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Abstract: Hydraulic models of water distribution systems (WDSs) need to be calibrated, so they can
be used to help to make informed decisions. Usually, hydraulic model calibration follows an iterative
process of comparing the simulation results from the model with field observations and making
adjustments to model parameters to make sure an acceptable level of agreement between predicted
and measured values (e.g., water pressure) has been achieved. However, the manual process can
be time-consuming, and the termination criterion relies on the modeler’s judgment. Therefore,
various optimization-based calibration methods have been developed. In this study, three different
optimization methods, i.e., Sequential Least Squares Programming (SLSQP), a Genetic Algorithm
(GA) and Differential Evolution (DE), are compared for calibrating the pipe roughness of WDS
models. Their performance is investigated over four different decision variable set formulations with
different levels of discretization of the search space. Results obtained from a real-world case study
demonstrate that compared to traditional engineering practice, optimization is effective for hydraulic
model calibration. However, a finer search space discretization does not necessarily guarantee better
results; and when multiple methods lead to similar performance, a simpler method is better. This
study provides guidance on method and formulation selection for calibrating WDS models.

Keywords: hydraulic model calibration; optimization; pipe roughness; water distribution systems

1. Introduction

Hydraulic models have been widely used for the planning, design, operation, main-
tenance and management of water distribution systems (WDSs) by water utilities to as-
sist in the evaluation of system performance and the assessment of design or operating
options [1–5]. A WDS hydraulic model should always be first calibrated prior to being
used in any decision-making process [6–10], as the mismatch between the model-predicted
and field-observed behaviors normally exists because of model uncertainty [8,11,12] and
sometimes the absence of system details.

Hydraulic model calibration involves an iterative process of comparing the simulation
results from the model with the field observations and making adjustments to model input
to improve the match between predicted and measured values until an acceptable level of
agreement has been achieved [2–5,9,13–16]. A number of model parameters have been con-
sidered in the calibration process, such as pipe roughness, nodal demands, characteristics
and the operational status of pipes, pumps and valves [2,3,5,16]. Among these calibration
parameters, pipe roughness values are commonly estimated for static calibration [16], con-
sidering their high impact on the system uncertainty and the associated difficulties in the
direct measurement of the actual values [17].

Common approaches for WDS hydraulic model calibration can be grouped into two
major categories: manual (trial-and-error) and automatic calibration approaches [2,4,15,18].
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In the traditional manual calibration approach based on trial-and-error [3,4,19,20], unknown
calibration parameters are adjusted manually by modelers or engineers at each iteration of
the trials until a certain degree of model accuracy has been achieved. Manual calibration is
normally considered when the initial gaps between the observed data and the modeled
results are significant [2]. Major anomalies or accuracy of initial parameters and input
data might be identified in this process [4,18]. The trial-and-error approach can be very
time-consuming and tedious as the judgment and adjustment have to be repeated manually
many times [3,21]. The speed of convergence of the iterative method is very slow, with no
guarantee of desirable results obtained [4,21].

Considering the limitations of the manual approach, automatic calibration methods
have been developed to deal with the larger number of unknowns in a realistic WDS
and to achieve a higher level of efficiency and accuracy [2,3,5]. There are two common
categories of methods for automatic calibration: numerical and optimization-based (or
implicit [4]) methods. Numerical methods mainly involve the estimation of calibration
parameters by solving a set of mass balance and energy equations directly [2]. For exam-
ple, early explicit calibration methods involve solving an extended series of steady-state
hydraulic equations [4–6,22–24]. However, it requires that the number of calibration pa-
rameters must match the number of observations (field measurements). Additionally,
errors in measurements are often neglected [16]. The optimization-based methods mainly
involve the estimation of calibration parameters by minimizing the differences between
the observations and model-simulated results through the use of an optimization algo-
rithm coupled with the hydraulic simulation model [4,8]. This method has been widely
investigated [3,16,25–32].

There are two common categories of optimization-based techniques that have been used
for hydraulic model calibration: deterministic (or classic) and metaheuristic algorithms [33–35].
Deterministic algorithms such as gradient-based algorithms mainly consist of linear, non-
linear and dynamic programming [35,36]. For instance, gradient-based algorithms are
dominant in non-evolutionary optimization methods. A number of existing studies used
gradient-based methods in the model calibration problems, such as the general reduced
gradient (GRG) method [21,37], the Gauss-Newton method [38,39], and the Levenberg–
Marquardt method [40]. The deterministic methods are computationally efficient [41] and
able to locate an optimal solution. However, they sometimes converge to locally optimal
solutions [35].

Metaheuristic algorithms, such as Evolutionary Algorithms (EAs) have been widely
applied in the calibration of WDS models since their initial use in WDS model calibration by
Savic and Walters [30]. EAs have been found to perform well in solving complex problems
with many decision variables and constraints [42]. They have the ability to find the (near-)
optimal solutions due to the exploratory nature of metaheuristics [43]. Their application
to both continuous and discrete search space, as well as the ability to deal with multiple
objective functions simultaneously, are also their strengths. However, the main limitation
is related to the high computational cost, especially for larger optimization problems such
as the calibration of complex WDS models [2,27] as the optimization process involves
frequent solving of nonlinear hydraulic equations [44]. Therefore, it is challenging to
locate (near-) optimal solutions considering the large search space these problems have [45].
Consequently, some studies have considered grouping decision variables based on their
similar properties or characteristics, thus reducing the size of the optimization problem
(the number of decision variables) and improving the efficiency in finding (near-) optimal
solutions [2,27,32]. Another downside of metaheuristic algorithms in calibration is often
based on limited pressure measurement data that is usually available to calibrate a hydraulic
model, which can lead to a problem that has multiple possible solutions [16,46,47]. This
issue is addressed in this study by considering 10 simulations with 10 different random
seeds, which encourages the exploration of the search space.

In this paper, three different optimization methods, i.e., Sequential Least Squares
Programming (SLSQP), a Genetic Algorithm (GA) and Differential Evolution (DE), are
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compared for calibrating the pipe roughness of WDS hydraulic models. Their performance
is investigated over four different decision variable set formulations where different num-
bers of decision variables are used to represent different levels of discretization of the
search space. The main contribution of this study is to provide guidance on the selection
of the combination of optimization methods and decision variable set formulations in
terms of defining decision variables when calibrating WDS hydraulic models. A real-
world pressurized irrigation system in Victoria, Australia has been selected as the case
study system.

2. Methods
2.1. Calibration Process

The hydraulic model calibration process used in this paper is demonstrated in Figure 1.
First, the original network model needs to be simplified to make sure only pipes that can
have an impact on the calibration process (e.g., pipes upstream of pressure sensors) are
selected to form the pruned network model. Other branches and pipes are removed to
reduce redundancy in the model. Second, the model calibration problem is then formulated
as an optimization problem to minimize the differences between field-observed and model-
predicted pressures at various monitoring sites by adjusting pipe roughness values. Third,
the optimization is conducted, and a final calibrated model can be then obtained.
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2.2. Model Simplification

The process of model simplification mainly involves selecting pipes and correspond-
ing roughness values that will have an impact on the readings of pressure sensors that
are used for model calibration. A pruned network will result in a reduced number of
pipes. The model simplification follows three steps. First, pressure sensor locations are
identified. Second, each pressure sensor in treed portions of the network is considered in
turn. If the pressure sensor in a treed portion of the network has no other pressure sensors
downstream, then all of the downstream pipes from that pressure sensor are removed from
the calibration. Changes in roughness values of these removed branched pipes would have
had no impact on the pressure sensor readings. Third, pressure sensors in looped portions
of the network are considered in turn. Pipes in each loop are retained in the calibration
process if they are upstream of at least one pressure sensor. In summary, all pipes down-
stream of a pressure sensor that will have no influence on the calibration are removed to
form the pruned network. When the pruned network model has been calibrated, calibrated
pipe roughness values will be assigned to those pipes that were deleted in the model
simplification process according to materials and diameters. The model simplification
concept has been considered in a number of studies such as Zanfei, Menapace, Santopietro
and Righetti [47]. Its application can save significant computational resources by reducing
the number of decision variables at the initial stage of model calibration.

2.3. Optimization Problem Formulation

The model calibration problem (i.e., calibration of pipe roughness) has been formulated
as an optimization problem. Considering a good measure of accuracy, the root mean
squared error (RMSE) has previously been widely considered in hydraulic model calibration
problems [4,48–50]. Although it may reduce the impact of extreme errors, the use of RMSE
is considered sufficient for the aim of this study which is to investigate the impact of the
combination of different optimization algorithms and decision variable set formulations on
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hydraulic model calibration. Therefore, the overall optimization objective is to minimize the
average of root mean square error (RMSE) values between the measured and the predicted
pressures at the different pressure monitoring sites, which is given by

min

[
1
N

N

∑
i=1

(RMSEi)

]
(1)

where N = the number of pressure sensors within the network. The individual RMSEi at
each pressure measurement site is given by

RMSEi =

√
∑T

t=1(po,t − pm,t)
2

T
(2)

where T = number of time steps, indexed t; po,t = field-observed pressure; and
pm,t = model-predicted pressure.

2.4. Decision Variable Formulations

In this paper, pipe roughness heights (ε in mm for the Darcy-Weisbach friction factor)
of different pipes (or groups of pipes) are regarded as the decision variables. In order to
identify appropriate pipe roughness values to better replicate the hydraulic responses in
real operations, four different ways (i.e., decision variable set formulations) for defining
the number of decision variables have been investigated (Formulations 1 to 4 in Table 1).
In this way, the impact of using different ways of grouping pipe roughness values on the
optimization results can be further investigated. In Formulation 1, the roughness value of
every single pipe in the pruned network is regarded as a decision variable, so the number
of decision variables is equal to the number of pipes in the pruned network. In Formulation
2, it is assumed that pipes that are constructed of the same material will have the same
roughness values. Therefore, the number of decision variables is equal to the number of
pipe material types in the network. This formulation would not be appropriate if there
was only one pipe material for the entire network under consideration. In Formulation 3,
besides pipe materials, pipe diameters have also been incorporated in defining decision
variables. For the same pipe material, it is assumed that pipes with the same diameters
have the same roughness values, as the pipe diameter has an impact on the Darcy-Weisbach
friction factor and potential biofilm growth (particularly in raw water delivery systems)
which may affect pipe roughness heights [51–53]. In Formulation 4, pipes are grouped
based on both their materials and velocities which are estimated based on the potential
maximum flow of each pipe under peak demand loading cases and known pipe diameters.
In other words, for pipes made from the same material, it is assumed that pipes with
the same or similar velocities have the same pipe roughness values and are grouped as
one decision variable. The pipe velocity has an impact on the Reynolds number when
calculating the Darcy-Weisbach friction factor.

Table 1. Four different ways of defining decision variables.

Decision Variable Set
Formulation No. Basis for Grouping Pipes

Formulation 1 Every pipe in the pruned network as an individual decision variable
Formulation 2 Pipe material
Formulation 3 Pipe material + Pipe diameter
Formulation 4 Pipe material + Pipe velocity under peak flows

2.5. Optimization Methods

The selection of optimization methods depends on the complexity of the problem,
the purpose of the model calibration, and the available packages or tools [4]. There is no
formal agreement on which optimization technique is better for a specific calibration prob-
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lem as trade-offs (e.g., performance and efficiency) often exist when comparing different
options [4]. In this paper, three different optimization methods have been considered and
compared. They are (1) a Sequential Least Squares Programming (SLSQP) algorithm, (2) a
Genetic Algorithm (GA) and (3) a Differential Evolution (DE) algorithm.

The Sequential Least Squares Programming (SLSQP) algorithm was established based
on the Han–Powell quasi-Newton method, and Lawson and Hanson’s non-negative least
squares (NNLS) nonlinear solver [54]. As an expansion of the quadratic programming
algorithm, SLSQP is commonly considered in the minimization problems subject to equality
or inequality constraints, such as the minimization problem that is subject to the lower
and upper bounds of pipe roughness values in this study. Considering its efficiency in
solving constrained nonlinear optimization problems [54], SLSQP was selected as a typical
gradient-based algorithm in this study.

Genetic Algorithms (GAs) and the Differential Evolution (DE) algorithm have been
used as global optimization methods to find the optimal solutions to this calibration prob-
lem. As a robust optimization algorithm [3], have the ability to handle real-world complex
networks, locate (near-) optimal solutions and easily incorporate additional decision vari-
ables and constraints [4,33]. Therefore, they have been widely used in the calibration of
WDS models. In a GA optimization process, solutions are selected based on Darwin’s
natural evolution principles [55]. In the model calibration process, an initial set of solutions
(e.g., pipe roughness values) are generated by the GA. Then, a hydraulic model simulates
the hydraulic grade line (HGL) (or nodal heads) and flows in each trial solution network
within the population of solutions. A fitness value is computed then for the set of solutions
based on the difference between the field measurements and the model-predicted results. In
the GA, the solutions are ranked according to the fitness values. The Differential Evolution
(DE) algorithm as one of the EAs was introduced by Storn and Price [56]. The DE algorithm
is considered as a robust global optimization algorithm to tackle large-scale continuous
optimization problems [56–59]. Additionally, DE algorithms converge well in comparison
with some other evolutionary algorithms [58]. The generation of a new solution in the DE
is the process of combining several solutions with the candidate solution [58].

For this study, the SLSQP is implemented using the Python-based optimizer SciPy.;
and the GA and DE are customized and implemented in the Python-based optimization tool
‘pymoo’ [60]. A Python wrapper ‘owa-epanet 2.2.4’ developed by Open Water Analytics [61]
was used together with the EPANET Programmer’s Toolkit [62] to link the optimizer to
the EPANET hydraulic model. In addition, all optimization runs were conducted on the
University of Melbourne’s Spartan High-Performance Computing (HPC) system, which
combines a high-performance bare-metal computing with GPGPUs for various uses. The
physical partition on Spartan HPC has 82 nodes equipped with 5904 cores (Intel(R) Xeon(R)
Gold 6254 CPU @ 3.10 GHz) in total. The maximum RAM per node is about 1483 GB.

2.6. Common Engineering Practice and Model Validation

Results (the objective function values) obtained using optimization methods are com-
pared to the engineering practice of selecting pipe roughnesses. Commonly used pipe
roughness values (according to pipe materials) by water utilities based on engineering ex-
perience have also been input into the hydraulic model to simulate pressures at monitoring
sites. Then, the objective function values (the average of RMSE values between observed
and simulated pressures) were then calculated and compared with the results obtained
using optimization methods.

Once a WDS hydraulic model has been calibrated, it is highly recommended to verify
the accuracy through a model validation process by comparing modeled results with field-
observed data from a different period of time [15,63]. Model validation is also an important
step to verify the reliability of the calibration process and validate the model performance,
which is not always considered in past calibration studies. In this paper, independent
validation data has been selected to perform model validation.
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3. Case Study System
3.1. System Overview

The Robinvale High-Pressure System (RVHPS) has been selected as the case study
system, which is managed by the local water authority Lower Murray Water (LMW) in
Victoria, Australia. The system is located on the south bank of the Murray River in north-
western Victoria, Australia, covering an irrigation area of about 2700 hectares [64]. The
major crop planted in this area is table grapes [65] which require a large amount of water
for irrigation and cooling, particularly during the peak season. Water is pumped from the
Murray River and delivered to customers by the Robinvale high-pressure pump station
predominantly for irrigation and some also for domestic and stock (D&S) water use.

The Robinvale irrigation network was fully pipelined with the commissioning of the
current system in October 2010. The layout of the system is shown in Figure 2. The current
system delivers water to approximately 244 irrigation outlets and 210 small-diameter D&S
outlets in the system. Irrigation water needs to be ordered in advance, while D&S water
may be used from any of the outlets in the network without an order.
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Water is pumped from the Murray River by the Robinvale high-pressure pump station
located in the northeast of the network. There is no water treatment plant or storage tank
within the system. The pumped water is delivered with a pressure head at the pump
station ranging from 80 m to 105 m via two DN1200 MSCL (mild steel cement mortar lined)
rising mains and a DN1400 GRP (glass reinforced plastic) main, and then distributed to
smaller pipes. The system is comprised of approximately 77 km of pipes with nominal
diameters ranging from DN80 to DN1400. Most of the pipes were installed in 2010 and
made of four types of materials including MSCL, GRP, DICL (ductile iron cement mortar
lined) and mPVC (modified polyvinyl chloride). In addition, the Robinvale high-pressure
pump station is comprised of five identical main pumps for delivering larger flows, and
four identical smaller jacking pumps to deliver lower flow rates and to re-pressurize the
system for transition purposes. All pumps in parallel are controlled by variable speed
drives (VSDs).

3.2. Existing Hydraulic Model

There was currently an uncalibrated EPANET hydraulic model available for the
system. The EPANET model consists of 433 pipes with pipe length ranging from 0.7 m to
1359 m. Pipe roughnesses may have changed over the years since 2010 due to the nature
of raw water delivery and the aging of pipes. Therefore, it was important to update and
calibrate the model first to improve its accuracy before the model could be used to develop
control strategies.

A number of updates to the existing EPANET model have been made before the
calibration process. These model updates include changes made to nodes, pipes and
pumps to reflect the configuration of the up-to-date network. The base demand and
demand pattern of each irrigation outlet is calculated individually to reflect the actual
water consumption during the calibration period. Moreover, a dummy PRV with simple
control rules has been added downstream of the pumps to simulate the measured system
pressures for the purpose of pipe roughness calibration.

3.3. Data Collection and Processing
3.3.1. Data Monitoring

In the Robinvale irrigation system, each irrigation outlet has a flow meter installed,
with the real-time irrigation flow data monitored remotely using a SCADA system. There-
fore, each outlet has a unique irrigation demand pattern during the calibration period. As
shown in Figure 2 above, there are six permanent pressure sensors installed in the system,
with one (Sys_Pres) located just out of the pump station and the other five (RTU1 to 5)
across the network. In addition, a permanent flow meter (Sys_Flow) was installed on each
of the two rising mains out of the pump station, measuring the total flow into the system.
In addition, the pressure sensor accuracy is ±0.2% (approximately ±3.2 kPa).

3.3.2. Selection of Calibration and Validation Period

Data collection over an extended period is suggested in the WDS model calibration
process to improve the model accuracy [29]. Additionally, the measured data is considered
to be satisfactory when the error in the measurement of head loss is considerably smaller
than the head loss itself [32,67]. Therefore, it is highly recommended to collect calibration
and validation data during periods with peak demands [2,15,63,67–69] when the head loss
is considered to be more sensitive to the variation in pipe roughness values. In addition,
monitoring data availability and quality should also be taken into account for data selection.
In this paper, 28 December 2019 has been selected as the calibration period, considering the
high demand and the good quality of both flow and pressure data. The model validation
period was selected as 19 December 2019 as one of the days that have the highest irrigation
water demands, with the second-best quality pressure and flow data.
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3.3.3. Data Pre-Processing

The data were pre-processed before the calibration process was carried out. First, all
measured pressure and flow data have been interpolated into a regular 1 min time step
which is smaller than the original interval of 144 s in the raw data. This makes the result
comparison easier and ensures the accuracy of data interpolation. Second, as the D&S
water consumption of each outlet is not measured in real-time, the total D&S demand is
estimated by subtracting the sum of the real demand of each individual outlet from the
total system flow observed at the pump station at each time step during the calibration
period. The individual D&S demand pattern of each outlet is assumed to be the same as the
total D&S demand pattern while the proportion of individual base demand is estimated
according to the manual meter readings for each D&S outlet in the three months when the
calibration period occurred. Figure 3 shows the time series of all categories of demands
for the calibration period. Third, the observed system pressures just downstream of the
pump station are replicated in the EPANET model as the initial condition to eliminate
the impact of pump operations on the calibration results, as the pipe roughness in this
paper is regarded as the main parameter to be calibrated. Further, through investigation,
monitoring errors have been identified and corrected at the five pressure monitoring sites
before calibration.
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Through a number of preliminary EPANET model simulation runs, large vertical shifts
between the field measurements and model-simulated pressures were identified at Pressure
Sensor Number 2 (RTU2), 3 (RTU3) and 5 (RTU5). Particularly for RTU2, the observed
Hydraulic Grade Line (HGL) was consistently about 10 m higher than the system HGL,
which warrants further error investigation. Theoretically, under a zero-flow condition, the
difference between the pressures of two nodes is expected to be equal to the difference
between the elevations of the two. Therefore, after making the comparison under several
historical static-pressure (near-zero flow) conditions, constant monitoring offset errors
were identified to be 0.2 m, −12.6 m, 3.0 m, 0.9 m and 3.5 m for RTU1 to 5, respectively.
Additionally, as the sensor elevations were surveyed and confirmed to be accurate, the
corresponding errors were corrected at the five RTU locations.

Similarly, the flow data for each demand category during the model validation period
has been obtained and processed, as summarized in Figure 4 below.
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3.4. Model Calibration
3.4.1. Calibration Process

The proposed calibration process in Figure 1 above has been applied to the case study
system. First, for the model simplification, pipes with roughness values that can impact
the pressures at the five monitoring sites (RTU 1 to 5 in Figure 2 above) are selected to
form the pruned network. For instance, pipes downstream of RTU 4 will not be selected
for calibration as their roughness values will not have an impact on the pressure readings
of this sensor. The original network with 433 pipes has been then simplified to a pruned
network with 126 pipes. Second, the optimization objective for this system becomes the
minimization of the average of the five RMSE values between the measured and the
predicted pressures with timesteps of 1 min at the five pressure monitoring sites.

3.4.2. Decision Variable Set Formulations

For the four different formulations for defining decision variables (DVs), 126 DVs,
4 DVs, 10 DVs and 34 DVs have been identified (see Section 2.4), respectively. In Formula-
tion 1, each pipe roughness value of the 126 pipes in the pruned network is regarded as
a decision variable. In Formulation 2, the pipe roughness values of 4 pipe materials are
regarded as 4 decision variables. In Formulation 3, there are 10 different combinations of
materials and diameters, which form the 10 decision variables. To identify decision vari-
ables for Formulation 4, five design demand patterns were used to simulate the potential
maximum pipe flows based on LMW operational rules and the system delivery capacity.
The average velocity of each pipe under the five demand patterns was used.

4. Results and Discussion

In this section, results from the three optimization methods and the four different
ways of defining decision variables are presented and compared. The optimization results
are then compared to the results obtained with pipe roughness values commonly used in
engineering practice. The calibrated model was then validated using independent data.

4.1. Model Calibration Results
4.1.1. Optimization Settings for Model Calibration

A total of 10 runs with different random seeds have been conducted for each com-
bination of the three optimization methods and four decision variable set formulations
(i.e., in total 120 optimization runs were conducted). In order to make a fair comparison of
results between different optimization methods, the same stopping (convergence) criterion
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was applied to the three methods. In this paper, the objective function tolerance f _tol [70]
which represents the precision goal of objective function values has been selected as the
stopping (convergence) criterion. When | f (xi)− f (xi+1)| < ftol = 10−6, the objective func-
tion is regarded as converged in each of the three optimization methods. The inequality
constraints for all methods and decision variable set formulations are set to be the lower
and upper bound of 0.01 mm and 20 mm, respectively, of potential pipe roughness height
values. The upper bound is much larger than common roughness values used in urban
water supply systems which deliver treated clean water. This is because the case study
system delivers untreated raw water from the Murray River, so that significantly larger
pipe roughness values may occur over time considering the potential impact of biofilm
growth [52,71].

Besides the constraints, another input parameter for the SLSQP is the initial guess
vector x0 for the decision variables. A random number generator has been used to generate
the initial x0 values within the given bounds (0.01, 20) mm for each run. For the GA and
DE, random seeds have also been used to specify the starting point of the initial population
in the search space. Other key parameters selected for the GA and DE are listed in Table 2.
These parameters include the population size (N) for both, the probability of crossover
(pc) and the probability of mutation (pm) for the GA, as well as the crossover rate (CR)
and the weighting factor (F) for the DE. For the GA, a series of sensitivity analyses were
conducted for choosing these parameter values. For the DE, the most common initial
settings have been chosen as suggested in the literature [72–74]. In addition, a parameter
control technique ‘dither’ [75] has been adopted for the DE in pymoo where F is selected
from the interval (0.5, 1.0) randomly for each individual vector [76]. This can significantly
improve convergence behavior.

Table 2. Parameters selected for the GA and DE.

Parameters Formulation 1
126 DVs 1

Formulation 2
4 DVs

Formulation 3
10 DVs

Formulation 4
34 DVs

GA
N 400 50 100 350
pc 0.7 0.7 0.7 0.7
pm 0.01 0.01 0.01 0.03

DE
N 400 100 100 340

CR 0.9 0.9 0.9 0.9
Initial F 0.8 0.8 0.8 0.8

Note: 1 DVs = decision variables.

In Section 4.1.1, results obtained from each of the optimization methods and formula-
tions are compared. Results (the objective function value) obtained from using common
pipe roughness values in engineering practice are also compared with results obtained
using optimization methods. In Section 4.1.2, a detailed comparison between field-observed
and model-predicted values at each of the monitoring sites is presented.

4.1.2. Model Calibration Results

The optimization results of the average values of the 10 runs (each with a different
starting random seed) for each optimization method and decision variable set formula-
tion are summarized in Table 3. The average of the objective function values and run
times of the 10 runs are also plotted in Figure 5. In addition, the average number of gen-
erations (iterations for SLSQP) and evaluations required for the 10 runs are also given
in Table 3. Full results of the 10 runs have been provided in Tables S1 and S2 in the
Supplementary Material.
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Table 3. Optimization results obtained from three optimization methods and four decision variable
set formulations.

SLSQP GA DE

Avg. of 10 Runs Avg. of 10 Runs Avg. of 10 Runs

Formulation 1:
126 DVs

Ave RMSE (m) 1.333 1.322 1.384
Run Time (h) 4.21 49.73 15.76

No. of generations 318 1155 250
No. of evaluations 39,980 462,000 100,000

Formulation 2:
4 DVs

Ave RMSE (m) 1.709 1.709 1.709
Run Time (h) 0.02 0.68 0.88

No. of generations 27 126 85
No. of evaluations 147 6280 8500

Formulation 3:
10 DVs

Ave RMSE (m) 1.468 1.468 1.468
Run Time (h) 0.08 4.38 2.38

No. of generations 69 406 224
No. of evaluations 770 40,550 22,400

Formulation 4:
34 DVs

Ave RMSE (m) 1.409 1.4 1.407
Run Time (h) 0.51 21.33 10.47

No. of generations 138 562 295
No. of evaluations 4825 196,840 100,300
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As shown in Figure 5, for each optimization method, trade-offs between the objective
function values and the run time are evident. The increase in run time can lead to a decrease
in objective function values. For the same optimization method, the objective function
value decreases with an increase in the number of decision variables. For instance, for the
GA method, the average of the 10 runs of the average of the five RMSE values decreases
from about 1.709 m to 1.322 m with an increase in the number of decision variables from 4
to 126 (i.e., the average of RMSE values: 4 DVs > 10 DVs > 34 DVs > 126 DVs). In addition,
for the same optimization method, the run time increases significantly with an increase
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in the number of decision variables. For example, also for the GA method, the run time
increases from about 0.55 h to 33.9 h with an increase in the number of decision variables
from 4 to 126 (i.e., run time: 4 DVs < 10 DVs < 34 DVs < 126 DVs).

For all three optimization methods, as shown in Figure 5, the average objective function
values for Formulation 2 (4 DVs) are the largest out of all decision variable set formulations,
which is followed by Formulation 3 (10 DVs) and Formulation 4 (34 DVs). The average
objective function values in Formulation 1 (126 DVs) are the smallest in comparison with
the other decision variable set formulations. Under the same decision variable set formula-
tion, very close objective function values are evident for all three optimization methods,
particularly in Formulation 2 (4 DVs), Formulation 3 (10 DVs) and Formulation 4 (34 DVs).
However, in Formulation 1 (126 DVs), DE results in a slightly larger objective function
value (about 1.384 m). In addition, under the same decision variable set formulation, SLSQP
always takes the least run time in comparison with the other two optimization methods.
In Formulation 2 (4 DVs), DE requires slightly more run time than the other two methods.
Nevertheless, in the other three decision variable set formulations, the GA takes the longest,
followed by DE and then SLSQP.

Results (the objective function values) obtained using the optimization methods have
also been compared to common values likely to be selected based on engineering judgment
in real-world practice. The common pipe roughness height values are taken as 0.15, 0.06,
0.06 and 0.015 mm for MSCL, DICL, GRP and mPVC pipes, respectively [77]. The objective
function value is calculated to be 4.099 m after applying these values to the case study
system. It is evident that the average of the five RMSE values is much larger than any of
the results obtained from using optimization methods.

4.2. Discussion of Model Calibration Results

Different pipe roughness values have been obtained from different decision variable set
formulations. In terms of a general trend, for Formulations 2 (4 DVs), large roughness values,
particularly for MSCL and GRP pipes, were obtained. For the other three decision variable
set formulations with higher numbers of decision variables, some unrealistic combinations of
pipe roughness values were obtained, despite limited improvement in the objective function
values. For further analysis, pipe roughness values obtained from Formulations 2 (4 DVs) and
Formulations 3 (10 DVs) are shown in Tables 4 and 5, respectively.

Table 4. Pipe roughness values obtained from Formulation 2 (4 DVs) with the SLSQP method.

Decision Variable No. DV1 DV2 DV3 DV4

Pipe Material MSCL DICL GRP mPVC

Run No. Roughness Values

1 10.62 0.44 2.91 0.01
2 10.65 0.44 2.91 0.01
3 10.59 0.44 2.91 0.01
4 10.60 0.44 2.91 0.01
5 10.63 0.44 2.91 0.01
6 10.63 0.44 2.91 0.01
7 10.62 0.44 2.91 0.01
8 10.63 0.44 2.91 0.01
9 10.60 0.44 2.91 0.01

10 10.60 0.44 2.90 0.01
Avg. 10.62 0.44 2.91 0.01
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Table 5. Pipe roughness values obtained from Formulation 3 (10 DVs) with the SLSQP method.

Decision Variable No. DV1 DV2 DV3 DV4 DV5 DV6 DV7 DV8 DV9 DV10

Pipe Material mPVC mPVC DICL DICL DICL DICL DICL GRP MSCL GRP

Nominal Diameter (mm) 300 375 375 450 500 600 750 1000 1200 1400

Run No. Roughness Values

1 0.01 20.00 0.01 0.01 12.54 4.47 0.01 1.98 11.02 1.56
2 0.01 20.00 0.01 0.01 17.08 4.43 0.01 1.41 11.31 1.56
3 0.01 20.00 0.01 0.01 18.84 4.46 0.01 1.28 10.96 1.56
4 0.01 20.00 0.01 0.01 13.71 4.48 0.01 1.82 10.87 1.57
5 0.01 20.00 0.01 0.01 17.03 4.46 0.01 1.44 10.87 1.58
6 0.01 20.00 0.01 0.01 14.59 4.48 0.01 1.71 10.94 1.57
7 0.01 20.00 0.01 0.01 12.81 4.49 0.01 1.93 11.01 1.57
8 0.01 20.00 0.01 0.01 15.03 4.46 0.01 1.65 11.07 1.56
9 0.01 20.00 0.01 0.01 14.44 4.47 0.01 1.74 10.93 1.56

10 0.01 20.00 0.01 0.01 13.20 4.46 0.01 1.89 11.04 1.55
Avg. 0.01 20.00 0.01 0.01 14.93 4.47 0.01 1.68 11.00 1.56

As shown in Table 4, large roughness values, particularly for MSCL and GRP pipes,
have been obtained using Formulation 2 with 4 DVs. This is a reasonable result, although
was unexpected initially. The system has been used to pump raw water from the River
Murray, there can potentially be significant growth of biofilms in pipes in the past ten
years. Biofilms are complex microbiological slime layers that aggregate microorganisms in
a polymer matrix [53,78]. They predominantly occur in raw or recycled water systems that
deliver water containing a high level of nutrients such as dissolved organic carbon (DOC)
in particular [52,53]. The Robinvale irrigation system carries raw water pumped from the
Murray River, which forms the environment for the growth of biofilms in pipes. The major
hydraulic impact imposed by biofilms is a dramatic increase in friction head loss [71,78,79],
as the roughness height values of pipes can increase significantly over time [52,71]. For
example, according to the results from a laboratory experiment [52], the roughness height
value increased from approximately 0.01 mm to about 6.8 mm in a relatively short period
(about 400 h).

When the number of decision variables is increased, for Formulation 3 with 10 DVs,
for example, it has been found that some unrealistic combinations of pipe roughness values
were obtained, as shown in Table 5. For instance, for DV1 and DV2 which have the same
pipe material (mPVC) in Table 5, a small change in the diameter from 300 to 375 mm leads
to significantly different pipe roughness values of 0.01 and 20 mm, respectively. In fact,
the roughness values of these mPVC pipes have a limited impact on the pressure sensor
readings. The algorithm tries to achieve a very slight improvement in the objective function
values by pushing the two roughness values to the two extreme ends (lower and upper
bounds). Hence, it is important to use engineering judgment to modify any anomalous
calibrated pipe roughness values that are the outcome of the optimization process.

The reason behind this is related to the fitness landscape [33] of the optimization
problem and the different levels of complexity resulting from different decision variable
formulations. The finer resolutions of the fitness landscape resulting from more decision
variables can potentially lead the search into local numerical optimums, which may not
have realistic pipe roughness values. In addition, the finer resolution of the fitness landscape
has a higher chance of leading to the phenomenon of equifinality [80,81], which refers
to that the same objective function value can be achieved by different combinations of
decision variables. This can also lead to unrealistic combinations of solutions with a slight
improvement in objective function values. For instance, the percentage of the average error
increases only about 0.5% when the number of decision variables increases from 4 to 126,
at a cost of generating a large number of unrealistic combinations of solutions with a much
longer run time. Additionally, the insignificant improvement in the relative error can be
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much smaller than the system or measurement errors, which can be 5% to 10% depending
on the system. Therefore, for this case study, the formulation of 4 decision variables is
sufficient to achieve a good level of calibration in a shorter run time without creating
unrealistic combinations of pipe roughness values. This finding is further confirmed by the
results obtained for Formulation 4 with 34 DVs and Formulation 1 with 126 DVs.

There are some insights obtained from the results and analysis above: (1) the use of
optimization methods has added value to the model calibration by making much better
results in comparison with that using common engineering practice (e.g., the objective
function has been decreased from around 4 m to less than 1.8 m); (2) the more complicated
(or the finer) problem formulations or the more advanced methods do not necessarily lead
to better results; and (3) when similar results (e.g., objective function values) are obtained
from different methods (e.g., decision variable formulation or optimization algorithm), a
simpler method should be selected. For the case of this study, Formulation 2 with 4 DVs and
the SLSQP optimization method is the best combination for pipe roughness calibration. The
results obtained from this combination of decision variable formulation and optimization
method are further evaluated using both calibration and validation data below.

Nevertheless, there are still limitations and room for improvement associated with this
study. First, the proposed methods and decision variable set formulations have been tested
on only one real-world network, and their application to other systems (e.g., networks with
more complex loops) needs to be investigated in future research to see if similar conclusions
can be drawn. In addition, further exploration of the mathematical model for different
decision variable set formulations can be considered in future research to better understand
the generation of unrealistic combinations of solutions with the increase in the number of
decision variables. Finally, in this study, the model is calibrated based on pressure data
while the demand is assumed to be fixed. The feasibility of the proposed methods and
decision variable set formulations can be further investigated in future research when
calibrating the demands and pressures at the same time.

In addition, optimized pipe roughness values obtained from Formulation 2 (4 DVs
with the SLSQP method) have been selected as input into the hydraulic model to calcu-
late the model-simulated results which are to be compared with field observations. The
minimum average of the five RMSE values from the five pressure sensor locations is
calculated to be 1.709 m. The field-observed HGL versus the model-predicted values at
two pressure monitoring sites (RTU 1 and RTU 5) as two examples are shown in Figure 6
below. In general, a good match between the modeled and the observed values of each
site has been achieved. Full results of the breakdown and comparison of the measured
and modeled values at each monitoring site are provided in Table S3 and Figure S1 in the
Supplementary Material.
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4.3. Evaluation of Formulation 2 (4 DVs) Using Validation Data

The breakdown of the average observed and modeled values, percentages, as well as the
individual RMSE value at each monitoring site during the validation period, is summarized
in Table 6. In this case, all the average differences between the modeled and observed HGL
are less than 1.5 m [9], which indicates a satisfactory level of validation has been achieved.

Table 6. Observed and simulated pressure data over the validation period at each monitoring site.

Pressure Monitoring Sites

Pressure
monitoring site

Average observed
HGL (m)

Average modeled
HGL (m)

Average
observed

pressure (m)

Average
modeled

pressure (m)

Average
difference (m)

Percentage
difference in

pressures
RMSE (m)

RTU1 145.80 145.55 75.06 74.81 0.26 0.34% 0.508

RTU2 139.98 138.01 70.95 68.98 1.47 2.77% 2.196

RTU3 128.27 127.23 66.36 65.32 1.04 1.57% 3.646

RTU4 137.60 137.66 74.86 74.92 −0.06 −0.08% 1.809

RTU5 128.77 128.03 59.15 58.41 0.74 1.24% 1.585

Avg. 1.949

Flow monitoring site

Flow monitoring
site

Average
observed flow (L/s)

Average
modeled flow (L/s)

Average
difference (L/s)

Percentage
difference RMSE (L/s)

Sys_Flow 3374 3379 −5 0.16% 31

The field-observed HGL and flows versus the model-predicted values at each pressure
monitoring site are shown in Figure 7 below. In general, a good match between the modeled
and the observed values of each site has been achieved. It has been noticed that there is
an evident mismatch between modeled and the observed HGL values before 10 a.m. for
RTU3. This can be potentially caused by anomalies (or equipment errors) that occurred in
the measurement process of pressures during this period.
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5. Summary and Conclusions

In this paper, three different optimization methods for hydraulic model calibration
are compared. These methods include Sequential Least Squares Programming (SLSQP), a
Genetic Algorithm (GA) and Differential Evolution (DE). Their performance is investigated
over four different decision variable set formulations, where different numbers of decision
variables are used to represent different levels of discretization of the search space. A
real-world pressurized irrigation system in Victoria, Australia has been selected as the case
study system.

It has been found that first for the same optimization method, an increase in the
number of decision variables can lead to a slight decrease in objective function values but
with a corresponding significant increase in run time. Second, for the same decision variable
set formulation, similar objective function values are evident for all three optimization
methods. SLSQP always takes the least run time in comparison with the other two methods.
In most cases, GA takes the longest run time, which is followed by DE. It can be inferred
that the objective function search space of this problem is relatively flat as both local and
global algorithms have converged for all three optimization methods and four decision
variable set formulations. Furthermore, different pipe roughness values have been obtained
from different decision variable set formulations. The increase in the number of decision
variables has led to some unrealistic combinations of pipe roughness values obtained,
despite limited improvement in the objective function values.

It is evident from the results obtained that formal optimization does improve WDS
hydraulic model calibration compared to setting pipe roughness values based on common
engineering judgment. The different ways to formulate the decision variable have a slight
impact on the performance of optimized solutions in terms of objective function values,
with more complicated formulation leading to slightly improved results. However, the finer
problem formulation does not necessarily lead to feasible solutions. A simpler formulation
that suits the case study system and the data available can be better. Further, different
combinations of decision variable formulations and optimization algorithms can lead to
very similar results. In this case, a simpler method is often better. Finally, in this study, some
large pipe roughness values have been obtained. This is very likely due to the significant
growth of biofilms in pipes in the past ten years, as the network supplies raw river water
that contains essential nutrients for excessive biofilm growth. Therefore, biofilm growth
should be a consideration in WDS hydraulic model calibration, particularly for systems
delivering untreated water.

There are also some issues that can be considered in future research. First, the proposed
methods and decision variable set formulations should be tested for other case study
systems, including networks with more complex loops. This would provide general
guidelines for the selection of a suitable combination of optimization algorithms and
decision variable set formulations for the WDS model calibration. In addition, further
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exploration of the mathematical model for different decision variable set formulations
could be considered in future research to better understand the generation of unrealistic
combinations of solutions with an increase in the number of decision variables.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w14203276/s1, Figure S1: (a) Comparison of the observed and
modeled system total flow during the calibration period; (b–f): Comparison of the observed and
modeled HGL at RTU1 to RTU5 during the calibration period; Table S1: Full optimization results
obtained from three optimization methods and four decision variable set formulations; Table S2:
The number of generations and evaluations required for all runs; Table S3: Observed and simulated
pressure data over the calibration period at each monitoring site.
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