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Abstract: An extended study of the chemical composition of surface waters and lakes bottom sedi-
ments, which are affected to varying degrees by an enterprise that mines and processes rare metal
ores in the Lovozero tundra, was carried out. Using inductively coupled plasma mass spectrometry,
the content of trace elements and rare earth elements was established. Elevated concentrations of
trace elements and rare earth elements were revealed in samples of water and bottom sediments
of lakes receiving wastewater from the enterprise and polluted due to dusting in the tailings of the
processing plant. Thus, the average content of the total REEs in the surface layers of the SR Ilma
and Lovozero (at the mouth of the Sergevan River) reaches 561 and 736 mg/kg, respectively, while
for the SR of Lake Krivoe this indicator was 74 mg/kg. The enrichment factor (EFi), geoaccumu-
lation index (Igeo), potential ecological risk index factor (Eir) and potential ecological hazard index
(RI) were calculated. Assessing the total pollution with trace elements and rare earth elements of
bottom sediments of lakes Ilma and Lovozero at the mouth of the Sergevan River, the value of poten-
tial ecological risk reaches values corresponding to the level of moderate ecological risk pollution
(RIlma = 174, RILovozero = 186). The conducted correlation analysis made it possible to establish some
of the main phases containing trace elements and rare earth elements in the bottom sediments of
lakes Ilma and Lovozero.

Keywords: Lovozero tundra; geochemistry; surface waters; bottom sediments; pollutants; rare
earth elements

1. Introduction

The development of mineral deposits leads to pollution of environmental components
with a wide range of substances, in particular, trace elements (TEs) and rare earth elements
(REEs) [1–3]. Large mining and processing enterprises concentrated in the Murmansk
region are powerful sources of negative environmental impact. Several large mining and
processing enterprises are located on the territory of the Murmansk region: Apatit JSC, Kola
MMC JSC, Olkon JSC, etc. A huge amount of waste is generated in the process of mining
and beneficiation of ores. Stored solid mineral wastes are a source of serious pollution of
the atmosphere, soils, surface and ground waters with heavy metals all over the world,
especially near metal mining and processing sites [1–3].

Fluctuations in temperature, humidity and wind speed lead to the formation of dust
on the surface of tailings, which is transported over long distances and enters soils and
water bodies [4].

Thus, the consequences of the activity of a recently abandoned enterprise for the
extraction of polymetallic ores in the province of Guangdong, South China, were studied
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in [5]. High levels of cadmium, zinc, copper and lead were found in agricultural soils.
Analysis of tailings and waste waters showed an excess of the same elements. A possible
cause of soil contamination is the wind transport of tailing particles and drainage and mine
waters passing through the tailings.

Pollution of soils and water bodies with heavy metals and arsenic in the process of
leaching by rainwater, wind transfer of fine particles of tailings from the tailings of lead-zinc
and gold mining enterprises in China, Mexico and Spain is considered in [6–9].

Crushed tailings of ore dressing are stored in tailings [10–14], and wastewater from
enterprises is often not cleaned of pollutants to standardized levels.

The development of deposits of rare metal ores can pose a threat to the environment
by increasing the concentration of REEs in air, water and soil [15–17]. Fine particles of
tailings can be transported by wind currents over considerable distances, settling on the
surface of water bodies, soils and plants [18,19]. Dust particles can cause respiratory and
cardiovascular diseases, severe intestinal disorders, keratosis and skin cancer [20].

At different times, employees of various research institutes conducted research on
water bodies in the zone of mining enterprises’ influence [21–25]. The relevance of such
work is due to the vulnerability of water bodies in the Arctic Zone of the Russian Federation
(AZRF) and the impact on them of emissions from industrial enterprises and large volumes
of wastewater with a complex chemical composition. Significant rearrangements of the
water ecosystems of the Russian Arctic inland water bodies are taking place, which integrate
all environmental changes occurring in the territory of their watersheds and accumulate
most of the pollutants that have entered the watersheds [21].

On the other hand, modern changes in the Arctic climate towards warming have led
to research interest in the analysis of the historical development of aquatic ecosystems.
Climate warming is one of the modulators of anthropogenic processes of pollution and
eutrophication of freshwater ecosystems in areas of intensive nature management in the
Arctic Zone [26]. Furthermore, in the lakes of the Russian Arctic, the habitat of hydrobionts
is disrupted, leading to a decrease in species diversity in the context of environmental
pollution and climate change [27].

In recent years, with the development of the scientific and technical base of research
institutes, more and more studies have been conducted on the contamination of envi-
ronmental components with REEs. Elevated REE contents are found in soil horizons,
surface waters and dust in the atmospheric air in industrialized regions [28–31]. Thus, the
bottom sediments (BS) of small urban lakes in the Murmansk region and Karelia were
studied [28,29], the total REE content and the fractional composition of the samples were
determined and the factors influencing the accumulation of REEs in the samples were
established. In a previous study on the impact of an enterprise developing a deposit of
apatite-nepheline ores, which include REEs, the content of REEs was established not only
in bottom sediments but also in water samples and suspended solids [32].

The study goal was to conduct an investigation to assess the TE and REE pollution of
surface waters and BS of lakes affected by an enterprise that extracts and processes rare
metal ores.

2. Materials and Methods
2.1. Description of the Study Area

The only enterprise in Russia engaged in the extraction and processing of rare metal
ores of the cerium group is located in the center of the Kola Peninsula. The Lovozero
alkaline massif is a multiphase Paleozoic central-type intrusion that cuts through Archean
basement rocks (gneisses of various compositions) and contains Upper Devonian effusive-
sedimentary formations (picrite porphyrites, basalts, trachybasalts and their tuffs, shales,
sandstones, quartzites). The massif is composed of alkaline rocks of three complexes of
loparite-bearing, eudialytic lujavrites and vein rocks [33]. The composition of the developed
ores also includes apatite and villiomite (water-soluble NaF), which causes an increased
content of fluorine and phosphate ions in the wastewater of the enterprise.
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A brief description of the lakes in the study area is given in Table 1.

Table 1. Geographic coordinates of sampling points, morphometric parameters of the studied lakes.

Lake Geographic
Coordinates

Height above
Sea Level, m

Maximum
Length, km

Maximum
Width, km

Lake Area,
km2

Drainage Area,
km2

Ilma * 67.890713◦ N,
34.603778◦ E 399 0.8 0.46 0.27 6.26

Lovozero **

67.975035◦ N,
35.133188◦ E;
67.943437◦ N,
35.089683◦ E

153.9 44.5 8.64 224.5 3770

Krivoe * 67.962042◦ N,
34.562104◦ E 199.5 1.58 0.73 0.47 16.2

Note: *—data from [34]; **—data from [35].

The rivers in the territory of the study area belong to the group of small mountain
rivers flowing down from mountain heights and emptying into lakes Umbozero and
Lovozero [36]. Their width is insignificant, up to 5 m; the depth on the rapids and rifts is
0.1–0.8 m, up to 3 m on the reaches and the flow speed is 0.2–0.7 m/s, up to 2.7 m/s on
the rapids. The riverbeds are meandering rapids, and the bottom is sometimes rocky. The
banks are predominantly steep and up to 1 m high. Lovozero, Shomiyok (12.1 km) flows
into Lake Sikir, and Alluive (6.5 km), Azimuth (8.7 km), Sengisyavr (9.2 km) and Tavayok
(11.7 km) flow into Lake Umbozero. In the upper reaches they are characterized by a rapid
stream and numerous rapids, while in the lower reaches they flow through forests and
swampy areas. The rivers receive numerous tributaries along their entire length.

2.2. Sampling and Analyses

In the spring of 2022, samples of surface water and BS were taken from lakes Ilma,
Krivoe and Lovozero (Figure 1). Samples of the BS were taken at the points with the greatest
depth (lakes Ilma and Krivoe) and at two points of Lake Lovozero—at the confluence of
the Sergevan River and in the northern part of the lake.

Lake Ilma is located to the southwest of the facility and, as previously suggested, is
subject to pollution due to loose dusty tailings. Lake Krivoe is located to the northwest of
the enterprise. Significant impact on this water body is not expected due to the considerable
distance from the enterprise and the absence of wastewater discharge points into the lake.
Lake Lovozero receives wastewater from the enterprise after it passes through the Sergevan
River. The pollutants in wastewater include suspended solids, aluminum, iron, zinc,
manganese, phosphates and fluorides. It should be noted that Lake Lovozero is the third
largest lake in the Murmansk region and belongs to the highest category of reservoirs of
fishery importance.

Sampling of surface waters was carried out in the near-surface and near-bottom
layers. Water samples were analyzed by a set of methods: colorimetric, ion-exchange
chromatography, atomic absorption spectrometry and mass spectrometry with induc-
tively coupled plasma. Samples of BS were taken using an open-gravity-type bottom
sediment core sampler in duplicate. Samples of BS were disassembled into layers 1 cm
high then dried, ground with a rubber pestle in a mortar to a powdery state and submitted
for analysis.

Samples were analyzed at the Center for Collective Use of the Institute of Problems
of Industrial Ecology of the North, KSC RAS. Samples of BS were subjected to open acid
decomposition, and the concentrations of microelements were determined in the resulting
solutions with inductively coupled plasma mass spectrometry (ELAN 9000 (PerkinElmer,
Waltham, MA, USA)) [37]. The control and quality of the analysis was ensured by the
simultaneous decomposition and analysis of certified standard samples of the bottom
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sediments of Lake Baikal BIL-1 (GSO 7126-94). The measurement error did not exceed 0.5%
at p = 0.95.
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Figure 1. Sampling map—scheme of surface waters and BS of lakes.

The results were statistically processed. Arithmetic mean, standard deviation and
median were calculated. In addition, correlation coefficients were calculated to deter-
mine the source of entry of a set of elements into the samples. All statistical calculations
were carried out in Microsoft Excel 2010 (version 2209, build 16.0.15629.20200, Redmond,
WA, USA).

The concentrations of elements in water samples taken from the lakes were compared
with the MPC of fishery water bodies (MPCfw) and the limits of concentrations in the water
of freshwater ecosystems in accordance with [38]. A certain content of elements in samples
of BS was compared, along with Clarke numbers of elements in the Earth’s crust according
to [39], limits of contents in BS of freshwater ecosystems according to [38] and average
contents in BS of Lake Imandra [32].

2.3. TE and REE Pollution and Risk Assessment

The pollution assessment of the studied BS was carried out on the basis of the calcu-
lated coefficients and indices: the enrichment factor (EFi), geoaccumulation index (Igeo),
potential ecological risk index factor (Eir) and potential ecological hazard index (RI) [40].

The enrichment factor was calculated by the following equation:

EFi = Ci/Cbi,

where Ci is the metal concentration, measured for each investigated sample; Cbi is the
background concentration of the metal.
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The EF values were interpreted as suggested [41,42], distinguishing seven EF classes:
<1—no enrichment, 1–3—minor enrichment, 3–5—moderate enrichment, 5–10—moderately
severe enrichment, 10–25—severe enrichment, 25–50—very severe enrichment, >50—extremely
severe enrichment.

The geoaccumulation index determines and defines metal contamination in sedi-
ments [43]. Igeo enables an assessment of environmental contamination by comparing
differences between current and pre-industrial concentrations of pollutants [43–45].

The geoaccumulation index was calculated by the following equation:

Igeo = log2 (Cn/1.5Bn),

where Cn is the measured total concentration of heavy metals (HM), in our case—TE,
determined in a soil (mg/kg); Bn is the geochemical background value of the elements.

The constant in the equation—1.5—is used to analyze natural fluctuations in the
environment and very small anthropogenic impacts [39]. Igeo consists of 7 classes (Igeo
value–Igeo class–pollution level): ≤0–0: unpolluted, 0–1–1: unpolluted to moderately
polluted, 1–2–2: moderately polluted, 2–3–3: moderately polluted to highly polluted, 3–4–4:
highly polluted, 4–5–5: highly polluted to very highly polluted, >5–6: very highly polluted.

The potential ecological risk index factor and potential ecological hazard index can
comprehensively evaluate concentration effects, toxicity and ecological sensitivity of
HM [46–48]. The potential ecological hazard index was formulated by Hakanson in 1980,
integrating the concentration of HM with ecological effect, environmental effect and toxi-
cology, and was used to assess the HM pollution ecological hazard for sedimentology [49].
According to this method, the Eir of an individual element and the RI of a multi-element
element can be calculated using the following equations:

Eir = Ti × Cn/Bn,

where Ti is a factor of the toxic reaction of an individual toxic element. The established Ti
values are 1 for Zn, 2 for Cr, 5 for Ni, Cu and Pb, 10 for As and 30 for Cd [48].

RI = ∑ Eir

Hakanson proposed the following classification for the Er value: <40—low ecological
risk, 40–80—moderate ecological risk, 80–160—appreciable ecological risk, 160–320—high
ecological risk, >320—serious ecological risk; and RI value: <150—low ecological risk,
150–300—moderate ecological risk, 300–600—high ecological risk, >600—significantly high
ecological risk [47].

In a recent study, the Ti values of 15 REEs were calculated: La = 1, Ce = 1, Pr = 5,
Nd = 2, Sm = 5, Eu = 10, Gd = 5, Tb = 10, Dy = 5, Ho = 10, Er = 5, Tm = 10, Yb = 5, Lu = 20,
Y = 2 [50].

In our study, enrichment factor, geoaccumulation index, potential ecological risk index
factor and potential ecological hazard index of pollution of the surface layers of BS of lakes
Krivoe, Ilma and Lovozero were calculated.

3. Results and Discussion

Since the enterprise is developing a deposit of rare metal ores, special attention was
paid to the analysis of REEs in selected samples of water and BS.

3.1. Water Sample Analysis

The content of the main cations and anions in water samples of the near-surface layer
is presented in Table 2.
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Table 2. The content of the main cations and anions in the water samples of the studied lakes, mg/L.

Lake pH Ca2+ Mg2+ Na+ K+ HCO3− SO42− Cl− NO2−+NO3− ∑M *

Ilma 6.68 0.45 0.10 6.95 0.76 13.36 2.26 1.10 0.307 24.98

Krivoe 6.77 5.54 1.92 10.46 2.46 36.31 6.92 4.19 0.068 67.80

Lovozero 6.3 3.01 1.48 3.82 0.54 16.17 2.63 2.54 0.191 30.19

Note: *—mineralization of water, mg/L.

The composition of water in taken samples corresponds to the natural distribution of
the main ions: HCO3

− > SO4
2− > Cl−; Na+ > Ca2+ > Mg2+ + K+ and allows us to attribute

them to the class of hydrocarbonate waters. Using the value of mineralization, the lakes are
classified as low-mineralized and ultrafresh [51]. According to the acid/alkaline conditions,
the considered lakes are neutral.

Based on the results of the chemical analysis of the selected lake water samples, the for-
mulas for the ion–salt composition of the lakes Krivoe, Ilma and Lovozero
was calculated:

M26
HCO3 69

Na 47 Ca 29
pH 6.77—Lake Krivoe;

M26
HCO3 74

Na 91 Ca 9
pH 6.68—Lake Ilma;

M28
HCO3 77 Cl18

Na 25 Ca 22
pH 6.3—Lake Lovozero.

The composition according to the content of the main ions is as follows: Lake Krivoe—
bicarbonate, sodium-calcium; Lake Ilma—hydrocarbonate, sodium; Lake Lovozero—
hydrocarbonate-chloride, sodium-calcium.

The concentrations of TEs and REEs, as well as MPCfw and the limits of the content of
elements in the water of freshwater ecosystems [38], are given in Table 3.

In general, the content of pollutants in the samples of the lakes under consideration,
in comparison with other lakes of the Murmansk region, experiencing anthropogenic load
due to pollution by wastewater from mining enterprises, is relatively low. For instance,
Kuetsjärvi, the source of TEs and acid compounds entering the waters of which is the
Pechenganickel plant (processing copper-nickel sulfide ores), is one of the most polluted
lakes in the Murmansk region [52]. In the lake, elevated contents of nickel (more than
200 times) and copper (20 times) are observed. In the surface waters of the Monchegorsk
test site, polluted by wastewater from the Severonickel copper-nickel plant, nickel and
copper were also found in concentrations that exceed the conventional background values
by 1–2 orders of magnitude [23].

Elevated concentrations of iron, aluminum and manganese in the surface waters of
the Arctic Zone of the Russian Federation, as a rule, are explained by the humification of
watersheds [53]. However, a comparison of the concentrations of a number of elements
in water samples from Lake Lovozero, taken at different points of the lake, suggests
that the excess of MPCfw is due to pollution by insufficiently treated wastewater from
the enterprise.

In [32], in the water of Lake Imandra, subject to anthropogenic pollution from the
enterprise developing the deposit of apatite-nepheline ores, La concentration varied from
0.02 to 0.04 µg/L, Ce from 0.005 to 0.03 µg/L, Pr from 0.004 to 0.009 µg/L and Nd from
0.007 to 0.04 µg/L. In the water samples taken by us, as can be seen from Table 3, the con-
centrations of elements are at least an order of magnitude higher. Attention is drawn to the
increased concentrations of zinc, copper and light group REEs (LREEs) in the near-bottom
water layer of lakes in comparison with the surface layer, which may be a consequence of
the leaching of the upper layers of BS by lake water.
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Table 3. Concentrations of elements in surface water samples, µg/L.

Element 1 2 3 4 5 6 7 8

Cu 1.22 ± 0.08 1.50 ± 0.11 0.62 ± 0.04 1.65 ± 0.12 0.53 ± 0.03 0.98 ± 0.10 1 -

Zn 4.84 ± 0.17 64.58 ± 1.20 1.52 ± 0.11 55.69 ± 1.70 2.01 ± 0.11 39.89 ± 1.30 10 -

Mn 31.49 ± 0.65 109.35 ± 4.17 16.57 ± 0.62 256.41 ± 5.80 1.14 ± 0.08 17.13 ± 0.24 10 -

Al 77.18 ± 1.04 29.09 ± 1.21 124.82 ± 3.11 140.31 ± 2.93 65.93 ± 1.41 115.47 ± 4.71 40 -

La 0.33 ± 0.04 0.35 ± 0.03 1.25 ± 0.09 1.83 ± 0.08 0.91 ± 0.03 0.73 ± 0.02 - 0.06–0.2

Ce 0.50 ± 0.02 0.55 ± 0.07 2.10 ± 0.14 3.59 ± 0.12 0.51 ± 0.02 1.13 ± 0.05 - 0.08–2

Pr 0.08 ± 0.01 0.06 ± 0.01 0.22 ± 0.01 0.45 ± 0.02 0.17 ± 0.01 0.14 ± 0.01 - 0.007

Nd 0.31 ± 0.02 0.20 ± 0.01 0.69 ± 0.02 1.39 ± 0.10 0.45 ± 0.02 0.48 ± 0.01 - 0.040

Sm 0.05 ± 0.01 0.03 ± 0.01 0.10 ± 0.01 0.19 ± 0.02 0.08 ± 0.01 0.08 ± 0.01 - 0.008–1

Eu 0.01 ± 0.01 0.01 ± 0.01 0.02 ± 0.01 0.05 ± 0.01 0.02 ± 0.01 0.02 ± 0.01 - 0.001–0.03

Gd 0.05 ± 0.01 0.03 ± 0.01 0.09 ± 0.01 0.17 ± 0.01 0.07 ± 0.01 0.07 ± 0.01 - 0.0080

Tb 0.01 ± 0.01 0.00 0.01 ± 0.01 0.02 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 - 0.001

Dy 0.04 ± 0.01 0.02 ± 0.01 0.04 ± 0.01 0.09 ± 0.01 0.06 ± 0.01 0.06 ± 0.01 - -

Ho 0.01 ± 0.01 0.00 0.01 ± 0.01 0.02 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 - 0.0010

Er 0.03 ± 0.01 0.01 ± 0.01 0.02 ± 0.01 0.05 ± 0.01 0.03 ± 0.01 0.03 ± 0.01 - 0.0040

Tm 0.00 0.00 0.00 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 - 0.0010

Yb 0.03 ± 0.01 0.01 ± 0.01 0.02 ± 0.01 0.04 ± 0.01 0.03 ± 0.01 0.03 ± 0.01 - 0.004–0.085

Lu 0.01 ± 0.01 0.00 0.00 0.01 ± 0.01 0.01 ± 0.01 0.00 - 0.0010

Y 0.33 ± 0.02 0.13 ± 0.01 0.23 ± 0.02 0.49 ± 0.03 0.38 ± 0.02 0.36 ± 0.01 - 0.03–0.7

Note: The table shows the mean values and standard errors. 1—Lake Lovozero, northern part (surface layer),
2—Lake Lovozero, northern part (bottom layer), 3—Lake Lovozero, the mouth of the River Sergevan (surface
layer), 4—Lake Lovozero, the mouth of the River Sergevan (bottom layer), 5—Lake Ilma (surface layer), 6—Lake
Ilma (bottom layer), 7—MPCfw, 8—limits of water content in freshwater ecosystems according to [38].

3.2. BS Analysis

Since the average rate of sedimentation in the lakes of the Kola Peninsula is about
0.1 cm per year [54], and the enterprise began its operations in 1951, the content of ele-
ments in the deep layers of BS cores of more than 7–8 cm can be considered conditionally
background, reflecting the content of elements before industrial development.

3.2.1. TE Pollution

Based on the data of chemical analysis of samples of lakes BS, enrichment factor,
geoaccumulation index, potential ecological risk index factor and potential ecological
hazard index were calculated to assess the pollution of BS with TEs (Table 4).

Compared to previous work [40], increased values of the enrichment factor of the
finely dispersed material of the tailings of the enrichment of loparite ores were noted,
including moderate enrichment for Mn, Sr, and these elements were added to the table for
calculating the enrichment factor, geoaccumulation index. The factor of the toxic reaction
of an individual toxic element has not been established for these elements; therefore, they
do not participate in the calculation of potential ecological risk index factor or potential
ecological hazard index.
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Table 4. Concentrations of TEs in the surface and background layers of BS (mg/kg), enrichment factor, geoaccumulation index, potential ecological risk index factor
and potential ecological hazard index.

Lake Layer, cm Cu Ni Zn Cr Cd Pb Sr Mn RI

Krivoe

0–7 20.50 ± 16.45
13.33 (6.92 − 45.24)

21.82 ± 17.14
14.83 (7.32 − 51.76)

61.41 ± 47.43
36.26 (21.95 − 141.83)

17.08 ± 4.78
15.31 (10.96 − 24.04)

0.121 ± 0.20
0.01 (0.01 − 0.51)

18.39 ± 6.66
16.25 (12.33 − 31.82)

116.94 ± 40.13
103.04 (74.92 − 193.58)

665.37 ± 85.15
639.35 (567.91 − 801.92) -

13–14 11.56 ± 2.77
11.56 (9.60 − 13.52)

22.45 ± 14.82
22.45 (11.98 − 32.93)

79.17 ± 28.68
79.17 (58.89 − 99.45)

15.56 ± 0.04
15.56 (15.53 − 15.59)

0.061 ± 0.08
0.06 (0.01 − 0.12)

14.13 ± 5.34
14.13 (10.36 − 17.91)

86.93 ± 2.45
86.93 (85.20 − 88.66)

586.23 ± 143.68
586.23 (484.63 − 687.82) -

EF 1.77 0.97 0.78 1.10 1.08 1.30 1.35 1.13 -

Igeo 0.07 −0.19 −0.29 −0.14 −0.14 −0.06 −0.05 −0.12 -

Eir 8.87 4.86 0.78 2.20 32.50 6.51 - - 55.71

Ilma

0–7 17.70 ± 7.87
20.88 (5.48 − 26.02)

22.55 ± 9.11
27.89 (8.33 − 30.24)

213.06 ± 3.25
212.11 (201.40 − 229.51)

23.02 ± 7.01
25.15 (11.54 − 29.86)

0.95 ± 0.28
0.97 (0.48 − 1.38)

24.00 ± 8.75
26.99 (12.60 − 33.69)

763.89 ± 233.11
759.17 (409.73 − 1074.29)

804.11 ± 130.50
870.00 (587.52 − 950.00) -

15–16 12.53 ± 0.43
5.15 (4.84 − 5.45)

27.39 ± 0.76
7.18 (6.64 − 7.71)

199.34 ± 7.89
202.57 (196.99 − 208.16)

11.57 ± 0.54
10.87 (10.49 − 11.25)

1.01 ± 0.35
1.20 (0.95 − 1.46)

6.07 ± 1.80
9.26 (7.99 − 10.53)

393.46 ± 3.66
360.87 (358.28 − 363.45)

427.93 ± 10.65
522.69 (515.16 − 530.22) -

EF 1.41 0.82 1.07 1.99 0.95 3.96 1.94 1.88 -

Igeo −0.03 −0.26 −0.15 0.12 −0.20 0.42 0.11 0.10 -

Eir 7.06 4.12 1.07 3.98 28.36 19.78 - - 64.37

Lovozero,
northern part

0–7 15.90 ± 1.80
16.90 (13.46 − 17.85)

30.92 ± 3.50
32.07 (26.20 − 36.50)

109.62 ± 4.23
110.09 (104.21 − 114.66)

46.15 ± 9.86
47.97 (32.45 − 58.19)

1.64 ± 0.57
1.72 (0.83 − 2.19)

11.40 ± 4.58
14.00 (4.22 − 15.94)

295.11 ± 25.20
303.40 (264.71 − 329.79)

777.17 ± 17.60
775.00 (755.23 − 807.28) -

8–9 17.14 ± 0.09
17.20 (17.14 − 17.26)

35.09 ± 1.00
35.80 (35.09 − 36.50)

169.61 ± 40.65
140.86 (112.12 − 169.61)

52.60 ± 3.95
55.39 (52.60 − 58.19)

2.10 ± 0.04
2.13 (2.10 − 2.16)

2.34 ± 1.33
3.28 (2.34 − 4.22)

286.47 ± 11.97
294.93 (286.47 − 303.40)

810.11 ± 12.68
801.15 (792.18 − 810.11) -

EF 0.93 0.88 0.65 0.88 0.78 4.87 1.03 0.96 -

Igeo −0.21 −0.23 −0.37 −0.23 −0.28 0.51 −0.16 −0.19 -

Eir 4.64 4.41 0.65 1.75 23.42 24.35 - - 59.21

Lovozero,
Sergevan

0–7 15.07 ± 3.18
14.19 (12.11 − 20.58)

50.42 ± 3.46
49.00 (45.73 − 54.56)

117.02 ± 20.76
128.39 (85.96 − 133.70)

87.53 ± 9.38
86.21 (71.97 − 102.50)

1.90 ± 0.17
1.91 (1.59 − 2.15)

15.25 ± 4.48
14.16 (10.84 − 22.44)

659.49 ± 77.60
648.26 (559.77 − 759.23)

1503.57 ± 191.28
1490.00 (1250.00 − 1850.00) -

8–9 11.28 ± 1.71
11.48 (11.28 − 13.70)

48.89 ± 2.13
48.94 (48.89 − 51.90)

168.93 ± 28.95
168.93 (127.99 − 168.93)

84.39 ± 4.12
84.78 (84.39 − 90.22)

1.51 ± 0.39
1.51 (1.51 − 2.06)

10.80 ± 0.90
10.92 (10.80 − 12.07)

537.27 ± 46.01
541.22 (537.27 − 602.35)

1220.00 ± 49.50
1220.00 (1220.00 − 1290.00) -

EF 1.34 1.03 0.69 1.04 1.26 1.41 1.23 1.23 -

Igeo −0.05 −0.16 −0.34 −0.16 −0.08 −0.03 −0.09 −0.09 -

Eir 6.68 5.16 0.69 2.07 37.72 7.06 - - 59.39

Note: The numerator is mean value ± standard deviation; the denominator is the median (the minimum and maximum values of the sample). Lovozero, Sergevan—Lake Lovozero, the
mouth of the River Sergevan.
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According to the value of the calculated EF value, minor enrichment of Lake Krivoe
BS was revealed with Cu, Cr, Cd, Pb, Sr and Mn; Lake Ilma BS with Cu, Zn, Cr, Sr and
Mn; the northern part of Lake Lovozero BS with Sr and Lake Lovozero at the mouth of
the Sergevan River BS with Cu, Ni, Cr, Cd, Pb, Sr, Mn. The level of enrichment Pb of
BS samples “moderate enrichment” was found for Lake Ilma and the northern part of
Lake Lovozero.

According to the calculated value of Igeo, the pollution of the BS of Lake Krivoe can be
classified as unpolluted to moderately polluted with Cu, the BS of Lake Ilma with Cr, Pb,
Sr and Mn and the BS of the northern part of Lake Lovozero with Pb.

The vertical distribution of the content of some elements in the selected samples of BS
of lakes Ilma and Lovozero (northern part) is shown in Figure 2.
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One can note an increase in the content of a number of elements in the upper layers
of BS columns, corresponding to the beginning of the enterprise’s activity. Most of the
elements indicated in Table 4 are included in the composition of the ores of the developed
deposit [40]. Cu and Ni are among the priority pollutants in the Murmansk region, the
increased content of which is associated with the activities of copper-nickel production [55].
As has been repeatedly noted in [55–57], an increased content of Pb may be a consequence
of active traffic of vehicles. In our case, the road from the settlement of Revda passes by
Lake Ilma towards the processing plant, and to the north of the sampling point for BS of
Lake Lovozero is the road to the village of the same name.

The calculated values of potential ecological risk index factor and potential ecological
hazard index do not exceed the values corresponding to low ecological risk.

3.2.2. REE Pollution

Based on the data of chemical analysis of samples of bottom sediments of lakes,
enrichment factor, geoaccumulation index, potential ecological risk index factor and po-
tential ecological hazard index were calculated to assess the contamination of BS with
REEs (Table 5).

According to the calculated EF values, minor enrichment of Lake Krivoe BS was
revealed with LREEs and part of the heavy group REEs (HREEs) as well as Lake Ilma
BS with all the elements listed in the table; however, large calculated values are typical
for the LREEs, the northern part of Lake Lovozero BS with LREE light group and Lake
Lovozero at the mouth of the Sergevan River BS with all the listed elements. A higher level
of enrichment of samples of BS with REEs was noted for Lake Ilma.

According to the calculated value of Igeo, the pollution of the BS of Lake Krivoe and
Lake Lovozero at the mouth of the Sergevan River can be classified as unpolluted to
moderately polluted with La, Ce, Pr, BS of Lake Ilma with higher calculated Igeo values for
La-Sm.

The calculated values of potential ecological risk index factor and potential ecological
hazard index for Lake Ilma and samples taken in Lake Lovozero at the mouth of the
Sergevan River approach the lower limit of values corresponding to low ecological risk but
do not cross it.

Table 6 shows the contents of REEs in the upper layers of BS (0–9 cm) of lakes Ilma
and Lovozero, Clarke numbers of elements in the Earth’s crust, limits of contents in BS of
freshwater ecosystems and average contents in BS of Lake Imandra, which are subject to
anthropogenic pollution from an enterprise developing a deposit of apatite-nepheline ores,
which also include REEs [32].

As can be seen, the average values of the REE contents in the BS of the lakes Ilma and
Lovozero exceed by many times the Clarke numbers of elements in the Earth’s crust, the
limits of content in the BS of freshwater ecosystems and the average content in the BS of
Lake Imandra. The average contents of REEs in the BS of the studied lakes Krivoe, Ilma
and Lovozero are distributed in accordance with the Oddo–Harkins rule: lanthanides with
even ordinal numbers are more abundant in the Earth’s crust than those with odd ones [58].

The vertical distribution of the content of REEs in the selected samples of BS of lakes
is shown in Figure 3.

As can be seen, the lowest REE contents are characteristic of the BS of Lake Krivoe.
However, in the last 20–30 years (the upper layers of the column), a sharp increase in these
indicators can be noted. This may be associated with the commissioning of the second field
of the tailings of the enrichment plant about 30 years ago. In our previous work, we carried
out a study devoted to modeling the atmochemical halo of dust dispersion carried outside
the first field of the tailing dump [59]. It is logical to assume that with the advancement of
potential sources of dusting to the north and an increase in dusty areas due to the storage
of pulp in tailings open to the atmosphere, dust can spread over greater distances than in
the original model.
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Table 5. Concentrations of REEs in the surface and background layers of BS (mg/kg), enrichment factor, geoaccumulation index, potential ecological risk index
factor and potential ecological hazard index.

Lake Layer, cm La Ce Pr Nd Sm Eu Gd

Krivoe

0–7 16.05 ± 7.71
13.15 (10.09 − 29.51)

32.67 ± 15.57
26.44 (20.34 − 60.16)

3.64 ± 2.36
2.76 (1.85 − 7.65)

10.91 ± 5.00
8.98 (7.17 − 19.65)

1.86 ± 0.51
2.13 (1.27 − 2.93)

0.75 ± 0.18
0.72 (0.49 − 1.03)

2.06 ± 0.21
2.17 (1.71 − 2.28)

13–14 10.30 ± 0.37
10.21 (9.95 − 10.47)

21.53 ± 0.02
20.87 (20.86 − 20.89)

2.20 ± 0.59
2.09 (1.67 − 2.51)

7.64 ± 1.78
8.52 (7.26 − 9.78)

1.25 ± 0.61
2.07 (1.24 − 2.50)

0.66 ± 0.06
0.63 (0.59 − 0.67)

1.40 ± 0.68
2.02 (1.34 − 2.50)

EF 1.56 1.52 1.65 1.43 1.49 1.13 1.47

Igeo 0.02 0.01 0.04 −0.02 0.00 −0.12 −0.01

Eir 1.56 1.52 8.25 2.86 7.45 11.27 7.33

Ilma

0–7 123.27 ± 140.73
64.99 (33.55 − 431.32)

244.83 ± 265.90
139.75 (81.11 − 826.18)

28.42 ± 31.42
17.20 (6.90 − 96.36)

82.04 ± 80.80
53.81 (25.80 − 257.09)

14.92 ± 10.17
12.63 (5.89 − 35.40)

3.44 ± 2.22
3.58 (1.03 − 5.91)

9.04 ± 3.10
8.82 (5.33 − 14.41)

15–16 41.69 ± 1.75
49.22 (40.98 − 50.46)

92.41 ± 2.08
109.50 (88.02 − 110.97)

10.59 ± 0.37
12.88 (10.62 − 13.14)

37.93 ± 1.43
42.81 (31.80 − 43.82)

8.95 ± 0.96
11.09 (8.40 − 11.77)

2.90 ± 0.07
3.17 (2.82 − 3.22)

7.16 ± 0.19
8.18 (7.05 − 8.31)

EF 2.96 2.65 2.68 2.16 1.67 1.19 1.26

Igeo 0.29 0.25 0.25 0.16 0.05 −0.10 −0.07

Eir 2.96 2.65 13.42 4.33 8.34 11.86 6.31

Lovozero,
northern part

0–7 94.32 ± 30.70
73.59 (71.70 − 144.18)

178.19 ± 61.75
139.42 (130.63 − 277.79)

21.83 ± 6.54
19.05 (14.27 − 32.82)

69.57 ± 12.90
64.56 (56.58 − 90.88)

14.01 ± 1.07
14.23 (12.59 − 15.86)

3.92 ± 0.52
3.63 (3.33 − 4.54)

9.87 ± 3.81
8.15 (6.26 − 14.38)

8–9 72.24 ± 0.72
72.55 (72.04 − 73.26)

137.80 ± 1.15
136.61 (136.60 − 139.42)

18.42 ± 0.10
18.35 (18.28 − 18.52)

62.87 ± 1.20
63.72 (61.87 − 64.56)

13.65 ± 0.57
13.66 (13.30 − 14.46)

4.39 ± 0.10
4.36 (4.35 − 4.53)

14.25 ± 0.09
14.24 (14.19 − 14.38)

EF 1.31 1.29 1.19 1.11 1.03 0.89 0.69

Igeo −0.06 −0.06 −0.10 −0.13 −0.16 −0.23 −0.34

Eir 1.31 1.29 5.93 2.21 5.13 8.93 3.46

Lovozero,
Sergevan

0–7 163.75 ± 62.63
125.61 (110.56 − 260.19)

309.60 ± 121.55
234.27 (205.74 − 498.86)

37.37 ± 17.55
25.52 (22.76 − 61.79)

124.51 ± 32.09
106.07 (96.06 − 172.52)

27.50 ± 5.97
24.63 (22.19 − 36.22)

4.88 ± 0.24
4.89 (4.46 − 5.09)

14.46 ± 2.18
14.37 (11.45 − 17.69)

8–9 103.30 ± 9.84
103.21 (101.95 − 117.22)

191.88 ± 20.57
190.87 (188.86 − 220.98)

18.69 ± 3.60
19.09 (16.67 − 23.79)

89.32 ± 7.92
88.52 (81.26 − 100.53)

21.00 ± 1.27
20.06 (19.64 − 22.80)

4.61 ± 0.12
4.63 (4.59 − 4.78)

10.18 ± 1.20
10.12 (9.54 − 11.88)

EF 1.59 1.61 2.00 1.39 1.31 1.06 1.42

Igeo 0.02 0.03 0.12 −0.03 −0.06 −0.15 −0.02

Eir 1.59 1.61 10.00 2.79 6.55 10.58 7.10

Lake Layer, cm Tb Dy Ho Er Tm Yb Lu RI
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Table 5. Cont.

Lake Layer, cm La Ce Pr Nd Sm Eu Gd

Krivoe

0–7 0.33 ± 0.08
0.33 (0.20 − 0.42)

2.09 ± 0.39
2.34 (1.99 − 3.00)

0.41 ± 0.08
0.43 (0.37 − 0.57)

1.31 ± 0.27
1.14 (1.07 − 1.68)

0.17 ± 0.04
0.17 (0.15 − 0.25)

1.16 ± 0.19
1.14 (0.96 − 1.46)

0.15 ± 0.03
0.18 (0.14 − 0.22) -

13–14 0.32 ± 0.12
0.34 (0.25 − 0.42)

2.19 ± 0.44
2.16 (1.85 − 2.47)

0.52 ± 0.08
0.47 (0.41 − 0.52)

1.35 ± 0.08
1.33 (1.28 − 1.39)

0.18 ± 0.03
0.20 (0.18 − 0.22)

1.25 ± 0.08
1.22 (1.16 − 1.27)

0.21 ± 0.00
0.19 (0.19 − 0.22) -

EF 1.04 0.96 0.80 0.97 0.96 0.93 0.73 -

Igeo −0.16 −0.20 −0.27 −0.19 −0.20 −0.21 −0.32 -

Eir 10.39 4.78 8.00 4.85 9.56 4.63 14.52 96.97

Ilma

0–7 1.42 ± 0.45
1.48 (0.83 − 2.16)

8.50 ± 2.57
7.69 (5.22 − 11.97)

1.68 ± 0.43
1.73 (1.13 − 2.21)

4.67 ± 1.00
5.01 (3.02 − 5.72)

0.73 ± 0.20
0.80 (0.49 − 0.97)

4.23 ± 1.00
4.36 (2.90 − 5.44)

0.64 ± 0.15
0.66 (0.42 − 0.85) -

15–16 1.21 ± 0.14
1.22 (1.13 − 1.32)

6.94 ± 0.22
6.12 (5.97 − 8.28)

1.64 ± 0.03
1.70 (1.58 − 1.82)

4.64 ± 0.04
4.65 (4.61 − 4.76)

0.64 ± 0.01
0.70 (0.60 − 0.72)

3.68 ± 0.05
4.01 (3.57 − 4.07)

0.57 ± 0.01
0.59 (0.56 − 0.62) -

EF 1.17 1.22 1.02 1.01 1.15 1.15 1.12 -

Igeo −0.11 −0.09 −0.17 −0.17 −0.12 −0.12 −0.13 -

Eir 11.68 6.12 10.22 5.03 11.50 5.75 22.36 122.50

Lovozero,
northern part

0–7 1.56 ± 0.64
1.20 (0.91 − 2.38)

8.76 ± 3.23
7.10 (5.82 − 12.40)

1.83 ± 0.81
1.35 (1.07 − 2.78)

5.20 ± 2.44
3.79 (2.77 − 8.06)

0.81 ± 0.44
0.50 (0.45 − 1.41)

4.68 ± 2.23
3.19 (2.63 − 7.29)

0.73 ± 0.35
0.47 (0.43 − 1.20) -

8–9 2.27 ± 0.13
2.21 (2.09 − 2.37)

12.23 ± 0.12
12.21 (12.15 − 12.40)

2.49 ± 0.19
2.63 (2.29 − 2.66)

8.24 ± 0.13
8.25 (8.16 − 8.34)

1.15 ± 0.00
1.14 (1.14 − 1.16)

6.85 ± 0.08
6.81 (6.78 − 6.92)

1.09 ± 0.03
1.07 (1.05 − 1.12) -

EF 0.69 0.72 0.74 0.63 0.70 0.68 0.67 -

Igeo −0.34 −0.32 −0.31 −0.38 −0.33 −0.34 −0.35 -

Eir 6.86 3.58 7.35 3.16 7.03 3.42 13.41 73.07

Lovozero,
Sergevan

0–7 2.07 ± 0.15
2.09 (1.81 − 2.28)

11.18 ± 1.11
11.41 (9.55 − 12.59)

2.17 ± 0.33
2.13 (1.79 − 2.65)

5.77 ± 1.14
5.47 (4.44 − 7.61)

0.86 ± 0.12
0.80 (0.74 − 1.07)

5.48 ± 0.95
5.16 (4.23 − 6.94)

0.80 ± 0.12
0.79 (0.61 − 0.97) -

8–9 1.71 ± 0.10
1.74 (1.65 − 1.86)

9.67 ± 1.01
9.16 (8.85 − 11.10)

2.00 ± 0.04
2.01(1.91 − 2.04)

5.09 ± 0.38
5.13 (4.98 − 5.63)

0.72 ± 0.04
0.70 (0.58 − 0.78)

4.60 ± 0.45
4.42 (4.16 − 5.24)

0.71 ± 0.12
0.70 (0.69 − 0.88) -

EF 1.21 1.16 1.08 1.13 1.19 1.19 1.13 -

Igeo −0.09 −0.11 −0.14 −0.12 −0.10 −0.10 −0.12 -

Eir 12.12 5.78 10.80 5.67 11.95 5.95 22.65 115.13

Note: The numerator is mean value ± standard deviation; the denominator is the median (the minimum and maximum values of the sample). Lovozero, Sergevan—Lake Lovozero, the
mouth of the River Sergevan.
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Table 6. The content of REEs in BS (layer 0–9 cm) of the studied lakes and other objects, mg/kg.

Element BS Lake Ilma
BS Lake
Lovozero

(Sergevan)

BS Lake
Krivoe

Clarke
Number of
Elements in
the Earth’s

Crust

Limit of
Contents in

BS of
Freshwater
Ecosystems

BS Lake
Imandra

La 107.31 ± 125.94
59.45 (33.55 − 431.32)

151.86 ± 59.25
122.08 (103.30 − 260.19)

14.74 ± 7.16
10.47 (9.89 − 29.51) 30.00 19.5–100 103.00

Ce 215.80 ± 237.39
120.36 (81.11 − 826.18)

286.67 ± 114.91
231.57 (191.88 − 498.86)

30.11 ± 14.42
21.86 (20.34 − 60.16) 50.00 43–100 172.00

Pr 25.07 ± 28.01
14.20 (6.90 − 96.36)

33.79 ± 16.83
24.44 (18.69 − 61.79)

3.38 ± 2.11
2.51 (1.85 − 7.65) 5.00 8–8.3 21.00

Nd 73.65 ± 71.94
46.80 (25.80 − 257.09)

117.94 ± 30.83
103.73 (89.32 − 172.52)

10.38 ± 4.50
8.98 (7.17 − 19.65) 23.00 19–44 79.00

Sm 14.23 ± 8.91
11.87 (5.89 − 35.40)

26.25 ± 5.75
24.53 (21.00 − 36.22)

2.08 ± 0.48
2.13 (1.27 − 2.93) 6.50 3.3–30 12.00

Eu 3.39 ± 1.93
3.33 (1.03 − 5.91)

4.84 ± 0.22
4.87 (4.46 − 5.09)

0.73 ± 0.16
0.69 (0.49 − 1.03) 1.00 0.07–12.2 3.10

Gd 8.88 ± 2.70
8.58 (5.33 − 14.41)

13.70 ± 2.46
13.24 (10.18 − 17.69)

2.10 ± 0.23
2.17 (1.71 − 2.50) 6.50 5.0–6.0 12.00

Tb 1.38 ± 0.40
1.41 (0.83 − 2.16)

2.01 ± 0.19
2.02(1.71 − 2.28)

0.35 ± 0.07
0.36 (0.20 − 0.42) 0.90 0.3–1.1 1.20

Dy 8.50 ± 2.24
7.97 (5.22 − 11.97)

11.01 ± 1.08
11.10 (9.55 − 12.59)

2.38 ± 0.35
2.34 (1.99 − 3.00) 4.50 1.8–4.5 6.70

Ho 1.71 ± 0.38
1.78 (1.13 − 2.21)

2.12 ± 0.30
2.00 (1.79 − 2.65)

0.47 ± 0.07
0.45 (0.37 − 0.57) 1.00 0.9–1.0 1.10

Er 4.70 ± 0.87
4.86 (3.02 − 5.72)

5.68 ± 1.01
5.47 (4.44 − 7.61)

1.31 ± 0.24
1.20 (1.07 − 1.68) 2.50 2.6–3.0 3.00

Tm 0.73 ± 0.17
0.77 (0.49 − 0.97)

0.83 ± 0.11
0.79 (0.72 − 1.07)

0.19 ± 0.03
0.18 (0.15 − 0.25) 0.25 0.40 0.37

Yb 4.26 ± 0.87
4.36 (2.90 − 5.44)

5.35 ± 0.87
5.16 (4.23 − 6.94)

1.16 ± 0.17
1.14 (0.96 − 1.46) 3.00 1.4–4.4 2.30

Lu 0.64 ± 0.13
0.66 (0.42 − 0.85)

0.80 ± 0.12
0.79 (0.61 − 0.97)

0.18 ± 0.03
0.19 (0.14 − 0.22) 0.70 0.2–0.5 0.29

Note: The numerator is mean value ± standard deviation; the denominator is the median (the minimum and
maximum values of the sample).

In BS Lake Ilma there is a regular increase in the content of REEs in the upper layers,
which corresponds to the beginning of the enterprise in the 1960s.

Note that Lovozero contains more REEs in its water than Lake Ilma, while the ratio
of the contents of REEs to the background values in the BS of Lake Ilma exceeds the same
parameter for Lake Lovozero. This difference allows us to assume a different nature of the
input of elements into water bodies, with wastewater in dissolved form in Lake Lovozero
and due to dusting of fine-grained enrichment tailings in Lake Ilma.

Assessing the total pollution with TEs and REEs of BS of lakes Ilma and Lovozero
at the mouth of the Sergevan River, the value of potential ecological risk reaches 174 and
186 units, respectively, which indicates the level of moderate ecological risk pollution.

3.3. Correlation Matrix

In order to establish possible relationships between metals and determine the main
sources of metals in the bottom sediments of lakes, the Pearson correlation coefficient was
calculated (Table 7) [60,61].

In BS samples from Lake Ilma, there is a strong positive correlation between LREEs
(r = 0.97–0.99), which indicates a point source of anthropogenic influence [49]. The same
elements are included in the composition of the tailings of the enrichment of loparite ores,
which suggests that the lake is polluted due to dusting of the tailings.

A positive correlation between Cu and Ni (r = 0.958) also points to a one-time input of
these elements. As mentioned above, this may be due to the activity of large copper-nickel
enterprises in the region [55].
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Table 7. Matrix of Pearson correlation coefficients for BS of lakes Ilma (lower triangle on the left) and Lovozero, Sergevan River (upper triangle on the right).

Variable La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Cu Ni Zn Cr Cd Pb Sr Mn Fe OC

La 1.000 1.000 0.986 0.999 0.958 0.281 0.033 0.075 −0.172 −0.283 −0.204 −0.412 −0.057 −0.091 0.863 −0.045 −0.927 −0.620 −0.570 0.973 0.900 0.874 0.783 0.962

Ce 0.999 1.000 0.986 0.999 0.958 0.277 0.037 0.079 −0.169 −0.278 −0.194 −0.404 −0.052 −0.086 0.861 −0.049 −0.925 −0.624 −0.567 0.974 0.900 0.879 0.782 0.964

Pr 0.997 0.998 1.000 0.985 0.908 0.206 0.048 0.137 −0.100 −0.196 −0.156 −0.396 −0.079 −0.096 0.804 −0.116 −0.873 −0.604 −0.608 0.966 0.872 0.844 0.818 0.958

Nd 0.998 0.998 1.000 1.000 0.962 0.311 0.045 0.085 −0.159 −0.278 −0.208 −0.409 −0.048 −0.080 0.870 −0.023 −0.929 −0.603 −0.579 0.972 0.906 0.868 0.787 0.954

Sm 0.975 0.974 0.983 0.984 1.000 0.432 0.139 0.073 −0.172 −0.308 −0.208 −0.329 0.090 −0.004 0.950 0.173 −0.960 −0.564 −0.602 0.900 0.898 0.836 0.692 0.910

Eu 0.508 0.551 0.525 0.517 0.506 1.000 0.494 0.425 0.370 0.153 0.135 0.246 0.529 0.578 0.422 0.533 −0.350 0.185 −0.204 0.274 0.484 0.343 0.290 0.063

Gd 0.896 0.892 0.915 0.913 0.967 0.417 1.000 0.875 0.858 0.804 0.801 0.842 0.959 0.884 0.115 0.327 −0.031 0.108 −0.550 −0.061 0.103 0.095 0.079 0.014

Tb 0.856 0.845 0.870 0.870 0.928 0.319 0.982 1.000 0.960 0.914 0.821 0.760 0.763 0.779 0.018 0.210 0.104 0.279 −0.393 0.080 0.234 0.233 0.370 0.005

Dy 0.738 0.741 0.773 0.770 0.855 0.418 0.941 0.931 1.000 0.972 0.844 0.834 0.759 0.808 −0.214 0.174 0.313 0.399 −0.289 −0.171 −0.021 −0.031 0.146 −0.236

Ho 0.557 0.559 0.594 0.593 0.722 0.344 0.854 0.857 0.947 1.000 0.889 0.862 0.708 0.741 −0.349 0.069 0.440 0.388 −0.224 −0.281 −0.165 −0.125 0.046 −0.295

Er 0.628 0.628 0.651 0.649 0.757 0.449 0.863 0.888 0.891 0.940 1.000 0.932 0.807 0.855 −0.340 −0.132 0.303 0.079 −0.121 −0.215 −0.171 0.041 −0.083 −0.169

Tm 0.638 0.640 0.663 0.664 0.784 0.425 0.875 0.869 0.899 0.964 0.962 1.000 0.887 0.880 −0.375 0.137 0.422 0.288 −0.067 −0.448 −0.311 −0.179 −0.280 −0.397

Yb 0.289 0.281 0.308 0.312 0.467 0.155 0.620 0.664 0.689 0.874 0.876 0.902 1.000 0.932 0.051 0.314 −0.006 0.069 −0.383 −0.152 0.010 0.068 −0.097 −0.071

Lu 0.304 0.299 0.328 0.328 0.484 0.198 0.640 0.670 0.692 0.874 0.890 0.906 0.987 1.000 −0.125 0.088 0.063 0.063 −0.219 −0.138 −0.035 0.078 −0.100 −0.147

Cu 0.201 0.186 0.143 0.146 0.049 0.072 −0.096 −0.067 −0.388 −0.431 −0.132 −0.216 −0.226 −0.194 1.000 0.422 −0.888 −0.376 −0.630 0.790 0.867 0.699 0.663 0.811

Ni 0.139 0.118 0.078 0.083 −0.040 −0.124 −0.199 −0.168 −0.498 −0.584 −0.334 −0.402 −0.419 −0.399 0.958 1.000 −0.019 0.585 −0.205 −0.082 0.269 −0.040 0.159 −0.160

Zn 0.002 0.033 0.038 0.021 0.048 0.373 0.039 −0.113 −0.012 0.025 −0.004 0.061 −0.052 0.083 −0.040 −0.123 1.000 0.719 0.599 −0.839 −0.764 −0.721 −0.524 −0.908

Cr 0.164 0.150 0.102 0.110 −0.016 −0.029 −0.214 −0.222 −0.518 −0.600 −0.388 −0.391 −0.445 −0.435 0.918 0.960 −0.038 1.000 0.364 −0.521 −0.243 −0.449 −0.065 −0.751

Cd −0.784 −0.809 −0.792 −0.794 −0.781 −0.755 −0.653 −0.526 −0.556 −0.440 −0.434 −0.552 −0.201 −0.214 −0.034 0.064 −0.306 −0.116 1.000 −0.406 −0.421 −0.250 −0.387 −0.614

Pb 0.363 0.347 0.303 0.308 0.178 0.112 −0.002 0.024 −0.293 −0.428 −0.155 −0.240 −0.349 −0.337 0.947 0.953 −0.185 0.923 −0.147 1.000 0.931 0.924 0.858 0.905

Sr 0.497 0.491 0.446 0.449 0.331 0.298 0.137 0.120 −0.171 −0.304 −0.043 −0.088 −0.263 −0.232 0.921 0.889 0.016 0.907 −0.375 0.962 1.000 0.903 0.911 0.780

Mn 0.162 0.137 0.113 0.111 0.021 −0.143 −0.074 −0.026 −0.365 −0.425 −0.150 −0.266 −0.257 −0.201 0.933 0.938 −0.009 0.827 0.161 0.876 0.815 1.000 0.798 0.806

Fe 0.257 0.242 0.217 0.214 0.142 0.018 0.036 0.028 −0.280 −0.318 −0.067 −0.126 −0.170 −0.086 0.904 0.870 0.277 0.820 −0.063 0.810 0.839 0.941 1.000 0.668

OC −0.076 −0.111 −0.126 −0.125 −0.184 −0.396 −0.210 −0.109 −0.435 −0.424 −0.171 −0.309 −0.160 −0.126 0.821 0.839 −0.191 0.675 0.466 0.723 0.590 0.934 0.801 1.000

Note: OC—organic carbon, defined as the loss on ignition of the samples.
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Moderate or strong positive correlations of organic carbon with a number of metals—Cu,
Ni, Cr, Cd, Pb, Sr, Mn, but not REE—indicate the formation of organic complexes with
these metals [62]. Fe shows a significant strong correlation with the same metals, which
indicates their similarity, identical behavior and the fact that one of the main phases for
these metals is complex compounds with iron oxyhydroxide [61,63].

In BS samples from Lake Lovozero (the mouth of the Sergevan River), a similar pattern
is observed: there is a strong positive correlation for LREEs (r = 0.97–1.0). However, in
contrast to Lake Ilma, judging by the strong correlation of organic carbon with LREEs, it
can be concluded that organic carbon is one of the main geochemical carriers of LREEs in
this area [61].

Moderate or strong positive correlations of organic carbon were also found for Cu, Pb,
Sr and Mn, which indicates the formation of organic complexes with these metals [62]. A
significant correlation of the same elements with Fe also indicates their similar behavior
and indicates the role of iron oxyhydroxide as one of the main phases for these metals [63].

The toxic effect of lanthanides for marine unicellular algae was established in [64].
In living organisms, REEs can form chelate compounds with substances involved in
metabolism, in particular, nucleic acids and amino acids [65]. HREEs, according to the
literature data, are capable of replacing calcium ions in organisms [66,67], including en-
zymes. In addition, rare earth elements have an anticoagulant effect [68]. The question of
the carcinogenic effect of REEs has not yet been resolved [69].

4. Conclusions

Based on the results of the study, elevated contents of TEs and REEs, which are part of
the tailings of rare metal ores, were revealed in water samples and BS of lakes Krivoe, Ilma
and Lovozero. The total content of elements was established both in the surface layers of BS
and in deep layers, which were formed in the pre-industrial period and, thus, characterize
the geochemical background of the study area.

The obtained results testify to the susceptibility of the lakes Ilma and Lovozero to
strong anthropogenic pollution of various nature—dusting of tailings and discharge of
wastewater from the enterprise. The conducted correlation analysis confirmed the single
source of LREE inflow to the subsidiaries Ilma and Lovozero. At the same time, differences
were revealed in the forms of occurrence of a number of TEs and REEs in the selected
samples of BS, which may indicate a different route of pollutant entry. An increase in the
content of LREEs in the upper layers of the BS of Lake Krivoe is indicative of a relatively
recent anthropogenic impact. Of particular relevance to the study is the fact that Lake
Lovozero belongs to the reservoirs of fishery value of the highest category, and one of the
types of economic activity of the indigenous people of the Lovozero region is fishing.

The problem of technogenic pollution of environmental components with REEs is
relevant for Russia, China, the USA, Australia and other countries [70]. Currently, the US
Environmental Protection Agency does not classify any rare earth elements as carcinogens;
however, there is no conclusion that they are not carcinogenic [69].
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