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Abstract: Isolation valves are critical for the reliable functioning of water distribution networks
(WDNs). However, it is challenging for utilities to prioritize valve rehabilitation and replacement
given it is often unclear if certain valves are operable in a given WDN. This study uses the Gomory–
Hu tree of the segment-valve representation (or dual representation) of WDNs to obtain the logical
implications of inoperable valves (i.e., which segments should be isolated and merged unnecessarily
due to valve inoperability). Multi-objective optimization is then used to identify the critical valves
based on selected attributes (e.g., social vulnerability, flow volume) of segments that would be
unnecessarily isolated as a result. This study developed three multi-objective formulations: first,
deterministic; second, accounting for uncertainty; and third, accounting for both uncertainty and the
likelihood of failure of pipes within segments. Identified critical valves are compared between the
three developed formulations and a method considering only a single objective. Results demonstrated
that multi-objective optimization provided additional information which can be used to discern
valve importance for utilities in comparison with using a single objective. Further, though there was
overlap between the results from the three formulations, the third formulation provided the most
insight without overwhelming decision-makers with a large number of identified valves.

Keywords: isolation valves; criticality; water distribution networks; network analysis

1. Introduction

While many stressors act on water distribution networks (WDNs) (e.g., climate change,
aging infrastructure, interdependencies), utilities have limited resources to address the
challenges WDN infrastructure face. This makes prioritizing WDN components (e.g., pipes,
valves, pumps, tanks) to repair, rehabilitate, or replace important. Much research has
focused on the prioritization of pipes, based on pipe criticality [1–3]. The criticality of
pipes is determined using several indicators, such as system demand shortfall. The major
assumption is that a single pipe can be isolated for repair. However, the minimum isolatable
unit of WDNs is a segment, and segments often consist of more than a single pipe. This is
because in real-world WDNs, isolation valves are not available at the end of each pipe [4,5].

When pipes are to be accessed for repair, rehabilitation, or replacement, isolation valves
must be operated to isolate segments of the WDNs [6]. In the extreme case that a network
does not have sufficient operable isolation valves, the entire network would need to be
isolated from its water sources for any pipe repair (i.e., every customer’s water service is
disrupted). In fact, this occurred recently, in 2013, in a town in Oklahoma, USA [7]. Operable
valves also become increasingly important under situations such as natural disasters
(e.g., Nova Scotia, Canada and Ft. Myers, USA) and where there are ongoing military
operations (e.g., Ukraine) (see: Times [8], Unicef [9]). Though these are extreme cases, it
often happens that more segments must be isolated because of inoperable valves—leaving
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more customers without water, some of which are potentially more vulnerable than others
to the water loss. In addition, valves may become inoperable unless they are exercised at
regular time intervals at least once a year, or more often in the case of abrasive water [10,11].

Prioritizing valves is more complicated than the common assumption of single-pipe
isolation, because a single valve can be responsible for the isolation of many segments
(depending on the given scenario of valve operability in the network). Valves are critical
when the segments, or zones, they help prevent from unintended isolation are impor-
tant/critical themselves. The importance of segments and valves has been addressed in
the literature in two different ways: analysis and design [11]. Design is concerned with the
optimal placement of valves ( e.g., Giustolisi and Savic [4], Santonastaso et al. [5], Creaco
and Haidar [12], Giustolisi [13], Yang et al. [14], Morosini et al. [15], Hernandez Hernandez
and Ormsbee [16]). Analysis involves evaluating the impacts of valve failure (or inoperabil-
ity) on WDN performance and prioritizing valves and segments to inform operation and
management. There are limited studies focused on identifying critical segments or valves
given a water network design with valves already allocated (e.g., Liu et al. [6], Jun and
Loganathan [11], Mahmoud et al. [17], Zischg et al. [18], Abdel-Mottaleb and Walski [19],
Hernandez and Ormsbee [20], Atashi et al. [21]).

Jun and Loganathan [11] developed a technique based on graph theory and matrix
calculations to identify WDN segments and an algorithm to trace unintended isolations due
to a given segment isolation. Their work is an advance which used the dual topology, with
valves modeled as edges and segments modeled as nodes. However, their method does
not provide a ranking of segments or valves in the network. Similarly, Abdel-Mottaleb and
Walski [19] used a matrix to compute the importance and vulnerability of segments using
reachability to water sources under valve failure scenarios. Though their research provided
a ranking of segments, it would require many simulations to rank valves. Zischg et al. [18]
applied complex network analysis to the dual topologies of different WDNs to evaluate and
compare the valving of the networks. Their methodology allows for a quick comparison of
valving scenarios (i.e., location and number of valves) but does not provide a prioritization
scheme at the valve or segment level. These techniques serve only as a quick preliminary
screening for utilities, prior to running hydraulic simulations. Liu et al. [6] evaluated
different performance measures for various valving scenarios, demonstrating that increas-
ing valving throughout a network reduced the adverse consequences of failures in the
network. They evaluated impacts of each inoperable valve; however, there can be many
combinations of inoperable valves in real WDNs. In addition, because there are often loops
of segments in real WDNs, there can be many paths between one segment and another
(i.e., that need to be isolated). It is resource-intensive to enumerate all possible scenarios
for utilities. Mahmoud et al. [17] prioritized repair actions (including operating valves)
using multi-objective optimization; where the objectives were the minimization of the
negative impact on the consumers (e.g., unsupplied water volume) and the minimization
of the corresponding number of repair actions. The purpose of their method is real-time
decision-making after failures, assuming valves are operable.

The aforementioned studies do not account for the social vulnerability of communi-
ties serviced by WDNs (i.e., customers vulnerable to a disruption in water service). In
reality, utilities are often concerned with social indicators to varying degrees and account
for social vulnerabilities within the consequences-of-failure score in their risk-based asset
management. Choi et al. [22] used multi-objective optimization, and Giustolisi et al. [23]
proposed a relevance-based centrality metric, to identify critical segments that account
for social indicators. This can provide utilities with insight into the valves that ought to
be repaired sooner; however, the probability of the failure of segments was not included
in these studies [13]. Simone et al. [24] addressed this gap by developing a method that
accounts for the probability of the failure of segments, in addition to some social indicators
through the relevance-based centrality metric proposed by Giustolisi et al. [23]. Similarly,
Giustolisi et al. [25] used complex network analysis to identify critical segments and valves.
While these methods are useful for utilities, they do not account for whether valves are
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operable and do not account for uncertainties associated with both the water service needs
of customers and customer vulnerability, which are inherent in infrastructure networks
and the urban environment [26–28]. Accounting for these uncertainties has been shown
to have an effect on resulting best practices or decisions made by utilities [29]. In sum,
challenges to prioritizing isolation valves include the complexity of accounting for multi-
ple possible operable-valve scenarios in a WDN, and accounting for social vulnerability
regarding the service population, uncertainties in both hydraulic performance and social
vulnerability, and the likelihood of segment failure. These limitations can be attributed to
the methodologies used for analyzing WDN valving.

This study addresses these limitations as follows. First, a method is developed to
reduce the complexity of the potential operable valve scenarios in a WDN. Then, the result-
ing WDN representation is used as input for three multi-criteria optimization formulations
developed in this study. The three formulations build upon each other. The third formu-
lation accounts for social vulnerability, uncertainties associated with consumer demands
and the likelihood of failure of pipes within segments. In lieu of a priori knowledge on
valve operability, the proposed method identifies the pareto-optimal sets of critical valves
(i.e., valves which have the most potential adverse impact when inoperable) based on
hydraulic simulations and the social vulnerability of WDN segments. The identified critical
valves are compared for the three formulations for the City of Tampa as a case study.

2. Materials and Methods

To identify critical valves, an optimization model is used for the logical implications
of inoperable valves. The implications of inoperable valves are segment isolation and
the potential subsequent loss of water service. Not all segment isolation has the same ef-
fect—some segment isolation is more critical than others. To obtain the logical implications,
first a segment-valve representation of the network is constructed. Then, the segment-valve
representation is simplified to a Gomory-Hu-tree network model (i.e., an equivalent flow
graph), which allows the identification of the minimum set of inoperable valves that would
cause any given segment isolation.

2.1. Segment-Valve Representation

The segment-valve representation of the WDN has often been called the mathematical
“dual” of the more common pipe-junction representation. In this representation, seg-
ments containing pipes are the nodes and isolation valves are the edges, or links, between
them. To obtain the segment-valve representation, a hydraulic network model based
on a pipe-junction representation is first created using a hydraulic modeling software
(e.g., WaterGEMS). The data structure (e.g., list of lists, dictionary) containing segments and
associated isolation valves is exported from the software (e.g., WaterGEMS) to Python. A
network model of segments and valves is then generated using the networkx package [19].

There are still loops in the segment-valve representation, making it computationally
complex to identify how valves impact segments when any valves are inoperable. This is
because there are many potential combinations of valves that can impact the isolation of a
given segment. Consider the small network shown in Figure 1a, where node 1 (i.e., seg-
ment 1) contains the reservoir and node 6 (i.e., segment 6) contains a tank. In this figure, if
segment 4 must be isolated, at least two operational valves must also exist (one on each
path) between segment 2 and segment 4, so that segment 2 is not isolated unnecessarily. The
combinations of two operable valves that allow segment 4 to be isolated without isolating
segment 2 correspond to the minimum k-cut between segments 2 and 4, where k “ 2. A
minimum k-cut between two nodes (i.e., segments) means that k edges (i.e., valves) are
required to partition the two nodes (i.e., successfully isolate them from each other). If the
valves between segments 2 and 4, and segments 4 and 5, are both inoperable, then to isolate
segment 4, the entire network must also be isolated from the reservoir. This illustrates the
combinatorial complexity of assessing the impact of failed valves on segments because of
the existence of loops of segments.
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(a) (b)

Figure 1. Segment-valve represenation and Gomory–Hu tree of a network example. (a) Segment-
valve representation of a small example network. (b) Gomory–Hu tree of small example, where edges
that represent more than one valve are bolded.

2.2. Gomory–Hu Tree of Segment Connectivity to Address Combinatorial Complexity

The Gomory–Hu tree (G-H tree for short) simplifies the task of identifying the paths
along which operational valves should exist to minimize unnecessary segment isolation
(i.e., the minimum k-cuts between segments). When there are loops of segments, a set of
valves instead of a single valve must be operational to minimize unnecessary segment
isolation. The G-H tree contains nodes, which represent segments, and edges linking seg-
ments that represent the flow paths between each pair of connected segments. Specifically,
edges represent the k valves (corresponding to all the minimum k-cut(s) in the segment
valve network, or the minimum number of valves that must be operable) between two
connected nodes for successful isolation. The G-H tree is also called a flow equivalent
graph, because each minimum cut(s) represents all of the possible flow paths between two
nodes (i.e., segments). The G-H tree of the small example is in Figure 1b. In this figure,
the edge from segment 2 to segment 3 represents the following valves from Figure 1a:
segment 2–segment 3, and either segment 2–segment 4, segment 4–segment 5, or segment
5–segment 3. The G-H tree of the segment valve representation of the network is obtained
using the gomory_hu_tree function within networkx in Python. The valves that are part of
the minimum cut(s) are stored in a data structure for the following step.

2.3. Logical Network

A logical network is constructed to represent the implications of valve failure on seg-
ment outages following a similar methodology to that presented in Abdel-Mottaleb et al. [3].
In this work, valve failure refers to valves that are in a failed (OPEN) state. In the logical
network, there are two types of nodes. The nodes represent either segments (see the red
nodes in Figure 2) or sets of valves (i.e., the edge of a G-H tree or minimum cut in the
original network) (see the blue nodes in Figure 2). The edges in the logical network are
directed and represent a logical implication that a given set of valves will have an adverse
consequence on connected segments. For example, if the valve(s) represented by node
1-2 in Figure 2 fails, it will have adverse consequence on segments 1 and 2. If one of the
k valves in a minimum cut between two segments is inoperable, then the segment it is
connected to will have to be isolated in order to isolate adjacent segments (due to the valve
failure). Figure 2 illustrates the construction of the logical network for the small example
illustrated in Figure 1. If segments are identified as critical in the optimization, then the
valves connected to them are also identified as critical. For example, if segments 2 and 5
are critical, 2-3, 2-4, 3-5, 5-4 and 5-6 are part of the solutions set.
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5-4, 3-5
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Figure 2. Representation of the logical network, where valves that were represented by edges are
modeled as nodes and segments are also modeled as nodes, and the edges between valves and
segments represent logical implications.

2.4. Multi-Criteria Optimization

A multi-criteria optimization model is developed to identify critical valves based
on their adverse impact to segments. The logical network relates valves to segments
and is used as input for the optimization so that the impact of segment isolation can be
quantified and the set of inoperable valves that would lead to the worst segment-isolation
scenarios can be subsequently identified. The objective functions are quantified for each
node representing valves in the logical network by aggregating the attribute value for
the segments impacted by a selected valve or set of valves. Three objective functions
(i.e., criteria) are used to quantify the impact to segments: reachability, segment flow
volume, and social vulnerability. The attribute values for each segment under each criterion
are calculated and stored as a dictionary object.

Reachability refers to how reachable the water source(s) is to other segments after
a given segment isolation. In this study, reachability is quantified using the importance
index, which is calculated from a matrix built from the segment-valve representation of
the WDN, as described in Abdel-Mottaleb and Walski [19]. The matrix contains rows (m)
representing isolated segments and columns (n) representing affected segments, where
for each cell (m, n), a value of 2 is assigned if the isolation of segment mi causes segment
nj to be isolated from all sources; a value of 1 is assigned if the isolation of segment mi
causes segment nj to be isolated from the reservoir but remain connected to tanks; and a
value of 0 is assigned if segment nj remains connected to the reservoir. The summation of
each row is the importance index of the segment represented by that row. The importance
index of a segment calculated from the matrix is an indicator of the system demand
shortfall for that given segment isolation, and, more specifically, the number of segments
that lose connection with water sources. In this manner, a segment with a high value
for reachability (as measured by the importance index) is a segment that would cause
many other segments to be disconnected from water sources. This objective function
can be substituted with simulation data (e.g., demand shortfalls under segment isolation
scenarios). In this study, reachability and segment flow volume are used separately to
uncouple the topology from the hydraulics in the analysis and to compare the identified
critical valves obtained with and without the inclusion of additional objectives. Reachability
can be used to identify critical segments, and, subsequently, valves in two ways: graph
theory and a single objective optimization by only including the objective function related
to reachability. Graph theory can be used by applying the articulation_points function
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within networkx package in Python over the segment-valve representation, as demonstrated
in Abdel-Mottaleb and Walski [30].

Segment flow volume is the second objective function used to assess the impact
from valves to segments. The water flow volume in a segment is calculated using Wa-
terGEMs ([31] through pressure-driven extended period simulation, over a 24-hour dura-
tion. In other case studies, it may be appropriate to substitute these two objective functions
(reachability and segment flow volume) with just one using the system demand shortfall
obtained from hydraulic simulations. The flow volume through segments varies from the
initial design of a WDN and varies over time as customer demands change. It has been
shown that larger pipes, holding more flow, have a larger adverse impact on WDNs than
smaller counterparts [32]. Therefore, larger mains are typically designed with a longer
design life than smaller pipes because of their high cost, and have lower uncertainties in
flow volume. In this study, it is assumed that uncertainties in flow volume increase as pipe
diameters decrease.

A novelty presented in this work is accounting for segments with populations that are
vulnerable to water loss given their social class, household composition, sensitive popula-
tion, minority, housing tenure, and quality of life (see Borden et al. [33], Cutter et al. [34]).
The third objective function, therefore, accounts for the social vulnerability of populations
associated with each segment . The social-vulnerability index (SVI) used in this study
was developed by Wakhungu et al. [35]. The index was calculated using 2016 and 2017
sociodemographic data obtained from the American Community Survey and the U.S. Cen-
sus Bureau. Using R-mode factor analysis in SPSS v. 25, the study considered 14 social
vulnerability indicators to derive an SVI for each census block group in the City of Tampa.
The analysis involved weighting component scores by the percentage of variance explained
and aggregating the scores into a cumulative factor score indicating the vulnerability of a
census block group. The social vulnerability of a community with a high SVI is also more
likely to change than a community with a low SVI because of gentrification occurring in
Tampa (see Wakhungu et al. [35], Chavez [36], Wakhungu [37]. In other words, there is more
uncertainty associated with high SVI values than with low SVI values. Previous criticality
analyses using the pipe-junction representation have taken key customer, or important
demand, junctions into account (e.g., Giustolisi [13]). Similarly, the social-vulnerability
index accounts for various household compositions and sensitive population variables
per census block group, including the elderly, infants and children, people living with a
disability or illness, and large households.

2.4.1. Formulation

In this study, three level of formulations are used to solve the problem accounting for
different aspects. However, the overall formulation requires the decision-maker to provide
the number of the critical sets of valves that the model should identify. In other words,
for a given user-defined number, the model looks for the worst sets of valves to fail in
the network.

Formulation One

The first formulation is the most straightforward one and is based on the two following
assumptions. First, we assume that there does not exist any uncertainty in the objective
functions over time or in their measurement. The second assumption is that the likelihood
is the same for all valves to be operational (i.e., all segments have an equal likelihood
of failure).

To mathematically formulate the model, we define S as the set of all segments, and si
as the binary decision variable related to segment i P S, where si “ 1 means that segment i
must be isolated and si “ 0 means otherwise. In addition, we let V be the set of all valves,
and vj represent the binary decision variable related to valve j P V, where vj “ 1 means
that valve is inoperable and vj “ 0 means otherwise. Based on the logical network, Vi
is defined as the set of all the valves affecting segment i (i.e., must be operational such
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that segment i is not unnecessarily isolated) such that
Ť

i“S
Vi “ V . In addition, we define

a :“ pa1, a2, ¨ ¨ ¨ , a|S|q, b :“ pb1, b2, ¨ ¨ ¨ , b|S|q, and c :“ pc1, c2, ¨ ¨ ¨ , c|S|q as the vectors of
non-negative real numbers where ai, bi and ci are the coefficients representing the social
vulnerability, segment flow volume, and reachability impact of segment i P S, respectively.

The optimization model includes three objective functions to be maximized for identi-
fying the worst sets segments to be isolated. Subsequently, from the relationship between
segments and valves in the logical network, the worst sets of valves to be inoperable are
identified by selecting the sets of valves connected to the identified segments in the logical
network. The objective functions of our optimization model are as below:

• Social vulnerability:

max
ÿ

iPS

aisi (1)

• Segment flow volume:

max
ÿ

iPS

bisi (2)

• Reachability impact:

max
ÿ

iPS

cisi (3)

The constraints of the optimization model are as follows:

si ď
ÿ

jPVi

vj @i P S, (4)

|Vi|si ě
ÿ

jPVi

vj @i P S, (5)

ÿ

iPS

ÿ

jPVi

vj “ k , (6)

vj P t0, 1u @j P V, (7)

si P t0, 1u @i P S. (8)

Constraints (4) and (5) define the relationship between valves and segments such that,
if and only if at least one of the valves affecting segment i is inoperable (from the minimum
set of valves that must be operable), then segment i must be unnecessarily isolated. Note
that, since all the objective functions of our optimization problem are in maximization
form, Constraint (5) will be naturally satisfied, and, therefore, can be removed from the
model. Constraint (6) defines the user-imposed condition on the total number of valves to
fail, where k is a positive integer number. Constraints (7) and (8) enforce that the variables
representing valves and segments can only take a value of zero or one.

If each valve in the network only affects one segment, then the formulation can be
simplified by replacing the constraints (4)–(7) with the following constraints

ÿ

iPS

si “ k (9)

Proof. Since, |Vi| “ 1 by assumption, we can rewrite Constraints (4) and (5) as follows:

si ď
ř

jPVi

vj Ø si ď vi

|Vi|si ě
ř

jPVi

vj Ø si ě vi

,

/

/

/

/

.

/

/

/

/

-

Ñ si “ vi,
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where vi is the binary decision variable showing whether the valve affecting segment i is
inoperable or not. This, combined with Constraint (6), results in

ÿ

iPS

ÿ

jPVi

vj “ k Ø
ÿ

iPS

vi “ k Ø
ÿ

iPS

si “ k

Formulation Two

In this formulation, the model accounts for the uncertainties that are inherent in two
of the objective functions of the study. Uncertainties in segment flow volume are assumed
to increase (between 5 percent and 95 percent of a given flow value, evenly distributed
based on quantile) as pipe diameters decrease. Uncertainties in social vulnerability are
assumed to increase as the social-vulnerability index increases (also between 5 percent and
95 percent of a social-vulnerability index value, evenly distributed based on quantile). This
assumption is specific to the case study and may differ for other cities.

In order to mathematically formulate the objectives of the new formulation, we define
rai, ais and rbi, bis as the intervals of the coefficients representing the social vulnerability and
segment flow volume. In these intervals, the lower bounds are the estimated lowest values
of the social-vulnerability index and segment flow volume, and the upper bounds are the
highest values (i.e., the worst-case scenario) that the social vulnerability and segment flow
volume impact can be. Furthermore, we define γ as a parameter that represents the level of
conservatism of the decision maker. This parameter can take values between zero and one,
where γ “ 1 means that the decision maker is completely pessimistic and he/she believes
that all the coefficients will take their worse values, i.e., ai and bi for all i P S. However, if
γ “ 0, then the decision maker is completely optimistic meaning that the coefficients will
take their best values, i.e., ai and bi for all i P S. If being set to a value in the interval p0, 1q,
then the decision maker believes that the ratio of parameters that take their worst values
is γ.

Following these definitions, the objective functions of social vulnerability and segment
flow volume impact are defined as follows:

• Social Vulnerability:

max
ÿ

iPS

aisi ` pai ´ aiqri (10)

• Segment Flow Volume:

max
ÿ

iPS

bisi ` pbi ´ biqri (11)

where ri is a binary variable that shows whether the worst-case is happening for segment
i or not. The constraints of the robust optimization model include the constraints of
formulation one, i.e., constraints (4)–(8), in addition to the following constraints:

ri ď si @i P S, (12)
ÿ

iPS

ri ď γp
ÿ

iPS

siq , (13)

ri P t0, 1u @i P S. (14)

Formulation Three

This formulation is the most realistic model, which accounts for both the uncertainties
that are inherent in two of the objective functions of this study as well as the likelihood
of failure within segments (based on pipe failure within the segments). However, the
likelihood of failure is complex and there are models that have been developed accounting
for pipe length, age, size, and material, among many other things. To protect city data, we
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use age as the primary factor because most of the pipes in the City of Tampa are severely
aged [38].

Based on the likelihood of failures in a given segment, we categorize the set of valves
into three categories shown by Vh, Vm, and V l and representing the sets of valves affecting
segments (i.e., the valves that successfully isolate given segments) with high, medium, and
low likelihood of need to be operated, respectively. Following this definition, we simply
substitute constraint (6) with the following set of constraints:

ÿ

jPVh

vj “ h (15)

ÿ

jPVm

vj “ m (16)

ÿ

jPVl

vj “ l (17)

These constraints impose a user-defined condition on the total number of valves to
fail. In these constraints, h, m, and l are the user-defined non-negative integer numbers that
represent the number of failures in different categories based on their likelihood of needing
to be operated. Note that, as Vh, Vm, and V l have high, medium, and low likelihoods of
needing to be operated, respectively, their corresponding user-defined conditions should
be defined such that l ď m ď h and h`m` l “ k.

2.4.2. Solution Approach

The formulations defined in this study represent a multi-objective optimization prob-
lem with three conflicting objectives, or criteria: reachability, segment flow, and social
vulnerability. The inclusion of three different objectives in the model makes it impossible to
find a single solution that simultaneously optimizes all the objectives. Therefore, we focus
on finding the set of solutions for which it is impossible to increase one objective without
decreasing other objectives. Such solutions are referred to as efficient or non-dominated
solutions in the literature of multi-objective optimization [39]. The importance of finding
different efficient solutions is that they help the decision-maker better understand the
trade-offs between the objective functions. Therefore, in this study, we only focused on
approaches that can generate the entire set of efficient solutions of our problem. Specifically,
we implemented two different algorithms, developed by Dächert and Klamroth [40] and
Boland et al. [41], in C++ using Gurobi Optimizer V9.0.3 and tested their performance on
our specific problem. Among the mentioned algorithms, we chose the method developed
by Boland et al. [41], referred to as the “quadrant shrinking method,” as it resulted in the
best performance in terms of time and computational complexity. Finally, we note that
the computational experiments were conducted on a Dell PowerEdge R360 with two Intel
Xeon E5-2650 2.2 GHz 12-Core Processors (30 MB), 128 GB RAM, the RedHat Enterprise
Linux 6.8 operating system, and using Gurobi’s default setting.

2.5. Post-Optimization Analysis

After sets of valves were identified from the optimization model, the number of
times (or frequency) each valve appeared in the set of efficient solutions was stored as an
attribute. The valves were mapped by their frequency of appearance in ArcGIS pro. To
compare the reported valves from the different formulations, the frequencies of valves
occurring in the solution set for each formulation were divided into their 25, 50, 75, and
100 percentile ranges. Then, the valves within the same percentile range were compared
among model results.
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3. Case Study

The model was applied to a field-validated, skeletonized WDN model from the City of
Tampa (see [3] for network schematic). Tampa’s WDN has over 134,000 pipes serving over
600,000 customers [38]. There is a single reservoir and five tanks throughout the network
(see Figure 3a). The network has approximately 50,000 isolation valves, many of which
are inoperable. Therefore, the city is prioritizing valve rehab and replacement—providing
impetus for this study. This study tested k “ 10, k “ 20, and k “ 30 and k “ 30 was selected
because it is the most representative. In this study, γ was assigned a value of 0.5 and h, m,
and l were assigned values of 15, 9 and 6, respectively.

5
Miles

≤24

≤12

≤8

≤4

≤2
Segment Reachability

City of Tampa Districts

Tank

Reservoir

(a)

5
Miles

Reservoir

Tank

Critical Valves

City of Tampa Districts

(b)

Figure 3. Segment reachability values and the subsequently identified critical valves. (a) Map of
segment reachability values. (b) Map of critical valves.

4. Results and Discussion
4.1. Spatial Variation of Segment Attributes

Prior to applying the developed optimization models, critical WDN locations were
mapped based on each segment attribute separately. Segment reachability is mapped in
Figure 3a, where segments bridging water sources and more peripheral locations of the
network are shown to have higher values. In Figure 3b, valves identified as critical using
graph theory based on the reachability to the source are mapped. Only 22 valves were
identified using this method, and the identified valves are clustered in 6 different locations
in the city, as circled in Figure 3b. In the south-west of the city, where there are three different
storage tanks, no critical valves were identified using reachability alone. Clusters 1 and 6
are located in north-east and south-east Tampa, respectively. The valves in these locations
were selected due to a lack of redundancy in water pipes. The clusters are locations that
bridge between the water reservoir and more remote water distribution segments.

The flow volume of segments is mapped in Figure 4. There are few segments in
the highest percentile of flow volume, and they correspond to the distribution mains,
which ensure there is sufficient volume being transported from the water source(s) to the
sparser periphery of the network. It is interesting to note that the central-south of the city
(corresponding to Downtown) has many segments with relatively low flow volume. This
is likely because of the high redundancy in this part of the city. In contrast, in Sulphur
Springs and Temple Terrace, near the water reservoir, the pipes are generally larger to
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convey flow to the rest of the network. It is interesting to note that these communities are
socially vulnerable, as shown in Figure 5.

5
Miles

City of Tampa
Districts

≤196423
≤92122

≤30192

≤7938

Segment Flow Volume
 (gallons)

Reservoir

Figure 4. Map of segment flow volume.

Many of the identified critical valves, shown in Figure 3b, also coincide with socially
vulnerable communities. In Tampa, vulnerable and non-vulnerable neighborhoods are
not completely isolated from each other. Figure 5 shows pockets of lower vulnerability
blocks interspersed among neighborhoods with high vulnerability. However, there is
generally less vulnerability in the south-west and north-east of the city, in comparison
with the center. Interstate 275 (running approximately north–south) intersects the center of
the city, dividing communities and highlighting where there are many pockets of socially
vulnerable communities.

An interesting observation is that because many of the communities that are socially
vulnerable in the city have been historically marginalized, they coincide with aging pipes
and, thus, high likelihood of failure in the water distribution segments. However, there are
also a few communities with historically very low social vulnerability, yet with aging pipes
as well, in the south of the city, as shown in Figure 6.

By mapping the segment attributes (reachability, segment flow volume, and social
vulnerability) individually, it is clear that there exist conflicting locations of criticality.
For example, in the west of the city (near cluster 4 in Figure 3b), segments have high
reachability values and high social vulnerability, but they are not severely aged, nor do
they have high flow volume relative to other segments. Likewise, in the downtown area in
the south-central location of the city, segment flow volume is relatively low due to the high
level of redundancy; however, there are segments with highly aging pipes and high social
vulnerability. Additionally, segment age, which is used as a surrogate for the likelihood
of failure, follows a different spatial pattern (generally a lower age for locations further
away from downtown) than the three segment attributes. Therefore, optimization models
are useful to ensure decision-makers can identify the most critical sets of valves based on
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the three segment attributes (or three objectives), and to account for the likelihood of the
failure of segments.

Figure 5. Map of social-vulnerability index, adapted from [35].

5
Miles

City of Tampa Districts

≤115

≤76

≤53

≤37

≤24

Segment Age (years)

Figure 6. Segment age mapped by color; age is used as a surrogate for the likelihood of failure.

4.2. Critical Valves Based on the Optimization Models

When the multi-objective optimization models were used, more critical valves were
identified than by only considering a single objective at a time. In other words, without run-
ning an optimization model, some critical valves were not identified. The pareto frontiers
of the optimization models contained many repeated valves, allowing the valve criticality
to be distinguished based on the percentile of the frequency of valves’ occurrence in the
pareto frontier. The number of times a valve occurred in the pareto frontier was counted
as a frequency to provide an indication of criticality (relatively low or high compared to
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other valves selected by the model). The frequencies that valves appeared in the solution
set (or pareto frontier) from formulation 1, formulation 2 and formulation 3 are mapped in
Figure 7. The deterministic model (formulation 1) selected 251 unique valves, the model
accounting for uncertainties (formulation 2) selected 247 unique valves, and the model
accounting for uncertainties and likelihood of failure (formulation 3) selected 278 unique
valves. However, the results from formulation 2 had higher frequencies of valves occurring
in the solution set because of the uncertainties accounted for. The results from Formulations
1 and 2 had more valves in the 75th and 100th percentile, as shown in Figures 7a,b, whereas
formulation 3 diversified the selected valves, reducing their frequencies in the solution
set (as can be seen in Figure 7c). This is because the constraints added in formulation 3
emphasize selecting a diverse set of solutions based on the likelihood of failure associated
with segments.

5
Miles

(a) Formulation 1

5
Miles

(b) Formulation 2

5
Miles

(c) Formulation 3

Figure 7. Maps of identified valves using the three formulations, where formulation 1 is deterministic,
formulation 2 accounts for uncertainty, and formulation 3 accounts for uncertainty and likelihood
of failure.

Overall, the optimization models selected valves along the center of the city, near
I-275 (see Figure 8) and in the south-west. The critical valves identified in the south-west
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increased when uncertainty and likelihood of failure were taken into account. The models
also selected more valves along the pipes bridging central and north-east Tampa, whereas
in the reachability map, only valves in the north-east and central locations were selected
(and not along the pipes bridging the two locations). The optimization models selected
valves in the Seminole Heights, Downtown, and Ybor locations, despite the redundancies
of valves present in those particular areas. This is likely due to the social-vulnerability
objective function because these locations have high social vulnerability. The optimization
models also selected valves near the water reservoir, which is expected because of high
reachability, segment flow volume, and social vulnerability associated with segments that
would be isolated if valves near the reservoir were inoperable. This is consistent with
findings from Liu et al. [6], Hernandez and Ormsbee [20] that identified the segments and
valves close to the major water source(s) of a WDN as critical. It is also consistent with
Paez et al. [32], who found that a disruption to a pipe conveying a larger flow volume has a
more adverse impact on a WDN than a disruption to many smaller pipes.

It is important to note that many of the valves identified as critical by formulation 3
were also identified using formulation 2. This means that accounting for uncertainties
associated with flow volume and social vulnerability is useful to utilities (even before con-
sidering likelihood of failure). In addition to the critical locations identified in formulation
1, formulation 2 selects more valves in East, West, and South-west Tampa. While West
and East Tampa have high social vulnerability (and, thus, high uncertainty), South-west
Tampa has low to moderate social vulnerability. Additionally, the segment flow volume
of South-west Tampa is not high, but, rather, low to moderate. The reachability of South-
west Tampa is also not high. For these reasons, the increased selection of critical valves
in South-west Tampa was not expected. The optimization model captures the interplay
between uncertainties that decision-makers would otherwise remain unaware of. Finally,
the likelihood of failure of the segments in South-west Tampa is approximately average;
therefore, it is not surprising that formulation 3 selected the same valves as formulation 2.
The following section discusses the differences in the valves identified as critical by for-
mulations 1 (deterministic) and 3 (accounting for uncertainties and likelihoods of failure),
the valves selected by these two models are compared at varying percentiles (as shown in
Figure 8).

New Tampa

West Tampa

South Tampa

Downtown

Davis Island

East Tampa

Temple Terrace

North Tampa

Lake Leto

Sulphur Springs

Seminole
Heights

Tampa
Heights

Port of Tampa

Southeast Tampa

Ybor

US 301

Interstate 275

0 2.5 51.25 Miles

(a) 25th percentile

Figure 8. Cont.
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Figure 8. Maps of valves identified by formulations 1 and 3 at various percentiles for the frequency
of occurrence in the solution set.

4.3. Differences Between the Formulations

Both formulations 1 and 3 identified critical valves in the North-east (New Tampa)
and East Tampa, but the selected individual valves varied. These locations were selected
by the model because they bridge between the reservoir and the periphery of the WDN.
The variation in the individual valves is likely due to the likelihood of segment failure
that is accounted for in formulation 3. In addition, there were more valves selected by the
deterministic model (formulation 1) in East Tampa. When uncertainties and the likelihood
of failure were included (i.e., formulation 3), they were not selected, as shown in Figure 8d.
This may be because of more newly installed pipes (as shown in Figure 6) and pipe
replacement projects [42,43], which contribute to a lower likelihood of failure in East
Tampa. Additionally, social vulnerability is relatively low in East Tampa in comparison
with locations such as Ybor or North Tampa, meaning there is lower uncertainty associated
with the social vulnerability of segments in East Tampa, leading the model to select fewer
valves in East Tampa when uncertainties are accounted for. Although the models selected
many common valves (shown in Figure 8d), the deterministic model selected more valves
in proximity to those common valves. This is likely due to the additional constraints (for
the likelihood of failure) in formulation 3 limiting the selected valves in a given location.
More importantly, the models can vary in the level of criticality assigned to selected valves.
For example, formulation 3 selected valves in the Lake Leto area in the 25th percentile
(Figure 8a), but formulation 1 selected valves from that location at the higher percentiles.
In other words, the Lake Leto area is less critical when the likelihood of failure and
uncertainty in flow volumes and social vulnerability are accounted for. This is an example
of how including uncertainty and the likelihood of failure in the model provide more
complete information for decision-makers. Additionally, including uncertainty and the
likelihood of failure reduces the number of critical valves identified as the percentile (of the
frequency of valves occurring in the solution set) increases. This is because formulation 3
includes additional constraints (i.e., based on their likelihood of failure), thereby eliminating
solutions (i.e., sets of valves) that were identified by the exact method. The reduced number
of critical valves identified at the higher percentiles makes the model results more readily
considered by decision-makers. Another advantage of formulation 3 is that it allows valves
to be identified as critical (even if at a lower percentile of frequency) where they otherwise
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may not have been selected at all. For example, if criticality is determined by the likelihood
of failure alone, there would be fewer valves selected in the recently developed Northeast
of the city (or the New Tampa location), but because the likelihood of failure is integrated
within the model, there are still valves selected with high frequency in the north-east
of the city. This is due to high values of reachability and flow volume of segments in
the north-east.

4.4. Potential Implications of the Optimization Models

This study applied multi-objective optimization to identify critical isolation valves in a
real WDN. The optimization models were solvable within a reasonable time and provided
results that are useful to utilities. In particular, the models made it easier to identify
valves as critical that may have been missed using single objectives. The optimization
model formulations allow decision-makers to account for multiple facets of valve criticality.
In particular, including social vulnerability in the optimization formulation identifies
communities that may unduly suffer from an extended lack of water. If valves in these
communities are operable, unsupplied demand to vulnerable customers may be reduced.
Formulation 2, in particular, allows decision-makers to take uncertainties of segment
attributes into account. Even more useful, formulation 3 prioritized the selection of valves
based on the likelihood of failure. Ultimately, formulation 3 diversifies the identified valves
while also selecting fewer unique valves at higher percentiles of criticality. Obtaining
the common valves identified by both formulations 1 and 3 may help hone in on highly
critical valves. This is because valves selected by both models are not only critical but also
connect the segments with a high likelihood of failure and high uncertainties associated
with flow volume and social vulnerability. As the models result in many repeated valves,
the frequencies of valves occurring in the solution sets can be used to rank the selected
valves or divide them into varying levels of priority. This can offer utilities a powerful
alternative to the method used in traditional asset management, such as multiplying the
consequence of failure and likelihood of failure [38,44,45], which limits the identified critical
components (i.e., does not identify all of them) [3].

However, there remain limitations to this study. The consequence-of-failure scores
used by utilities may have more than three variables factored in. In that case, when using the
current models, some variables would be combined (i.e., weighted together), but the results
would be more diverse than weighing all the variables as a single objective (i.e., traditional
score of the consequence of failure) assigned to segments. Though social vulnerability is
used as an objective function, it may be substituted with a lifeline facility indicator (e.g.,
number of hospitals and schools in a census block, number of shelters)—which may be more
useful to utilities for analyzing the impact of inoperable valves after disturbances [33,46].
In this study, likelihood of failure was reduced to a surrogate based on pipe age, whereas,
in reality, it is also affected by the length of pipe in a segment, soil conditions, and pipe
safety factor, among many other things. However, this does not impact the methodology
because the values from the function for the likelihood of failure that a utility uses for their
asset management can be input to the model the same way.

5. Conclusions

This study formulated models for identifying critical isolation valves in WDNs. The
study proposed the use of a Gomory–Hu tree to represent how segment isolation ultimately
propagates within a given WDN. A major contribution of the study is applying graph
theory to simplify the combinatorial problem of multiple valves affecting segments (because
of multiple possible flow paths between segments). This can help identify critical valves
without simulating many scenarios, including combinations of operable and inoperable
valves. The Gomory–Hu tree may also be useful in the failure analysis of other flow-
based infrastructure networks because it helps to ascertain the logical implications of
component failure in a network. Further, this study evaluated the critical valves not
only based on hydraulics, but also on social vulnerability. The identified critical valves
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differed when social vulnerability was included as an objective function in the optimization
procedure—suggesting that social indicators (be they demographic or related to lifeline
facilities) should be included in infrastructure criticality analyses. Another advance the
study made is accounting for both uncertainties (in water flow and social vulnerability) and
the likelihood of failure of segments when identifying critical valves; the model accounting
for uncertainties and likelihood of failure was compared with the deterministic model.

Results showed that the formulation accounting for uncertainties selects more valves,
including in unexpected locations. However, the formulation accounting for both uncer-
tainties and likelihood of failure narrows the selection down due to additional constraints.
All optimization models were solvable within a reasonable time and different formulations
provide additional insights that are useful to utilities. The multi-objective optimization
model makes it easier to identify critical valves that may have been missed using single
objectives or traditional asset management methods. Future work can address the limita-
tions of the current study by using the actual likelihood of failure from utilities instead of a
surrogate based on pipe age. Additionally, including a lifeline facility indicator related to
segments in the objective functions can help utilities determine critical valves, especially
under extreme disturbances.

Author Contributions: Conceptualization, N.A.-M. and Q.Z.; methodology, N.A.-M., P.G.S., M.J.W.,
E.C.W., H.C. and Q.Z.; software, N.A.-M., P.G.S. and H.C.; formal analysis, N.A.-M., P.G.S. and M.J.W.;
investigation, N.A.-M. and P.G.S.; data curation, N.A.-M., P.G.S., M.J.W. and Q.Z.; writing—original
draft preparation, N.A.-M., P.G.S., M.J.W., H.C. and E.C.W.; writing—review and editing, N.A.-M.,
P.G.S., M.J.W., H.C., E.C.W. and Q.Z.; supervision, H.C., E.C.W. and Q.Z.; funding acquisition, H.C.,
E.C.W. and Q.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This material is based upon work supported by the National Science Foundation under
Grant Number 1638301. Any opinions, findings, and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily reflect the views of the National
Science Foundation.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The water distribution network for the city of Tampa is confidential
due to security reasons. The code to obtain the Gomory–Hu Tree and to run the multi-objective
optimization are available upon request from the corresponding author. All software used to obtain
data and analyze results is cited in the paper. The commercial software Arcpro, WaterGEMS, and
Gurobi were used for generating maps, hydraulic simulations and optimization, respectively. Open-
source software Python and the networkx package were used for network analysis.

Acknowledgments: The authors are grateful for the water distribution network data provided by
Brian Pickard and Seung Park from the City of Tampa Water Department. N. Abdel-Mottaleb is
grateful for the valuable discussions with Tom Walski which helped develop the ideas for the study.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Shuang, Q.; Zhang, M.; Yuan, Y. Performance and reliability analysis of water distribution systems under cascading failures and

the identification of crucial pipes. PLoS ONE 2014, 9, e088445. [CrossRef] [PubMed]
2. He, X.; Yuan, Y. A Framework of Identifying Critical Water Distribution Pipelines from Recovery Resilience. Water Resour. Manag.

2019, 33, 3691–3706. [CrossRef]
3. Abdel-Mottaleb, N.; Ghasemi Saghand, P.; Charkhgard, H.; Zhang, Q. An Exact Multiobjective Optimization Approach for

Evaluating Water Distribution Infrastructure Criticality and Geospatial Interdependence. Water Resour. Res. 2019, 55, 5255–5276.
[CrossRef]

4. Giustolisi, O.; Savic, D. Identification of segments and optimal isolation valve system design in water distribution networks.
Urban Water J. 2010, 7, 1–15. [CrossRef]

http://doi.org/10.1371/journal.pone.0088445
http://www.ncbi.nlm.nih.gov/pubmed/24551102
http://dx.doi.org/10.1007/s11269-019-02328-2
http://dx.doi.org/10.1029/2018WR024063
http://dx.doi.org/10.1080/15730620903287530


Water 2022, 14, 3587 18 of 19

5. Santonastaso, G.; Di Nardo, A.; Creaco, E. Dual topology for partitioning of water distribution networks considering actual valve
locations. Urban Water J. 2019, 16, 469–479. [CrossRef]

6. Liu, H.; Walski, T.; Fu, G.; Zhang, C. Failure impact analysis of isolation valves in a water distribution network. J. Water Resour.
Plan. Manag. 2017, 143, 04017019. [CrossRef]

7. WaterWorld. Case Study: OK Water District Updates Distribution Systems with Isolation Valves. 2014. Available online:
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2018WR024063 (accessed on 5 June 2018).

8. Times, N.Y. Hard-Hit Parts of Florida Struggle to Find Clean Drinking Water. 2022. Available online: https://www.nytimes.
com/2022/10/01/us/florida-water-hurricane-ian.html (accessed on 16 August 2022).

9. Unicef. 1.4 Million People without Running Water Across War-Affected Eastern Ukraine. 2022. Available online: https://www.unicef.
org/press-releases/14-million-people-without-running-water-across-war-affected-eastern-ukraine (accessed on 16 August 2022).

10. Mays, L.W. Water Distribution Systems Handbook; McGraw-Hill: New York, NY, USA, 2000.
11. Jun, H.; Loganathan, G. Valve-controlled segments in water distribution systems. J. Water Resour. Plan. Manag. 2007, 133, 145–155.

[CrossRef]
12. Creaco, E.; Haidar, H. Multiobjective Optimization of Control Valve Installation and DMA Creation for Reducing Leakage in

Water Distribution Networks. J. Water Resour. Plan. Manag. 2019, 145, 04019046. [CrossRef]
13. Giustolisi, O. Water Distribution Network Reliability Assessment and Isolation Valve System. J. Water Resour. Plan. Manag. 2020,

146, 04019064. [CrossRef]
14. Yang, Z.; Guo, S.; Hu, Z.; Yao, D.; Wang, L.; Yang, B.; Liang, X. Optimal Placement of New Isolation Valves in a Water Distribution

Network Considering Existing Valves. J. Water Resour. Plan. Manag. 2022, 148, 04022032. [CrossRef]
15. Morosini, A.F.; Caruso, O.; Veltri, P. Management of water distribution systems in PDA condition with isolation valves. Multidiscip.

Digit. Publ. Inst. Proc. 2018, 2, 672.
16. Hernandez Hernandez, E.; Ormsbee, L. A heuristic for strategic valve placement. J. Water Resour. Plan. Manag. 2022, 148, 04021103.

[CrossRef]
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