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Abstract: Partitioning of water distribution networks (WDNs) into pressure management areas
(PMAs) or district metered areas (DMAs) is the most widely applied method for the efficient man-
agement and reduction of real losses (leakages). Although PMA partitioning is a crucial task, most
clustering methods are strongly affected by user-defined weighting factors that heavily affect the
final outcome while being associated with heavy computational loads, leading to time-consuming
applications. In this work, we use hierarchical clustering enriched with topological proximity con-
straints to develop an approach for the optimal sizing and allocation of PMAs (or DMAs) in water
distribution networks that seeks to minimize water leakages while maintaining a sufficient level of
hydraulic resilience. To quantify the latter, we introduce a resilience index that accounts for water
leakages and nodal heads in pressure-driven and mixed pressure-demand ways, respectively. The
strong points of the introduced approach are that (1) it uses the original pipeline grid as a connectiv-
ity matrix in order to avoid unrealistic clustering outcomes; (2) it is statistically rigorous and user
unbiased as it is based solely on statistical metrics, thus not relying on and/or being affected by
user-defined weighting factors; and (3) it is easy and fast to implement, requiring minimal processing
power. The effectiveness of the developed methodology is tested in a large-scale application study
in four PMAs (namely Boud, Kentro, Panahaiki, and Prosfygika) of the city of Patras in western
Greece, which cover the entire city center and the most important part of the urban fabric of Patras,
consisting of approximately 202 km of pipeline and serving approximately 58,000 consumers. Due to
its simplicity, minimal computational requirements, and objective selection criteria, the suggested
clustering approach for WDN partitioning can serve as an important step toward developing useful
decision-making frameworks for water experts and officials, allowing for improved management
and reduction of real water losses.

Keywords: statistical clustering; water networks partitioning; water distribution networks; water
losses; leakage management; hydraulic resilience

1. Introduction

Reduction of water losses in Water Distribution Networks (WDNs) is a crucial task
for all water agencies and experts, as the lost water remains unbilled, undermining their
environmental footprint and financial viability [1–7]. Water losses are the sums of apparent
losses (i.e., unauthorized consumption and metering errors) and real losses (i.e., leaks and
tank overflows) through the pipeline grid [8,9]. As the complete elimination of leakages
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is not technically achievable (see [9,10]), one of the most widely used methods for their
reduction is that of WDN partitioning into district metered or pressure management areas
(DMAs and PMAs, respectively) followed by the decrease of the inlet pressures to the
lowest permissible limit that meets the needs of the consumption/demand [10–22].

Network partitioning into DMAs and PMAs was originally introduced in the United
Kingdom in the 1980s (see [11,23]) and is one of the most widely applied methods for
leakage reduction in WDNs, as real losses increase with increasing water pressure. The
implementation of network partitioning has reportedly led to an 85% reduction in water
losses in the United Kingdom, as described by Farley [23] and Kunkel [24]. Other benefits
of network partitioning include (a) optimal sensor placement to promote effective areal
monitoring, (b) fast detection and localization of bursts, (c) fast isolation of contaminated
areas (malicious and/or accidental), (d) better overall water quality in cases of multiple
water supplies, and (e) facilitation of transitioning from intermittent to continuous supply
water systems [25–32].

A main concern regarding district metering is the water quality deterioration, relative
to the original network, due to the increase of the residence time of fresh water introduced
by the reduction of water flow paths within the partitioned area, in cases of a single
water source [32,33]. However, many studies agree that the water reduction quality is not
significant (see [25,34–37]), and thus, the water quality should not be used as the primary
criterion for WDN partitioning (see [31,38]). The complexity of partitioning an existing
WDN into individual PMAs becomes more apparent if one considers the large number of
possible solutions and conflicting criteria, e.g., leakage reduction vs. hydraulic resilience.
The latter is defined as the capability of a network system with a given topology to react
and overcome stress conditions such as pipe breaks, control valve failures, abrupt changes
in water consumption/demand and/or pressure heads, etc. [39].

Many current practices are based on semi-empirical criteria, such as setting the net-
work’s PMAs/DMAs by following natural (e.g., river banks), administrative (e.g., districts)
or engineered boundaries (e.g., roads), taking into account the locations of reservoirs
(tanks), the population density, and the altimetry of individual PMAs [25–28,40]. Although
network partitioning into small DMAs (or PMAs) may lead to low leakage rates and fast
detection of critical events, it increases both the delineation costs (see [41–43]) and the
overall hydraulic vulnerability of the study area (i.e., low hydraulic resilience index values,
see [44,45]). The optimal DMA/PMA size is usually set empirically so that service connec-
tions range between 500 and 5000 properties [46,47]. Karadirek et al. [48] have suggested
that the optimal size of a DMA/PMA should not exceed 1000 connections.

Recent studies suggest application of heuristic approaches in water network parti-
tioning is divided into clustering and sectorization phases [32–49]. The clustering phase
includes the formation of DMAs based on the original network’s connectivity and topology,
while the sectorization phase optimizes the valves and meters placement for effective net-
work performance and monitoring in order to minimize financial costs [32,50,51]. Perelman
et al. [52], Di Nardo et al. [53], and Khoa Bui et al. [32] classified the developed clustering
procedures into six groups based on their algorithmic structures: (a) graph theory methods,
(b) community structure algorithms, (c) modularity-based algorithms, (d) multilevel graph
partitioning methods, (e) spectral graph algorithms, and (f) the multi-agent approach.

The graph theory algorithm is the most widely used concept for water network
clustering. It seeks to divide the network nodes into a desired number of (ideally) equally
sized clusters while minimizing the number of inter-connection edges between different
clusters [52]. The depth-first and the breadth-first searches are the most well-known variants
of the graph theory approach (see [30,33,54,55]) that obtains the number of independent
groups through connectivity analysis, commonly based on a shortest-path search while
weighting both pipe characteristics and mean nodal pressures (see [54,56–59]). The graph
theory-based partitioning algorithms usually include a demanding computational load
which leads to time-consuming applications. The multilevel graph partitioning approach,
which has been introduced by Karypis and Kumar [60], uses parallel computing approaches
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in order to equally deliver the computational load to different processors (or processor’s
cores) in order to minimize the running time of an algorithm (see [37,51,61,62]).

The community structure algorithm is a bottom-up hierarchical approach (see [52])
that seeks to maximize the effectiveness of the partitioning operation using the modularity
quality function introduced by Newman [63]. The algorithm combines the sub-clusters
that result in the highest modularity (compared to an equally sized cluster of randomly
selected nodes) until all computational nodes are grouped. It was first applied to water
network clustering by Diao [36] who used an oriented dendrogram cutting approach in
order to size clusters between 300–5000 properties. Campbell et al. [64] used the same
approach but excluded from their analysis the main transmission pipes (in their study
called trunk network), based on the assumption that the closure of these pipes would
extensively affect the rest of the network when using the random walk approach to detect
clusters. A similar approach was introduced by Ciaponi et al. [65] who first identified the
main transmission pipes and then the related clusters by attaching the service pipes to
the main network using the shortest-path approach. An analytical presentation of other
variants of the modularity-based approach can be found in Khoa Bui et al. [32].

Spectral graph clustering is based on eigenvector and eigenvalue analyses of graph
Laplacian matrices (see [53]), using both linear algebra and graph theory (see [66–69]).
Application of the spectral clustering method to water networks partitioning combines
an adjacency (or connectivity) matrix and a weight matrix for pipes, the latter taking into
account the hydraulic parameters of the pipeline (e.g., diameter, length, flow, etc.; see [53]).
It is mentioned that particular care should be taken during the selection of weight criteria,
as they may lead to significantly different clustering results [32,53]. Liu and Han [70]
expanded the spectral graph method to an automated DMA design approach which uses a
multicriteria decision method to determine the optimal solution.

The multi-agent approach, which was first introduced to water network partitioning
by Izquierdo et al. [71], assumes that the WDN pipes and nodes are autonomous but, also,
interactable agents. Using the agents’ hydraulic characteristics, the network is divided
into homogenous clusters by linking the nearby nodes to water source points (reservoirs)
of the corresponding WDN [71,72]. It is mentioned that the multi-agent concept can also
be used to determine the homogeneity of an already partitioned network by a different
clustering approach [73].

It follows from the discussion above that (a) most clustering methods are strongly
affected by user-defined weighting factors that heavily affect the final outcome; (b) the
nodes’ connectivity usually follows the shortest path approach, which in the case of real
complex networks may differ significantly from the original pipeline grid; and (c) the afore-
mentioned clustering algorithms are associated with heavy computational loads leading
to time-consuming applications. Under this setting, we conclude that there is no user-
unbiased, rigorous approach for the statistical clustering of water distribution networks
into district metered areas (DMAs), explicitly taking into account both the topographic
variability and the original connectivity of the network. To bridge this gap, the next section
focuses on the development of a state-of-the-art tool for the partitioning of WDNs into
DMAs [74] using the hierarchical clustering approach introduced by Deidda et al. [75],
which is based on Ward’s method (see [76–79]) enriched with topological proximity con-
straints (e.g., nodes’ altitude), in order to avoid excessive partitioning of the original water
network. The strong points of the introduced approach are that (1) it uses the original
pipeline grid as a connectivity matrix in order to avoid unrealistic clustering outcomes;
(2) it is statistically rigorous and user unbiased, as it is based solely on statistical metrics,
thus not relying on and/or being affected by user-defined weighting factors; and (3) it is
easy and fast to implement, requiring minimal processing power, making it suitable for
engineering applications.

The rest of the manuscript is organized as follows: Section 2 provides important informa-
tion about the study area and the available data. The introduced methodology is described in
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Section 3, while important results from its implementation are presented and discussed in
Section 4. Conclusions and future research directions are summarized in Section 5.

2. Data and Study Area

In the analysis that follows, we use consumption (billed and unbilled), topographic,
pipeline-related, and operational (flow-pressure) data which have been collected from the
four largest pressure management areas (PMAs, namely Boud, Kentro, Panahaiki, and Pros-
fygika, see Figure 1) of the city of Patras in western Greece, with a continuous supply. The
selected PMAs consist of approximately 202 km of pipeline (mainly HDPE and PVC pipes),
cover an area of more than 4 km2, which corresponds to the entire city center and the most
important part of the urban fabric of Patras, and serve approximately 58,000 consumers
(based on data from the Hellenic Statistical Authority and the Municipality of Patras), with
more than 44,000 active hydrometers (see Table 1). An important point regarding the four
PMAs is that they share similar characteristics regarding population and building densities,
land uses (which are mostly commercial and residential), and topography, as they lie along
the coastline of the gulf of Patras.
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Table 1. Name, total area, length of the pipeline grid, population, and number of authorized active
hydrometers of the four largest pressure management areas (PMAs) of the city of Patras. Numbers
indicate the locations of PMAs in Figure 1.

PMA Number and Name Area (km2) Pipeline Length (km) Population (cap.) Number of Active Hydrometers

(1) Boud 0.953 44,954 15,362 10,586

(2) Kentro 1.207 62,174 13,992 16,454

(3) Panachaiki 1.184 51,703 18,003 11,983

(4) Prosfygika 0.802 43,246 10,657 5206

Users’ consumption and flow-pressure data, for each of the four PMAs, were acquired
from the Municipal Enterprise of Water Supply and Sewerage of the City of Patras (DEYAP)
for the eight-month-long high consumption period of 2019, which for the case of Greece
spans from 1 March to 31 October [80–83]. It is important to note that all four PMAs did
not exhibit any prolonged periods of malfunctioning and/or pressure regulation issues.
Data were, first, quality assessed in order to remove any errors related to communication
malfunctions of the 3G transmission system [4].

As outlined in the Introduction, in order to manage and reduce leakages in water
distribution networks, one needs to first estimate their volume as a percentage of the System
Input Volume (SIV). To do so, we used the results obtained by Serafeim et al. [20]. The
latter study compared the water loss estimates obtained by applying the water balance (or
top-down) approach, and the bottom-up approach based on the MNF estimation method
from Serafeim et al. [4], to the aforementioned four PMAs (i.e., Boud, Kentro, Panahaiki
and Prosfygika). Table 2 summarizes the allocation of the SIV into revenue water (RW,
also referred to as billed authorized consumption, BAC) and non-revenue water (NRW)
and their sub-components, for the four PMAs. NRW consists of the unbilled authorized
consumption (UAC) and the water losses (WL) component, with the latter being equal to
the sum of apparent losses (AL) and real losses (RL, mainly due to leakages).

Table 2. Allocation of the system input volume (SIV) into BAC (billed authorized consumption), UAC
(unbilled authorized consumption), AL (apparent losses), and RL (real losses) for the four largest
pressure management areas (PMAs) of the city of Patras, for the eight-month long high consumption
period from 1 March 2019 to 31 October 2019. Numbers indicate the locations of PMAs in Figure 1.

PMA Number and Name SIV (m3/d) BAC (%) UAC (%) AL (%) RL (%)

(1) Boud 3456 44.36 10.00 4.44 41.20

(2) Kentro 9216 39.23 10.00 3.92 46.85

(3) Panachaiki 6912 54.87 10.00 5.49 29.64

(4) Prosfygika 4032 28.27 10.00 2.83 58.90

3. Methodology

In what follows, we detail the algorithmic steps of the developed approach for the
optimal sizing and allocation of pressure management areas. In doing so, we use the EPANET
solver (see [84,85]) for hydraulic modeling of water distribution and resilience estimation,
and hierarchical clustering enriched with topological proximity constraints (see [75]) for
the delineation of PMAs. Before proceeding with the implementation of the algorithm, it
is essential to estimate the water equilibrium of the analyzed water system (see Section 2
and Table 2) using, e.g., the recently developed probabilistic minimum night flow (MNF)
estimation methodology introduced by Serafeim et al. [4,20]. Figure 2 presents a flow chart
of the developed algorithmic steps that were applied to the four largest PMAs of the water
distribution network of the city of Patras (see Figure 1), as detailed in Sections 3.1–3.4 below.
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3.1. Real Losses (RL, Leakages) Allocation

To conduct the first/initial set of hydraulic simulations, one needs to define the total
water demand at each computational node of the network, as the sum of a demand-driven
and a pressure-driven component. The demand-driven component (i.e., the sum of AL,
BAC, and UAC) depends on the flow time pattern, as users’ consumption varies during the
day, and it is distributed to the computational nodes of the network proportionally to the
active lengths of its pipe members [86] here defined as the half-sums of the pipe lengths
that start (or end) at each node.

The pressure-driven component reflects the network’s real losses (RL), which are
an increasing function of the applied pressure [87–89]. Since the pressure heads at the
computational nodes are not known prior to conducting the first set of hydraulic simula-
tions, we approximate (and later, correct; see below) the pressure-driven component of



Water 2022, 14, 3493 7 of 18

the demand at each computational node by distributing the total real losses (RL) of the
network proportionally to the active lengths of its pipe members.

As nodal pressures directly affect the leakage flow rates (see [21,90,91]), as well as
the crack expansion rates (see [10]), we use the zero-order estimates of nodal pressures
obtained from the first set of hydraulic simulations (see above) to re-distribute the total
leakages (RL) to the computational nodes of the network. We do so by borrowing concepts
from Torricelli’s Law, assuming that the distribution of RL to computational nodes is
proportional to the square root of the excesses of the simulated nodal pressures above the
minimum pressure required to meet the consumption standards. This can be accomplished
by multiplying the initial RL at each node of the network by the dimensionless parameter:

ci =
(hi − h∗i )

0.5

∑n
i=1 (hi − h∗i )

0.5 , for hi > h∗i (1)

where hi is the simulated total head at node i = 1, . . . , n (i.e., the sum of the nodal elevation
and the pressure head), and hi

* is the minimum threshold head at node i (i.e., the sum of
the nodal elevation and the minimum required pressure head). The hydraulic simulation is
repeated until the desired water losses converge.

3.2. Minimum Night Flow (Bottom-Up) Approach

To minimize water losses and the associated financial cost (as the lost water remains
unbilled), while maintaining an acceptable level of hydraulic resilience, a proper metric
is needed. The resilience indicator relates the water discharges delivered to consumers to
the associated demand, during critical operational conditions (such as pipe breaks, pump
failures, power outages, control valve failures, abrupt changes in the water consump-
tion/demand and/or the pressure heads, etc.), under a given network topology (operating
pressures, topographic variability, length of the pipeline grid, pipe diameters, materials,
age, the density of connections, etc.; see [39,92,93]). Under Todini’s [94] concept, the re-
silience index (Ir, see Equation (2)) corresponds to the ratio of the surplus of the available
power delivered to the consumers to the maximum power that can be delivered by the
designed network under the current topology:

Ir =
∑n

i=1 q∗i
(
hi − h∗i

)
∑R

r=1 Qr Hr − ∑n
i=1 q∗i h∗i

(2)

where n is the number of computational nodes, qi
* is the demand (sum of user’s consump-

tion, apparent losses, and real losses) at node i, and Qr and Hr are the total flows (i.e., in-
cluding users’ consumption, apparent losses, and real losses) and heads, respectively, at the
inlets r = 1, . . . , R of the study area (i.e., PMA). Although Todini’s index has been applied by
many researchers to a number of water distribution systems (see [50,95–101]), some authors
proposed different variants (see [87,93,102,103]) primarily due to the fact that, according to
Equation (2), real losses contribute positively to the resilience of the network [93].

More specifically, Prasad et al. [102] combined Todini’s index with the uniformity
of pipe diameters, as minimal diameter changes result in more reliable water circulation.
Raad et al. [103] proposed a mixed reliability index where the resilience index is multiplied
by the normalized flow entropy (a measure for the uniformity of water flow in pipe
members), which has the advantage of addressing the uniformity of both flows (via flow
entropy) and power (via the resilience index). Saldarriaga et al. [87] proposed and tested
the unitary power measure, which leads to very similar results as Todini’s index, defined
as the product of the flow rate in each pipe and the piezometric head difference between
the pipe’s initial and terminal nodes. Baños et al. [104] compared Todini’s [94], Prasad
et al. [102], and Saldarriaga et al. [87] approaches mentioning that the obtained results are
relatively similar. Creaco et al. [93] proposed a generalized resilience index, which uses
both demand and pressure-driven modeling approaches in order to account for network
leakages. It should be noted that the Creaco et al. [93] approach models leakages (i.e., real
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losses) as a fraction of the nodal demand, and, as a result, they are not approached as
pressure driven.

Herein, we introduce the variant Ir,s (see Equation (3)) of the original resilience index
in Equation (2), which accounts for the leakages and nodal heads in pressure-driven and
mixed pressure-demand ways, respectively, and apply it using the iterative procedure
described in Section 3.1:

Ir,s =
∑n

i=1 qi
(
hi − h∗i

)
∑R

r=1 Qr Hr − ∑n
i=1 qih∗i

(3)

where Qr and Hr are defined identically to Equation (2), corresponding to the total flows
(i.e., including users’ consumption, apparent losses, and real losses) and heads, respectively,
at the inlets r = 1, . . . , R of the study area (i.e., PMA), and qi denotes the sum of the
users’ consumption and apparent losses at node i (i.e., contrary to qi

* in Equation (2), qi in
Equation (3) does not include real losses or leakages). Apparent losses are introduced by
unauthorized consumption, illegal connections on the main WDN, metering errors at the
inlets of district metered areas or pressure management areas, and incorrect estimates of
billed users’ consumptions.

3.3. Hierarchical Clustering Approach Based on Ward’s Method

As outlined in the Introduction, to partition the original four pressure management
areas into smaller ones we use the hierarchical clustering approach enriched with topo-
logical proximity constraints as proposed by Deidda et al. [75]. In their study, regarding
spatial frequency analysis of rainfall extremes, Deidda et al. [75] embedded a condition of
geographic proximity constraints into a hierarchical clustering approach based on Ward’s
method to identify homogenous and contiguous ensembles of nodes. More specifically,
according to Ward’s method, one estimates and minimizes the groups’ variance of specific
statistical characteristics starting from clusters containing a single instance and gradually
combining clusters based on Delaunay’s triangulation of rain gauge locations in the area of
the analysis (for more details, see [75]).

For the purposes of our work (i.e., WDN clustering), we test as characteristic variables
for statistical clustering the nodal altitudes and EPANET-calculated pressure heads and use
the network’s connectivity matrix (i.e., obtained by the original pipeline grid, where each
pipe connects two nodes, instead of Delaunay’s triangulation) to establish the connectivity
between neighboring clusters. Under this setting, starting from clusters containing a single
node, we hierarchically merge clusters based on a pool of candidates that are directly
connected via actual pipes. More precisely, after each merge, we eliminate the associated
clusters from the pool of possible candidates and redefine the linkages between each
sub-group while re-evaluating the statistical metric’s dispersion and mean value. The
aforementioned procedure is repeated until all nodes are grouped into a single cluster
(initial network). To exemplify how the selection of characteristic variables affects the
clustering procedure, Figure 3 illustrates the partitioning of PMA “Kentro” into two clusters,
using as statistical quantities the nodal altitudes (Figure 3a) and the simulated pressures
(Figure 3b). One sees that the clustering results obtained for the two variables are very
similar (compare Figure 3a,b) and, therefore, at least for the WDN of the city of Patras,
one can use the altimetry of the network as the dominant variable, thus avoiding prior
hydraulic simulation of pressure heads.
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3.4. Selection of the proper clustering solution

Application of the hierarchical clustering approach described in Section 3.3 to a PMA,
results in a pool of possible partitioning alternatives, each one having a different number
of clusters: from one (that encompasses the whole network maximizing both the real losses
and the resilience index) to the total number of nodes (a solution that minimizes both the
real losses and the resilience index). The selection of a proper solution is case-specific,
providing an optimal balance between RL reduction and the resulting hydraulic resilience
level of the entire network. Thus, for each application, one should set the desired RL
reduction rate, as well as the acceptable level of hydraulic resilience reduction, with respect
to the available budget. It is noted that, in order to implement the clustering/partitioning
strategy described previously and the corresponding hydraulic simulations, some minor
adjustments (i.e., the introduction of new and/or the removal of existing pipe members)
may be needed to hydraulically isolate the identified clusters and connect them to the main
inlet of the study area.

4. Results

In what follows, we apply the methodology developed in Section 3 to the four largest
Pressure Management Areas of the city of Patras, and partition them into smaller and
easily manageable PMAs, based solely on topographic characteristics (i.e., nodal eleva-
tions), as clustering based on calculated pressure heads led to very similar results; see
Figure 3 and Section 3.3.

Table 3 presents the inlet point elevation (zr), applied pressure (Pr), and hourly maxi-
mum water consumption (Qr), for each of the four PMAs studied. The hourly maximum
water consumption (Qr) has been obtained using the flow-pressure time series at the PMA
inlets, during the eight-month-long high consumption period of the year from 1 March to
31 October 2019. During the partitioning phase, particular care was taken when selecting
the inlet pressures applied to each cluster, so that water supply disruptions at critical points
of the network induced by low-pressure heads were avoided, as well as possible pipeline
failures induced by high pressures. This was done by connecting the inlet of each delineated
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cluster to a main distribution pipe and setting its inlet pressure equal to the nodal pressure
head calculated for the original PMA configuration (i.e., prior to partitioning).

Table 3. Inlet point elevation (zr), applied pressure (Pr), and hourly maximum water consumption
(Qr) for each of the four PMAs studied. The corresponding Qr estimates have been obtained using
the available flow-pressure time series at the PMA inlets, during the eight-month-long high consump-
tion period of the year from 1 March 2019 to 31 October 2019. Numbers indicate the locations of
PMAs in Figure 1.

PMA Number and Name zr (m) Pr (m) Qr (l/s)

(1) Boud 24.32 30.00 60.00

(2) Kentro 21.54 44.00 160.00

(3) Panachaiki 39.85 68.90 120.00

(4) Prosfygika 40.90 40.00 70.00

As noted in Section 3.4, the proposed methodology generates a pool of possible
clustering scenarios, each being associated with a different number of clusters. In the
current study, the selection of the most proper solution was done solely by contrasting the
reduction rate of real losses and the reduction rate of the hydraulic resilience index, with
an increasing number of clusters. Please note that this can be considered a viable approach
in the absence of financial data, as delineation costs increase with increasing number of
clusters. However, in engineering practice, the final decision should be made in view of
both the network’s specific characteristics and the available budget.

For each of the four study areas in Figure 1 and clustering outcome (i.e., the total number
of clusters; one cluster corresponds to the original PMA configuration prior to partitioning),
Table 4 summarizes the estimated flow rate of real losses (RL) and resilience index, as well as
their percentage reduction (in square brackets) relative to the initial PMA configuration.

One sees that when partitioning the original PMA “Kentro” (i.e., number of clusters
equal to one), to two clusters (i.e., sub-PMAs; see Figure 4b), there is a 13.73% reduction
of the RL flow rate and a 13.53% reduction of the resilience index of the network. When
shifting from two to three clusters, the reduction of RL is minimal (i.e., 0.30%), followed
by a 27% reduction (i.e., 0.181/0.262 - 1) of the resilience index. Consequently, it becomes
obvious that partitioning the initial network into two PMAs (see Figure 4b) is the most
preferable solution in terms of balancing real losses reduction and hydraulic resilience of
the final configuration of the network.

Similarly to the case of “Kentro”, we divide “Boud” and “Panachaiki” into three sub-
PMAs, as there is minimal reduction in the RL rates when moving from three to four sub-
PMAs, followed by approximately 9.5% (i.e., 0.202/0.223 - 1) and 6% (i.e., 0.440/0.469 - 1)
decrease of the resilience index, respectively (see Figure 4a,c).

Finally, for PMA “Prosfygika”, when shifting from three to four clusters, the reduction
of RL is minimal (i.e., 1.8%) and possibly incommensurate to the additional delineation
costs. Thus, partitioning PMA “Prosfygika” into three sub-PMAs (see Figure 4d) seems the
most promising option.

To illustrate the effectiveness of the developed approach, Figure 5 shows 3D plots
of the simulated nodal pressure heads of the original and final network configurations
for the four PMAs studied. One sees that the pressure heads in the original network of
PMA “Boud” (Figure 5a) gradually increase with decreasing elevation (grey surface) along
the pipeline grid (yellow color denotes pressure heads above 50 m), leading to increased
leakage rates (see Section 3.1). Concerning the clustered network (Figure 5b), at most nodes
the pressure heights do not exceed the 40 m threshold (blue color), resulting in reduced
leakage rates. This becomes particularly apparent in the lower area of the network (see
arrows) where the largest pressure values are met in the original configuration (Figure 5a).
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Figure 4. Clustering of original PMAs based on nodal altitudes: (a) Boud (three clusters), (b) Kentro
(two clusters), (c) Panachaiki (three clusters), and (d) Prosfygika (three clusters). PMA locations are
illustrated in Figure 1.

Similarly to “Boud”, we observe significant nodal pressure reductions in PMAs “Ken-
tro” (compare Figure 5c,d), “Panachaiki” (compare Figure 5e,f), and “Prosfygika” (compare
Figure 5g,h), leading to a significant reduction of leakage rates. It is important to note that
all nodal pressures in the original and clustered areas do not fall below the 30 m lowest
threshold limit (i.e., hi

* = 30 m; see Equations (2) and (3)) set by the competent Authority
(i.e., DEYAP) for the city center of Patras.
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Figure 5. Three-dimensional plots of the location and simulated pressure heads of the original
(i.e., one cluster; left column), and final network configurations (right column) of the four PMAs:
(a,b) Boud; (c,d) Kentro; (e,f) Panachaiki, and (g,h) Prosfygika. Ground surface is shown in grey,
while arrows indicate regions with a significant decrease of the pressure heads relative to the original
network configuration (left column). PMA locations are illustrated in Figure 1.
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Table 4. Total number of clusters (one cluster corresponds to the original PMA configuration prior
to partitioning), calculated flow rates of real losses (RL), and resilience index estimates for the four
PMAs of the WDN of the city of Patras. Values in square brackets indicate percentage reduction
relative to the original PMA configuration. Numbers indicate PMA locations in Figure 1.

PMA Number and Name Number of Clusters RL (l/s)
[% Reduction]

Ir,s
[% Reduction]

(1) Boud

1 (original PMA) 24.720 [0.00] 0.293 [0.00]

2 20.573 [−16.78] 0.271 [−7.51]

3 17.645 [−28.62] 0.223 [−23.89]

4 17.365 [−29.75] 0.202 [−31.06]

(2) Kentro

1 (original PMA) 74.960 [0.00] 0.303 [0.00]

2 64.668 [−13.73] 0.262 [−13.53]

3 64.445 [−14.03] 0.181 [−40.26]

4 63.986 [−14,64] 0.170 [−43.99]

(3) Panachaiki

1 (original PMA) 35.568 [0.00] 0.565 [0.00]

2 31.811 [−10.56] 0.505 [−10.62]

3 28.721 [−19.25] 0.469 [−16.99]

4 28.493 [−19.89] 0.440 [−22.12]

(4) Prosfygika

1 (original PMA) 41.230 [0.00] 0.225 [0.00]

2 28.651 [−30.51] 0.142 [−36.66]

3 24.367 [−40.90] 0.121 [−46.10]

4 23.924 [−41.97] 0.120 [−46.55]

5. Conclusions

While the partitioning of water distribution networks (WDNs) into pressure manage-
ment areas (PMAs) and/or district metered areas (DMAs) is a crucial task for all water
experts, no rigorous methodology currently exists that (a) is user-unbiased, avoiding subjec-
tive weighting factor selections; (b) uses the original pipeline grid as a connectivity matrix
in order to avoid unrealistic delineation outcomes; and (c) is easy and fast to implement,
requiring minimal processing power.

To bridge this gap, in the present work, we developed an approach for WDN parti-
tioning into PMAs, which seeks to minimize real losses (leakages) while maintaining a
sufficient level of hydraulic resilience in the network. In doing so, we used the EPANET
solver for hydraulic modeling of water distribution and resilience estimation and hierarchi-
cal clustering enriched with topological proximity constraints (see [75]) for the delineation
of PMAs. Regarding the latter, we introduced a variant (see Equation (3)) of the original
resilience index which accounts for the leakages and nodal heads in a pressure-driven
and mixed pressure-demand ways, respectively, while using, as connectivity matrix, the
original pipeline grid of the network, avoiding unrealistic clustering outcomes.

The effectiveness of the developed methodology was tested through a large-scale
application study in the four largest PMAs of the water distribution network of the city
of Patras, leading to a significant reduction in leakages (see discussion in Section 4 and
Table 4) while maintaining an acceptable hydraulic resilience level compared to the original
configuration of the PMAs.

Following the discussion above, we conclude that, due to its easiness, minimal com-
putational requirements, and objective selection criteria, the suggested approach can serve
as an important step towards developing useful decision-making frameworks for water
experts and officials, allowing for improved management and the reduction of real water
losses. Future communications will focus on (a) the implementation of the algorithm to



Water 2022, 14, 3493 14 of 18

other underperforming PMAs of the WDN of the city of Patras, aiming at the reduction
of the network’s operating costs and environmental footprint; (b) the enrichment of the
algorithm as to incorporate structural and/or physical constraints (e.g., streets, rivers,
railroads; see [26]) during PMA partitioning based on GIS datasets; and (c) extensions
of the algorithm for optimal selection of pressure reducing valve (PRV) locations for the
resulting clustering outcomes. The latter task regards the sectorization phase of networks
(see Introduction) and has not been addressed in the present communication.
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