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Abstract: Rapid warming and loss of sea ice in the Arctic Ocean could play an important role in
the dissolution and emission of greenhouse gas nitrous oxide (N2O). We investigated dissolved
N2O in spatiotemporal distribution on the northeastern Bering Sea shelf (NEBS) in the summer of
2012. The results showed that N2O concentrations were higher in the Chirikov Basin (mean ± SD,
14.8 ± 2.4 nmol/L) than in the south of St. Lawrence Island (mean ± SD, 17.7 ± 2.3 nmol/L). In
the Chirikov Basin, N2O displayed a decreasing distribution pattern from west (~20.4 nmol/L) to
east (~12.9 nmol/L). In the area south of St. Lawrence Island, N2O almost presented a two-layer
structure, although it showed a vertically homogeneous distribution in the inner shelf. In the cold
bottom water, the N2O was affected mainly by in situ production or sediment emission. Longer
resident time may cause N2O accumulation in the cold bottom water. The calculated sea–air flux
(−1.6~36.2 µmol/(m2·d)) indicates that the NEBS is an important potential source of atmospheric
N2O and could play an important role in global oceanic N2O emission with intensifying global issues.

Keywords: nitrous oxide; sea-to-air flux; eastern Bering Sea shelf

1. Introduction

N2O is one of the most important greenhouse gases in the atmospheric reactivity
and radiative budget. Although N2O concentration in the atmosphere is low (ppb), its
greenhouse effect is approximately 300 times greater than that of CO2 on a per molecular
basis [1]. In addition, N2O is the dominant ozone-depleting substance in the 21st century [2].
At present, atmospheric N2O concentration is rising at a rate of 0.85 ± 0.03 ppb yr−1 [3],
which will have an important impact on global climate change.

The ocean is a net source of atmospheric N2O and contributes approximately 22–25%
of the total global emission [4,5]. Oceanic N2O production primarily involves microbial
processes such as nitrification and denitrification. In nitrification, N2O production acts as
a by-product. However, during the denitrification process, N2O acts as an intermediate
production [6]. With the development of N2O surveys in the global ocean and the improve-
ment in N2O analysis technology, N2O distribution [7–9], air–sea flux [5,10], and formation
mechanism [11,12] are becoming better understood. However, N2O study in polar regions
such as the Arctic Ocean is rarely attempted due to year-round sea ice cover (except in sum-
mer). Recently, the Arctic Ocean has been experiencing an unprecedented rate changing in
warming [13], freshening [14], sea ice retreat [15], and ocean acidification [16] due to altered
climate. These experienced changes have an important effect on the biogeochemical and
physical processes of the Arctic Ocean, especially on the continental shelf. These processes
would directly control the production and consumption of atmospheric climate–relative
trace gases [17,18] including N2O [19].

The eastern Bering Sea shelf is a marginal and high-productivity sea in high lati-
tude [20]. Due to tidal influencing and the mean sea level difference between the Pacific
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and Arctic Oceans [21], the Bering Sea shelf becomes the route through which water
from the Pacific Ocean enters into the Arctic Ocean. High-nutrient Pacific water flowing
through the Bering Sea shelf and then into the Chukchi Sea would be modified due to
active biochemical processes [22,23], which influence the productivity of the Chukchi Sea
shelf and even of the whole Arctic ecosystem [24]. The hydrological characteristics of
the eastern Bering Sea shelf are complex because influenced by topography, tides, and
winds [25]. There are two main currents which take the Pacific water into the eastern
Bering Sea shelf, forming three water masses (Figure 1). One is the Bering Slope Current
(BSC) in the west [26], which is a northward branch flow with cool, high salinity water
(>32.5) characteristics. This current continues through the Gulf of Anadyr, taking on the
Anadyr water (AW), and then proceeds through the Anadyr Strait into the Chirikov Basin
and the Arctic Ocean. The other current is the relatively weak Alaska Coastal Current
(ACC) in the east, which is associated with the Aleutian North slope Current and with
poor nutrients, warm temperature, and low salinity (<31.8). The Alaska Coastal Water
(ACW) then continues through the Strait of Shpanberg into the western Arctic Ocean [25].
Although the mean flow in the Bering Sea shelf is from south to north, there is a weak
current in the east from the Alaska coast in the upper layer of the shelf water, bringing
the low-salinity waters to the relatively high salinity area of the northwest shelf [27]. A
partly Anadyr current from the west flows along the south bank of St. Lawrence Island to
form a narrower current flowing to the east [28]. This circulation pattern is typical in the
summer, which causes most of the Bering Sea shelf water to flow northward into the Arctic
Ocean, while the development of stratification allows the remaining water on the shelf to
form a relatively isolated cold bottom water [25]. St. Lawrence Island divides this shelf
into the Chirikov Basin in the north, Anadyr Strait in the west, and Shpanberg Strait in the
east [29]. In the area south of St. Lawrence Island, three domains are defined on the basis
of the water bottom depth: the inner (0–50 m), middle (50–100 m), and outer (100–200 m)
shelf (Figure 1). When currents flow through the eastern Bering shelf, they form different
features of water masses: high-nutrient Anadyr water (AW); warm, poor-nutrient Alaska
Coastal Water (ACW); and Bering Shelf Water (BSW)) (Figure 1). Different hydrological
environments will have different effects on N2O distribution. Therefore, understanding the
spatiotemporal distribution of N2O on the complex NEBS is important for assessing the
role of N2O in the Arctic Ocean.
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The few extant studies on this topic show that the dissolved N2O in the surface water
of the Arctic Ocean is variable and that under/over-saturations coexist. In general, the
Arctic Ocean shelf is a source of N2O (110–181% saturate), and the Arctic Basin is an N2O
sink (75–95% saturate) [19,30–35]. In the vertical distributions, N2O concentrations are low
in the surface water and high in the bottom water in the shelf. This distribution pattern
mainly results from the sediment remineralization of organic matter, which may produce
N2O and release it into the overlying water [32,35]. As far as we know, N2O studies on
the eastern Bering Sea shelf have been very limited and concentrated on a few stations or
a narrow region [19,32]. There has been no report that has described the spatiotemporal
variations in a wide region of the complex eastern Bering Sea shelf. In this study, we
created a regional classification for the Eastern Bering Sea shelf based on the water masses
and topography in order to observe the spatiotemporal variation in N2O distribution.
Additionally, we calculated the air–sea flux of the N2O to evaluate the importance of N2O
in the eastern Bering Sea shelf.

2. Materials and Methods
2.1. Study Area

The Bering Sea is almost equal in area to the Aleutian Basin (maximum depth 3500 m)
and the continental shelves (<200 m), which consist of the broad (>500 km) shelf in the east
and the narrow shelf in the west [25]. Stabeno and Farley [36] further partition the eastern
Bering Sea shelf into northern and southern shelves at ~60◦ N (Figure 1). In order to better
understand the spatiotemporal features of N2O on the northeastern Bering Sea shelf (NEBS),
we divided the northeastern Bering Sea shelf into the Chirikov Basin (BN01-BN08) and
the area to the south of St. Lawrence Island. On the basis of the oceanographic fronts, we
subdivided the area to the south of St. Lawrence Island into an inner (<50 m depth) (BM05,
BS06, BS05), middle (50–100 m depth) (BS02, BS03, BS04, BL14, BL15, BL16), and outer
(>100 m depth) (BL12, BL13, BS01) shelf. The sampling locations are shown in Figure 1 and
Table 1.

Table 1. The sampling information and surface concentration, saturation and flux during
CHINARE2012 in the Northeastern Bering Sea shelf.

Region Station Date Longitude
[◦E]

Latitude
[◦N]

Bot. Depth
[m]

Temperature
[◦C] Salinity N2O

[nmol/L]

N2O
Saturation

[%]

N2O Flux
Mean ± Std

[µmol/(m2·d)]

South of
St.

Lawrence
Island

BL12 14 July 2012 −178.85 60.69 233 6.61 30.68 13.0 106

0.3 ± 2.1

BL13 15 July 2012 −177.48 61.29 133 4.57 29.88 15.3 115
BL14 15 July 2012 −177.25 61.93 103 8.43 30.945 11.9 104
BL15 16 July 2012 −175.30 62.54 82 8.74 31.129 11.0 97
BL16 15 July 2012 −173.89 63.00 76 9.92 30.62 12.5 114
BS01 11 September 2012 −177.26 61.12 135 6.19 30.80 11.8 95
BS02 11 September 2012 −175.53 61.12 107 6.51 30.60 12.2 100
BS03 11 September 2012 −173.85 61.12 86 6.67 30.49 11.8 97
BS04 10 September 2012 −171.58 61.20 65 6.60 30.49 11.7 96
BS05 10 September 2012 −169.43 61.40 48 7.04 31.01 11.5 96
BS06 10 September 2012 −167.72 61.70 35 8.50 31.02 10.7 93

Chirikov
Basin

BN01 16 July 2012 −171.69 64.30 53 0.77 32.87 20.1 132

14.7 ± 0.8

BN02 16 July 2012 −171.38 64.40 42 0.64 32.94 19.6 128
BN03 17 July 2012 −170.80 64.50 45 8.85 29.79 13.7 120
BN04 17 July 2012 −170.12 64.50 44 1.55 32.39 17.2 116
BN05 17 July 2012 −169.40 64.50 41 4.73 32.21 16.9 129
BN06 17 July 2012 −168.70 64.50 45 7.91 31.95 13.3 114
BN07 17 July 2012 −168.08 64.60 35 7.96 31.71 13.1 112
BN08 17 July 2012 −167.46 64.60 30 8.58 30.753 12.9 112

Figure 2 shows the vertical distribution of temperature and salinity of three sections
(BL, BS, and BN). Five types of water masses are identified in the area to the south of St.
Lawrence Island: Bering Shelf Surface Water (BS_SW), Bering Shelf Cold Water (BS_CW),
Alaska Coastal Water (ACW), and Bering Slope Current Water (BSCW). Three types of
water masses are identified in the Chirikov Basin: Anadyr Water (AW), ACW, and Mixed
Water from AW and ACW.
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Figure 2. Profiles of temperature and salinity in BL (a,b), BS (c,d), and BN (e,f) sections. BS_SW-Bering
Sea Surface Water; BS_CW—Bering Sea Cold Water; BSSW—Bering Sea Slope Water; BSW—Bering
Sea shelf Water; ACW—Alaska Coastal Water; AW—Anadyr Water; MW—Mixed Water.

2.2. Seawater Sampling

Seawater samples were obtained along the NEBS during the summer of 2012 dur-
ing a cruise of the R/V “Xuelong”: Fifth Chinese National Arctic Research Expedition
(CHINARE2012). Sea water samples for N2O, DO, and nutrients were taken from 10 L
Niskin bottles mounted on a rosette water sampler, attached to a Sea-Bird Electronics
conductivity (SBE-911 Plus) conductivity-temperature-depth system, which collected the
pressure, temperature, and salinity. Tygon tubing was attached to the Niskin bottle, and
a 250 mL biochemical oxygen demand bottle was filled and overflowed with seawater at
least 2–3 times volume; then the tube was slowly removed from the bottle. One-hundred
µL saturated mercuric chloride was added to inhibit biological activity. The samples were
sealed with greased ground-glass stoppers and then fastened with a clip and stored at a
4 ◦C room until analysis in the land lab.

2.3. Analysis

The N2O subsamples were transferred from the 250 mL sampling bottle into a 20 mL
headspace vial. Note that when performing this experiment, no bubbles should be gener-
ated during the operation. Then ~10 mL of high-purity nitrogen (99.999%) was injected into
the 20 mL headspace vial to replace the sample water. The subsamples were then analyzed
using the static headspace equilibration method [37] and gas chromatography (GC2010)
equipped with an electron capture detector. The precision of this method is 2%.

The DO samples were immediately analyzed onboard using the Winkler method of
direct spectrophotometry [38]. The precision value was 0.20 µmol/L.

The nutrients dataset was provided by the second institute of oceanography, MNR.
The nutrients were analyzed onboard using a continuous flow analyzer Skarlar (Hol-

land, Breda). The ammonium (NH4
+) was measured using the spectrometric method.

The limit of detection for NH4
+, NO3

− NO2
−, and PO4

3− was 0.5 µmol/L, 0.1 µmol/L,
0.1 µmol/L, and 0.03 µmol/L, respectively. [39].

2.4. Calculation
2.4.1. Saturation and Excess N2O (∆N2O)

The saturation and excess of the N2O (∆N2O) was calculated with the following
equations:

N2O saturation = [N2O]measured/[N2O]eq (1)

∆N2O = [N2O]measured − [N2O]eq (2)
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where [N2O]eq was the equilibrium concentration of N2O between the seawater and the
atmosphere. The [N2O]eq was calculated using the solubility of N2O at the seawater
temperature and salinity [40] and the atmospheric mixing ratio of ~325.5 nmol/mol on
15 July 2012 (https://www.esrl.noaa.gov/gmd/hats/combined/N2O.html).

2.4.2. Apparent Oxygen Utilization (AOU)

The AOU was calculated as the difference between the dissolved oxygen concentration
measured ([O2]measured) in the sample, and the equilibrium concentration ([O2]eq) was cal-
culated at equilibrium with the atmosphere given water mass temperature and salinity [41].
[O2]measured is the measured concentration of O2 in the seawater. The AOU was calculated
as in the following Equation (3):

AOU = [O2]eq − [O2]measured (3)

2.4.3. N**

N** is a parameter to estimate the relative excess or deficit of fixed nitrogen relative
to phosphate. A negative N** value indicates a deficit of dissolved inorganic nitrogen
(due to denitrification/anammox), and a positive value indicates N fixation [42]. N** was
calculated as in the following Equation (4) [43]:

N** = 0.87 × ([NO3
−] + [NO2

−] + [NH4
+] − 16 × [PO4

3−] + 2.9) (4)

2.4.4. Sea–Air Flux

The sea–air flux densities (F in µmol/(m2·d)) of the N2O were calculated with the
measured N2O concentrations in the surface water (0–10 m), [N2O]measured, [N2O]eq, and
the gas transfer velocity (kw in cm/h) from [44]:

F = kw ([N2O]surface − [N2O]eq) (5)

k = 0.251 (u10)2 (ScN2O/660)−0.5 (6)

The k is gas exchange coefficient and is calculated as a function of 10 m wind speed
(u10) and Schmidt number (ScN2O). The value u10 was obtained from the ship’s anemometer.
The ScN2O for N2O and was computed using empirical equations for the kinematic viscosity
of seawater and the diffusion coefficient of the N2O in the water.

3. Results
3.1. N2O in the Surface Water

On the northeastern Bering Sea shelf, N2O concentrations were variable
(10.7–20.1 nmol/L) with an under/oversaturation (93–132%) coexistence in the surface
layer (<5 m depth) (See Figure 3 and Table 1). Spatially, N2O distribution differences be-
tween the area south of St. Lawrence Island and the Chirikov Basin were observed: (1) Both
N2O concentrations and saturations in the area to the south of St. Lawrance Island (10.7 to
15.3 nmol/L, 93–115%) were lower than the Chirikov Basin (12.9–20.1 nmol/L, 112–132%);
(2) N2O concentrations showed little variation, and saturations were almost equal with
respect to the atmosphere (mean ± SD, 102 ± 8%) in the area south of St. Lawrence Island;
(3) A large east-west gradient of N2O was found in the Chirikov Basin. The highest N2O
concentration was found in the west, and the lowest value of N2O was found in the east.

https://www.esrl.noaa.gov/gmd/hats/combined/N2O.html
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northeastern Bering Sea shelf in summer 2012.

3.2. The Vertical Distribution of N2O

In the area to the south of St. Lawrence, the highest N2O concentration was observed
in the middle shelf (BS section), and the lowest N2O concentration was observed in the
inner shelf (Figure 3). On the whole, the distribution pattern shows that N2O concentration
was low in the surface mixed layer (SML) and relatively high in the subsurface water,
which is consistent with previous reports in the western Arctic Ocean shelf [19,31,32,35].
However, some differences can be observed: (1) in the inner shelf, N2O concentrations
were low and homogenous in the whole water column; (2) In the cold bottom water, N2O
concentrations in the BS section were obviously higher than the BL section; (3) In the outer
shelf, N2O concentration increased with the increase in depth, and the concentration in the
bottom water (>100 m depth) was higher than in the BL section.

Compared with the area south of St. Lawrence Island, N2O concentrations were high
and showed a west-east gradient distribution pattern in the Chirikov Basin. The highest
N2O concentration was found in the west and the whole water column mixed well. Toward
the east, N2O concentration gradually decreased and the distribution pattern turned into a
two-layer structure. In addition, we found that the N2O concentration in the easternmost
station BN08 was higher than in the surrounding waters.

4. Discussion
4.1. N2O Flux Variations in Surface Water

N2O emissions from the Northern Bering Sea must be urgently constrained because
the warming of the climate related to environmental issues is likely to continue. We
calculated N2O flux (−1.6~36.2 µmol/(m2·d) ,mean ± SD, 7.1 ± 10.4 µmol/(m2·d)) in the
Northeastern Bering Sea shelf and observed obviously spatial variations in the south and
north shelf of St. Lawrence Island. N2O flux in the area to the south of St. Lawrence Island
was 0.3 ± 2.1 µmol/(m2·d), which is consistent with the results of previous studies [32,45],
but significantly lower than the Chirikov Basin (14.7 ± 0.8 µmol/(m2·d)) (Table 1).

Region-to-region variation in surface N2O flux on the northeastern Bering Sea shelf is
likely mainly caused by physical processes including wind speed, temperature, and mixing.
Temperature is an important factor controlling N2O solubility [40]. However, we observed
an obvious N2O saturation difference between the area south of St. Lawrece Island and the
Chirikov Basin, indicating that other factors may influence N2O in surface water. Previous
studies have proved that sea ice meltwater could dilute N2O concentration in the surface
water because sea ice meltwater contains very low N2O concentration [35,46]. However,
we didn’t observe significant N2O undersaturation in the surface water, indicating that the
influence of wind speed and water mixing should be considered.

In the south shelf of St. Lawrence Island, the wind-caused exchange of N2O in the
surface water occurs predominantly in the upper atmosphere, due to a strong thermocline
layer inhibiting the exchange between surface water and subsurface water. Therefore, the
N2O was almost in equilibrium with the atmosphere in the south shelf of St. Lawrence
Island. However, in the Chirikov Basin, the whole water column mixed well in the west
side due to the occurrence of upwelling [47]. The highest N2O flux up to 36.2 µmol/(m2·d)
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in the area to the west of the Chirikov Basin resulted from the advection of Anadyr water
and upper-down mixing. Although there are no N2O data obtained from the Anadyr Bay,
the bay’s high primary productivity features could be conducive to N2O production due to
the remineralization of organic matters [27]. In addition, the upwelling process would take
high N2O bottom water into the surface water. Our results indicate that the area south of St.
Lawrence Island acts as a weak alternating source/sink of atmospheric N2O influenced by
the dilution of sea ice melting water and the exchange between surface water andair driven
by wind. However, the Chirikov Basin acts as a significant N2O source due to advection
and vertical transportation.

4.2. Temporal and Spatial Variations in N2O in the Northern Bering Sea Shelf

Early studies have shown that N2O concentration increases with depth in the Bering
Sea and Chukchi Sea shelves [31,32,34,35], which is consistent with the distribution of N2O
in this study. Sediment has been thought to be the main release source [31,34,35]. However,
spatiotemporal differences in N2O in the regions of the northeastern Bering Sea shelf have
been found: (1) a difference in N2O distribution between the north and south shelf of St.
Lawrence Island; and (2) a difference in the cold water between the BS and BL sections.

In the westside of the Chirikov Basin, the water was influenced mainly by the Anadyr
water with high nutrients, produced through the processes of organic matter mineralization,
accompanied by N2O production [12,34]. High N2O value in the Anadyr water would be
transported into the Chirikov Basin. Then the intense water mixing affected by upwelling
process in the west of Chirikov Basin [27,47] resulted in high concentration of N2O observed
in the west areas of Chirikov Basin. N2O production in situ would be minor due to unstable
water which is not conductive to biological processes. Both advective transport and water
mixing were domain processes influencing N2O distribution in the west of the Chirikov
Basin. Same as the inner shelf, the waters in the east of Chirikov Basin were influenced
mainly by ACW; however, the distributions of N2O in both areas were different, indicating
that there are different influencing processes. In the inner shelf, N2O concentrations
(mean ± SD, 12.1 ± 1.7) are relatively low and almost homogeneous from the surface to the
bottom layer, which is likely a result of low productivity and shallow water depth. In the
eastward area in the Chirikov Basin, the stratification is gradually intense due to the mixing
of AW, ACW, and river inputting. We found that N2O concentration in the eastmost station
(BN08) subsurface waters was higher than in surrounding waters, which corresponds to
low AOU (~−50.2 µmol/L) and N** (−13.3 µmol/L) (Figure 4j–k); this indicates that in
situ production of N2O by remineralization of organic matters is relatively weak and that
external river inputting may be the main source.
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Figure 4. The vertical distribution of N2O concentration, N2O saturation, AOU, and N** in sections
BL(a–d), BS (e–h), and BN (i–l) in summer 2012. On the basis of the sampling locations, the BL, BS,
and BN sections take latitude, distance, and longitude as their horizontal coordinate, respectively.
Due to the difference in bottom depth, the BL and BS sections use the same depth coordinate (0–250 m)
and the BN section use another depth coordinate (0–50 m).

In contrast, the cold bottom water pool in the middle shelf is a relatively isolated
water mass. It has been thought to be the winter residual water with weak flow and
long residence time. We assume that N2O in the cold water is not affected by advection
inputting but mainly affected by in situ production/consumption or sediment emission.
The relationships between N2O and AOU and between N2O and N** were examined in
this cold water. Positive correlation between N2O and AOU was found (Figure 5) and was
interpreted as a result of N2O formation by the nitrification process. Because anaerobic
denitrification is unlikely to occur in well-oxygenated water, the observed highly negative
value of N** in the eastern Bering Sea shelf indicates strong sediment denitrification [48,49],
which means there is a strong N2O release from sediment to bottom water. Although no
relationship between N2O and N** was observed in this study, the contribution of sediment
denitrification could not be excluded [32].
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Figure 5. The relationship between N2O and AOU (a) N2O and N** (b) in the cold bottom water of
the NBES.

In N2O saturation, we found undersaturation (85–96%) in the cold bottom water
during July 2012 and almost equilibrium or oversaturation (100–122%) during September
2012 (Figure 4b,f). Longer resident time might promote more N2O accumulation [50].
However, we need further research to prove this, because the sampling stations in July did
not overlap with those in September.

5. Conclusions

N2O study on the northeastern Bering Sea shelf was conducted during summer 2012.
The northeastern Bering Sea shelf acted as a weak source/sink for atmospheric N2O in
the area south of St. Lawrence Island and then became a source in the Chirikov Basin.
In the vertical distribution, the N2O showed spatiotemporal variability in a two-layer
system (between surface and subsurface water), region-to-region (between the south and
north sides of St. Lawrence Island and between the outer, middle, and inner shelves),
and the same region (in the middle shelf and in the Chirikov Basin). These findings
emphasize that N2O is affected by physical factors (wind, sea ice meltwater, and mixing)
and biogeochemical processes (photosynthesis and mineralization of organic matter) in
the NEBS. Although the N2O source to the atmosphere is not strong in the area south of St.
Lawrence Island, it may play an important role in the N2O emission with the enhancement
of warming. Further studies of N2O on the eastern Bering Sea shelf including biological
culture, isotopic technique, and model-based estimation should be conducted to better
understand the N2O driving mechanism and the N2O contribution to global N2O under
the condition of continuing warming.
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