. The coefficient values
provide vital information about the magnitude of the closeness in the data. The RMSE
value between seasonal GWSAGRACE and GWSAOBS displayed the closest relationship, with
RMSE = 5.3. The NSE value displayed a good relationship, with NSE = 0.62. Figure 16 shows
an increasing trend in GWSAs during 2005–2007 and 2010–2012. Subsequently, a decreasing
trend in GWSAs was observed during 2008–2010 and 2014–2016 in Telangana state.
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four seasons for each year from 2003 to 2020. (i) post-monsoon rabi, (ii) pre-monsoon, (iii) monsoon,
and (iv) post-monsoon kharif.

For the study region, a significant seasonal relationship between GWSAGRACE and
GWSAOBS can be seen. From 2011 to 2020, the seasonality pattern was correctly predicted
by GWSAGRACE, although from 2003 to 2010, the pattern was somewhat underestimated
or overestimated. The majority of precipitation falls in Telangana state throughout the
monsoon season (June to September) [69]. As a result, the pre-monsoon season saw the
lowest GWS values, while the monsoon season saw the highest GWS values. Seasonality in
groundwater storage is influenced by climate variables such as precipitation and evapotran-
spiration, particularly in regions with shallow groundwater tables [70]. Because Telangana
has a distinct monsoon season, the period of June to September sees the majority (>74%) of
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the state’s yearly precipitation. The water from surface water bodies and canals has been
used to model additional groundwater influx elements [71]. Furthermore, irrigation-related
pumping has dramatically decreased the groundwater storage in the Telangana state [72].

4. Conclusions

In this study, firstly, we aimed to bridge the data gap between GRACE and GRACE
FO missions using multilayer perceptron’s to obtain a continuous dataset from 2003 to
2020 for Telangana state, India. Secondly, the GRACE TWSA data were analyzed at spatial
and temporal time scales, and converted to seasonal GWSA values using GLDAS land
surface model parameters. Thirdly, the observation well measurements were analyzed and
converted to GWSA values at a seasonal scale. Finally, GWSAGRACE data were validated
with GWSAobs using Pearson’s correlation analysis from 2003 to 2020 for Telangana state.
The GWSAGRACE matched well with the ground-based estimates for the study region,
which is climatologically and hydro-geologically varied.

The findings show that the MLP model performed reasonably well in predicting
GRACE TWSA from 2017 to 2020. A correlation of r = 0.96 was observed between the
modeled TWSA and GRACE TWSA for the test period. Moreover, good agreement was
observed between the GRACE FO TWSA and the MLP-simulated TWSA between 2018 and
2020, with a correlation coefficient of 0.93. Overall, the developed MLP models can be used
to fill the data gap between two missions. The predicted GRACE TWSA dataset can help
to obtain a continuous series from 2003 to the present, which can be used to analyze the
long-term climate-related applications in any region.

An increase in GWLs was observed in the post-monsoon season and decreasing GWLs
were observed in the monsoon season. Annually decreasing GWLs were observed from
2017 to 2020 due to overexploitation of groundwater for irrigation purposes. Therefore,
considerable measures should be taken to reduce the over-exploitation of groundwater
storage in Telangana state. Seasonal GWSAGRACE correlated well with GWSAobs from 2003
to 2020 for the study region. GWSAGRACE exhibited strong seasonality, like that of GWSAobs
The GWSAGRACE estimates correlated well with GWSAobs, with r = 0.74.

The limitation of CLSM groundwater storage is that it simulates only shallow ground-
water storage. Moreover, the effect of surface water storage was also not considered in this
study. Overall, the MLP technique is effective in filling the TWSA data gap between the
GRACE and GRACE FO missions. The satellite-based GRACE data can be used to assess
terrestrial water storage, in addition to groundwater storage globally where there is a lack
of observed groundwater level data. Based on the results of this work, the methodology
can be adopted to predict and reconstruct TWSA data at regional and global scales with
similar meteorological, hydrogeologic, and groundwater withdrawal conditions.
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