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Abstract: Traditionally, water quality is evaluated using expensive laboratory and statistical proce-
dures, making real-time monitoring ineffective. Poor water quality requires a more practical and
cost-effective solution. Water pollution has been a severe issue, hurting water quality in recent
years. Therefore, it is crucial to create a model that forecasts water quality to control water pollu-
tion and inform consumers in the event of the detection of poor water quality. For effective water
quality management, it is essential to accurately estimate the water quality class. Motivated by these
considerations, we utilize the benefits of machine learning methods to construct a model capable
of predicting the water quality index and water quality class. This study aims to investigate the
performance of machine learning models for multiclass classification in the Langat River Basin water
quality assessment. Three machine learning models were developed using Artificial Neural Networks
(ANN), Decision Trees (DT), and Support Vector Machines (SVM) to classify river water quality.
Comparative performance analysis between the three models indicates that the SVM is the best model
for predicting river water quality in this study. In addition, there is a statistically significant difference
in performance between the SVM, DT, and ANN models at the 0.05 level of confidence. The use
of the kernel function, the grid search method, and the multiclass classification technique used in
this study significantly impacts the effectiveness of the SVM model. The findings bolster the idea
that machine learning models, particularly SVM, can be used to forecast WQI with a high degree of
accuracy, hence enhancing water quality management. Consequently, the model based on machine
learning lowered the cost and complexity of calculating sub-indices of six water quality parameters
and classifying water quality compared to the standard IKA-JAS formula.

Keywords: classification; machine learning; water quality index (WQI); Langat River Basin

1. Introduction

Water quality has been monitored by the Department of Environment (DOE) since
1978, primarily to set guidelines for detecting changes in water quality and identify sources
of pollution. Current water quality monitoring in Malaysia is based on the IKA-JAS. IKA-
JAS is used to measure the degree of pollution and classify water quality in accordance
with the National Water Quality Standard and the kind of water used. River water quality
in Malaysia is categorized into five classes based on IKA-JAS. IKA-JAS is used to measure
the pollution level and water use suitability as outlined by the National Water Quality
Standard (SKAN). IKA-JAS considers the six water quality parameters in the formula and
its calculations to produce a score value. The parameters are dissolved oxygen, biochemical
oxygen requirement, chemical oxygen requirement, ammonia nitrogen, suspended solids,
and pH. These parameters are obtained from water samples that have been analyzed to de-
termine water’s physical, chemical, and biological properties [1]. The score value obtained
will then be compared with the IKA-JAS water quality index range to determine the water
quality class. Water quality classification using the conventional IKA-JAS method will be
problematic when one of the water quality parameters has a missing value. Therefore,
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the calculation of the sub-index of water quality parameters cannot be performed. This
affects the aggregation of six sub-indices of water quality parameters to obtain IKA-JAS
score values. The WQI calculation procedure in Malaysia involves a lengthy calculation,
transformation, and application of various sub-index formulas for each water quality indi-
cator [2]. Traditional WQI computation, according to Ho et al. [3], is always accompanied
by inaccuracy induced by water quality parameter assessment. In addition, obtaining
and analyzing water samples takes a lot of time and work. Furthermore, determining the
size of certain factors by experimentation comes at a considerable expense. According to
Abba et al. [4], water quality evaluation is a multidimensional problem, and one of the
problems in water quality research is to reduce expenses and develop clever computer assis-
tance in analyzing water quality. Previous studies have suggested assessing water quality
using computational methods based on data mining algorithms and machine learning
techniques [5–10].

Previous research reveals that conventional water quality assessment by the mathe-
matical model WQI has drawbacks. The WQI mathematical model requires sophisticated
calculations to get a final index value. WQI computation includes parameter selection,
sub-index value generation, parameter weight generation, and index aggregation tech-
nique selection, and there is no universal standard approach. The water quality class is
determined by comparing this final index to the WQI range. Therefore, it can cause long
calculation times, costs, and errors in water quality classification. The next constraint is
the complex relationship between water quality measures and environmental elements
like human, industrial, and commercial operations, anthropogenic activities, and natural
processes. Previous research has proven this limitation based on WQI’s parameter selection
and number. Most researchers used standard approaches to model the water quality index.
Creating a WQI mathematical model in the environmental domain that covers all parameter
relationships is tough. Water quality has complex, non-linear interactions.

Machine learning is a data analysis tool that automates the creation of analysis mod-
els. It is a branch of artificial intelligence that focuses on machines learning from data,
detecting patterns, and making choices without human intervention [11]. Machine learning
dominates decision-making because it can automate complex tasks [12]. Artificial neural
network methods are increasingly used in water resource studies and environmental sci-
ence [13–15]. Khoi et al. [16] analyzed 12 machine learning algorithms. XGBoost accurately
predicts WQI, improving water quality management. Ma et al. [17] used machine learn-
ing to estimate total suspended solids (TSS) and chlorophyll-a (Chl-a) in the turbid Pearl
River Estuary (PRE). The study revealed that the ANN-based algorithm performed well.
Alqahtani et al. [18] compared individual supervised machine learning models with an
ensemble learning model for predicting river water salinity in the Upper Indus River Basin,
Pakistan. The study recommended using the RF model with specified key parameters
to assess and manage water quality. Ahmed et al. [19] used the ANN model to calculate
WQI for Sungai Kinta using 23 water quality parameters and a heuristic search. In [20],
the authors predicted WQI using a 7-23-1 network architecture, backpropagation training
algorithm, and a learning rate of 0.02 to produce the most accurate WQI predictions. The
findings show that ANN is a reliable method of relating water quality to land use, thus
integrating land use development with river quality management. In ref. [21], the authors
predicted Perak River Basin WQI in real-time using 25 water quality parameters without
BOD and COD. The study found that combining multiple neural networks improves WQI
prediction performance. A study by Chen et al. [11] used a linear regression model (LRM),
multi-layered perceptron neural network (MLP), and radial basis function neural network
(RBF-NN) for water quality prediction in the Johor River Basin. The results showed that
using the RBF-NN model can describe the behavior of water quality parameters more
accurately than the linear regression model. The effectiveness and performance of the RBF
method were also demonstrated in a study by Hameed et al. [22]. This study presents a
flexible structure of a Radial Basis Function (RBF) neural network (FS-RBFNN) and its ap-
plication for water quality prediction based on neuronal activity and reciprocal information
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(MI). The experimental results show that FS-RBFNN can be used to design RBF structures
that have fewer hidden neurons. Hence, the training time is also faster.

Machine learning algorithms have succeeded in the environmental domain because
of their ability to model complex relationships between variables. Although there are
numerous machine learning algorithms, researchers continue to face challenges, such as
determining which machine learning techniques should be used or are most appropriate
for a specific problem. Therefore, to fill the gap based on past studies, this study aims to
propose an approach based on machine learning techniques: the multiclass classification
model to classify water quality index. This methodology is expected to change the way
the classification of water quality index and water quality are monitored. Water quality
assessment has become an important issue in water resources management. Conventional
water quality assessment methods using WQI can be time-consuming and expensive, es-
pecially for complex datasets with multiple water quality parameters. Machine learning
techniques have the ability to cut down on computation time, costs, and errors in water
quality classification, water quality parameter forecasting, and water quality index fore-
casting. Machine learning is also considered an alternate technique for calculating the
water quality index, including several sub-indices [15]. In recent years, machine learning
approaches have been extensively utilized for river water quality assessment, including
the calculation of WQI. These techniques have proven to be effective modeling tools for
complicated non-linear processes in water resource studies. Each machine learning method
has advantages and disadvantages, and its behavior depends on the input factors of water
quality in the various research regions. Hence, a proactive approach is desperately needed
to address Malaysia’s water quality classification issues. For that purpose, an effective
prediction model based on machine learning can be implemented. Therefore, this study
aims to evaluate the performance of three machine learning algorithms on water quality
classification problems. A classification model was developed based on Artificial Neural
Network (ANN), Decision Trees (DT), and Support Vector Machine (SVM) to predict the
WQI of the Langat River Basin.

2. Study Area

The Langat River Basin is one of Malaysia’s most important river water catchment
basins, as shown in Figure 1. It is located in the state of Selangor. The Langat River Basin
spans an area of approximately 2409 km2 and is located between latitudes 2◦40′152′′ N
and 31◦60′152′′ N, and longitudes 101◦19′20′′ E and 102◦1′10′′ E [23]. The Titiwangsa
granite mountain range is located upstream of the Langat River Basin, where the Langat
River originates at Gunang Nuang and flows approximately 190 km through the states of
Selangor and Negeri Sembilan, as well as the Federal Territories of Putrajaya and Kuala
Lumpur, before entering the Malacca Strait. The river’s basin is drained by the Langat,
Semenyih, and Labu rivers. Meanwhile, the Langat River Basin’s upstream dams are
the Langat Dam and the Semenyih Dam. The two dams, Semenyih and Langat, in the
Langat Basin, might serve as drinking water reservoirs. Apart from these dams, there
are several ex-mining ponds scattered across the basin, particularly near the Paya Indah
Wetlands in Kuala Langat. The basin’s geography is described as both hilly and flat, with
an average elevation of 400–1440 m. The average elevation of the central basin is less than
200 m, followed by less than 100 m in the lower basin. The igneous rock underneath the
Langat River Basin is mostly granite. As a result, the basin’s geology is characterized as
Hawthornden Schist and Kenny Hill Formation (sandstone and phyllite). The primary soil
types in the hilly upstream, flat midstream, and downstream include Tanah Curam (steep
land), Rengan-Jerangan (urban land), and Tanah Gambut (peat soils). During the period
2005–2016, the average annual rainfall in the Langat River Basin ranged from 2043.68 to
2832.40 mm.
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Figure 1. Langat River Basin [23].

3. Research Methodology

The methodology of this study is divided into five phases, as shown in Figure 2:
(i) data collection and understanding of water quality data from the Langat River Basin is
obtained from the Malaysia Department of Environment and databases for the development
of the multiclass model in predicting water quality classes; (ii) data preparation involves
preprocessing data for minimizing or eliminating inconsistencies of data; (iii) multiclass
classification model development involves the development of multiclass machine learning
models to classify the water quality; and (iv) model evaluation involves the evaluation of
the water quality multiclass classification model.

Figure 2. The main phases of the study design.
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3.1. Phase I: Data Collection and Understanding

The Malaysia Department of Environment provided water quality data for the Langat
River Basin for this study. The parameters used to analyze and evaluate water quality
can generally be divided into physical, chemical, and biological parameters. Physical
parameters include color, temperature, taste, odor, turbidity, and water solids suspended
in water. Chemical parameters include dissolved oxygen, acidity, pH, and alkalinity,
biochemical oxygen requirements, chemical oxygen requirements, ammonia nitrogen,
electrical conductivity, total solids, and other pollutants. In contrast, biological parameters
include bacteria such as fecal coliforms and algae.

The Langat River Basin raw water quality dataset is a time-series dataset. This raw
dataset has a total of 560 records and 46 attributes taken from fourteen monitoring stations
recorded over five years, from January 2012 to December 2016. The information related to
the 46 attributes is divided and described as follows.

Table 1 shows a list of attributes that contain information related to the monitoring
station where the raw water quality dataset was obtained. Table 1 also presents the
attributes of the sub-index of parameters used in calculating the Water Quality Index-
Department of Environment (WQI-JAS) formula for water quality assessment.

Table 1. WQI-JAS attributes.

Attributes Description Data Type

STATES State Nominal
BASIN Basin Nominal
LATITUDE Latitude Nominal
LONGTITUDE Longitude Nominal
WKA Basin code Integer
STA NO Monitoring station number Nominal
RIVER The river Nominal
SMP-DAT Date the water sample was taken Date
DO INDEX Dissolved oxygen sub-index Real
BOD INDEX Sub-index of biochemical oxygen requirements Integer
CODE INDEX Sub-index of chemical oxygen requirements Integer
AN INDEX Ammonia nitrogen sub-index Integer
SS INDEX Suspended solids sub-index Real
PH INDEX Sub-index of pH Real

WQI The aggregation of sub-indices to a single value
of WQI represents the water quality index Real

Note(s): The six water quality parameter attributes used in the WQI-JAS formula are: DO, BOD, COD, SS, AN,
and pH, which are chosen by an expert panel using Opinion Poll WQI to assess the water quality class of rivers in
Malaysia. Meanwhile, the four attributes, STA NO, RIVER, SMP-DAT, and WQI, represent the monitoring station
information and water quality index score value.

3.2. Phase II: Data Preparation

Data preparation begins with data exploration using data preprocessing techniques to
better comprehend the study’s datasets. There are several data preprocessing techniques
used in the study. The basis of data preprocessing is a descriptive statistical analysis that
helps study the general characteristics of the data and identify the presence of noise or
outliers. Next, data cleaning can eliminate noise and inconsistencies in the data. Data
transformations such as normalization can help improve the accuracy and efficiency of
machine learning algorithms [24]. At the same time, data visualization is very helpful in
visually inspecting data using plot graphs.

The Langat River Basin water quality dataset used in this study has a dimensional
space of 560 rows and 10 columns. There are seven rivers in the Langat River Basin: Langat;
Semenyih; Lui; Pajam; Value Bar; Jijan; and Pumpkin Stems, which are the locations where
monitoring stations are located, and river water samples are collected.

Identifying the data type for each attribute is important because data are obtained in
various formats and types. Table 1 shows a list of data types for each attribute in the initial
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dataset that will be analyzed statistically and descriptively in the next process. Descriptive
statistical analysis of the data can better describe the data and help to understand the main
features of the data distribution. The characteristics of the dataset used in the study can be
understood through measures of central tendency such as mean, median, and mode; and
measures of data dispersion such as range, quartile, variance, and standard deviation. This
descriptive statistical summary technique can be used to handle data for machine learning
tasks such as identifying data properties and highlighting values identified as noise data,
missing data, or outliers [25]. Table 2 shows a descriptive statistical analysis of six attributes
from the initial dataset representing the water quality parameters used in calculating the
WQI-JAS formula. The Missing Value column means no data value is recorded for the
attribute in the observation. Missing data is a common phenomenon and can significantly
impact the conclusions drawn from the data [26]. The Minimum and Maximum columns
represent the minimum and maximum values in the study dataset, while the Mean (µ)
columns are the average values of the attributes.

Table 2. Descriptive statistics of water quality parameters.

Parameters Missing Value Minimum Maximum Min Standard Deviation

DO 0 11.5 154.3 75,787 21,062
BOD 2 1 43 8582 5701
COD 1 2 167 26,648 17,396

SS 3 0 821 62,864 78,208
pH 0 3.8 8.5 7124 0.568
AN 0 0.005 13.2 1.7 2126

The collection and storage of water quality data from in situ monitoring stations as well
as those sent for analysis in the laboratory are highly vulnerable to noise data, missing data,
as well as incomplete and inconsistent data. Low-quality data will result in low-quality
data mining results as well. The data cleaning process cleans up data by filling in missing
values, smoothing out noise data, identifying or removing external elements, and resolving
inconsistent data problems.

Data recorded from laboratory work carried out by different individuals or teams can
result in errors such as multiple copies, data redundancy, repetitive data, and inconsisten-
cies. This recurring data was removed through a data cleansing process, and the current
total of the initial dataset is 553 records.

Raw data is rarely cleaned and often has corrupted or missing values. Therefore, it is
important to identify, mark, and handle missing data before implementing the machine
learning model development phase [27]. This process is important to get the best model
performance. A total of 5 records out of 553 initial dataset records will be deleted through
the data cleanup process. These records were removed from the initial dataset because the
number of missing value records was small, and less than 5% of the water quality samples
were obtained. In addition, missing data from BOD, COD, SS, and WQI attributes will
affect the water quality classification model to be developed.

In data transformation, data is transformed or consolidated into a suitable form for the
data mining process [28,29]. In order to transform data beyond the initial dataset, attribute
construction and normalization are required. In this study, a new attribute was derived
from the initial dataset’s attributes in order to facilitate data mining.

The CLASS attribute is a newly formed attribute derived from the WQI attribute. This
feature represents the water quality class in the Langat River Basin at a particular location
and time. Table 3 thoroughly defines the CLASS attribute as a nominal-type output variable,
four class labels, and the number of records associated with each class. The definition of
representation refers to the class of water and the suitability of the type of water used as
outlined by the National Water Quality Standard (SKAN).
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Table 3. Description of the CLASS attribute.

Data Type Label Number of Records Definition of Representation

Nominal

I 28 CLASS I = Water Supply I/Fisheries I
II 169 CLASS II = Water Supply II/Fisheries II
III 319 CLASS III = Water Supply III/Fisheries III
IV 32 CLASS IV = Irrigation

Amount 548

Table 3 is based upon the number of CLASS attribute records representing water
quality in the Langat River Basin from January 2012 to December 2016. The CLASS
attribute as an output or target variable referred to as a label in a classification model for
water quality will be created utilizing 548 water quality dataset records. Consequently,
based on the obtained label values, namely CLASS I, CLASS II, CLASS III, and CLASS IV.
Since there is more than one class attribute, this study is a multiclass classification problem.

The data normalization process involves scaling the six attributes of water quality
parameters into a small range of values due to the measurement of water quality parameters
in different units. The normalization method introduced by Hameed et al. [22] will be
used in this study by setting the minimum value of the normalized data set to 0.1 and the
maximum value normalized to 0.9. This data normalization method was chosen because
the environment of the study area used is almost similar to the current study and tends to
give better results with high-performance accuracy.

Data normalization was performed according to the following Formula (1):

Xnew = (Xmax – Xmin)
X− Xmin

Xmax – Xmin
+ Xmin (1)

Based on Formula (1), Xnew is the normalized value of the original attribute, X is the
original data point, and Xmin and Xmax are the minima and maximum values in the dataset.

Since the focus of the study was on water quality assessment based on the water quality
parameters used in the calculation of the WQI-JAS formula, only the attributes related to
WQI-JAS were selected, which are DO, BOD, COD, SS, pH, and AN. Four attributes have
been eliminated during the attribute reduction step: STA NO, RIVER, SMP-DATE, and
WQI. The initial filtered water quality dataset was reduced from ten to six attributes. In the
next phase, a dataset of 548 records will be used as a training and test dataset in developing
a multiclass classification model for water quality classification.

3.3. Phase III: Multiclass Classification Model Development

The algorithms that have been used in previous studies for water quality assessment
have their strengths and limitations. Therefore, based on the previous studies that have been
described, the ANN, DT, and SVM algorithms were selected to perform the classification
task on the Langat River Basin water quality dataset used in this study. The ANN algorithm
was chosen because of its ability to model non-linear and complex relationships between
input and output variables or where relationships between input variables are difficult
to understand [29], especially when involving water’s physical, chemical, and biological
parameters. The DT algorithm was chosen because it is a classification technique that is
easy to understand and widely used. In addition, it is appropriate to train the dataset used,
where memory usage is minimized, making it a time-saving and cost-effective approach for
water quality classification [3]. Next, the SVM algorithm was chosen because it can model
non-linear relationships between input variables. It uses non-linear mapping to transform
the original training data to a higher dimension. It works by classifying data into different
classes by finding the optimal separator hypersometric. The optimal separator hyperplane
separates the training data into classes and maximizes the distance to the nearest point
from one of the classes. As a result of maximizing the margin between the two classes on
the training data, the classification performance is better on the test data, thus achieving



Water 2022, 14, 2939 8 of 20

maximum generalization [30]. SVM is also the most commonly used data mining algorithm
for water quality assessment. It is a powerful alternative to artificial neural networks in
predicting water quality in non-point-source polluted rivers [5].

Three algorithms (i.e., ANN, DT, and SVM) have been developed to find the best
classifier for the Langat River Basin water quality assessment. Figure 3 shows the exper-
imental design for the multiclass classifier used in this study. The model development
involves: (1) dividing the data into training and testing sets using the cross-validation
method; (2) selecting an algorithm for the classification model; (3) the model parameters
optimization; and (4) training and evaluating the model. Based on Figure 3, three multiclass
classifiers will be developed and evaluated to determine the best classifier. This study
will employ the search grid method to identify the best parameters for the classification
model to optimize the model’s performance. Whereas the performance of each classifier is
measured using k-fold cross-validation, where k = 10.

Figure 3. Experimental design of a multiclass classification model.

3.3.1. Neural Network Settings

Neural networks consist of a set of interconnected layers. The first layer is the input
layer and is connected to the output layer by an acyclic graph consisting of weighted
sides and nodes. Between the input and output layers, there is a hidden layer where the
prediction task can be performed easily with only one or several hidden layers. In general,
neural network classification requires a labeled dataset containing labeled columns. The
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labeled datasets act as inputs to train the model. Values are calculated at each node in the
hidden layer and at the output layer to calculate the network output for a particular input.
The value is set by calculating the weighted sum of the node values from the previous layer.
The activation function is then applied to that weighted amount.

According to Sani et al. [11], the choice of network type relies on the problem being
solved. Backpropagation algorithms are commonly used to train neural networks. This
exercise is usually performed by updating the weights iteratively based on the error signal.
The error is calculated in the output layer as the difference between the true class and the
actual output value multiplied by the gradient of the sigmoid activation function. Then, the
error signal is propagated back to the bottom layer. Therefore, backpropagation is a gradient
descent algorithm that tries to minimize each iteration’s error. The learning algorithm
adjusts the network weights so that the error decreases along the descending direction.

The neural network algorithm used in this study is based on a multi-layer feed-forward
neural network trained with stochastic gradient decrease using backpropagation. As shown
in Table 4, the developed ANN model has three parameters configured to find the optimum
value. The grid search method was used to obtain the best parameter settings for the
ANN model.

Table 4. ANN model parameter settings.

No. Parameters Description Grid Search Range

1 activation The activation function (nonlinearity)
used by neurons in the hidden layer

{Tanh, Rectifier,
Maxout, ExpRectifier}

2 learning_rate
A parameter that measures the magnitude
of the weighting update to minimize the
network loss function

{0.01–1.0}

3 rate_annealing
The learning rate of annealing reduces the
learning rate to be trapped into the local
minimum in the optimization space

{0.01–1.0}

3.3.2. Decision Tree Settings

The basic idea behind the decision tree is to use a divide-and-conquer approach. The
decision tree (DT) algorithm can address binary or multiple class classification problems
and can be represented in the form of a tree structure. Each tree node can be a leaf node or a
decision node. The leaf node denotes the value of the target attribute or class. For multiclass
classification problems, leaf nodes can refer to one of the relevant N classes. The result node
determines the number of tests performed on one attribute from an existing observation by
generating one possible branch of that test. The process of classifying specific data through
a result tree begins by evaluating the test contained in the root node or result node. It
moves through it up to the leaf node, which determines the classification of the data. In this
study, the DT model to be developed has several parameters that need to be configured. As
shown in Table 5, four parameters in the DT model will be set to find the optimal value.
The grid search method was used to obtain the best parameter settings for the DT model.

Table 5. DT model parameter settings.

No. Parameters Description Grid Search Range

1 criterion Selects the criteria by which attributes will
be selected for separation

{information_gain,
gain_ratio, gini_index}

2 apply_pruning The decision tree model can be pruned
after generation {true, false}

3 confidence
This parameter determines the level of
confidence used for the calculation of the
pessimistic pruning error

{1.0 × 10−7–0.25}
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Table 5. Cont.

No. Parameters Description Grid Search Range

4 minimal_gain The minimum value that must be reached
to separate nodes {0.0–0.3}

3.3.3. Support Vector Machine Model Settings

According to Haixiang et al. [31], the quality of SVM parameter selection and kernel
functions affects the performance of the SVM model. Therefore, the appropriate value of
the kernel function and its parameters should be selected to obtain optimal classification
performance. Once the appropriate kernel functions and their parameters have been
obtained, then the prediction errors of the SVM model can be minimized. In this study, the
developed SVM model has three parameters that will be configured to find the optimal
value as shown in Table 6. The grid search method was used to obtain the best parameter
settings for the SVM model

Table 6. SVM model parameter settings.

No. Parameters Description Grid Search Range

1 kernel_type SVM kernel functions

{dot, radial, polynomial,
neural, anova,
epachnenikov, gaussian
combination}

2 C SVM complexity constant that sets the
tolerance for misclassification {1.0–100.0}

3 polynomial by
binomial classification

Build a polynomial classification
model through binomial classification {1 against all, 1 against 1}

3.4. Phase IV: Multiclass Classification Model Evaluation

The prediction model’s performance was evaluated by comparing the values of accu-
racy, precision, recall, and F1-Score. Those values were calculated based on the confusion
matrix. Prediction results and actual class were put in a matrix for comparison depending
on a positive and negative value. Confusion matrices have two types of errors: Type I
and Type II. A Type I error is also known as a false positive, and a Type II error is known
as a false negative. For a multiclass problem with a number of classes k, the size of the
confusion matrix is Nkxk. The confusion matrix can represent the classification results, as
shown in Table 7.

Table 7. Multiclass confusion matrix.

Predicted

True
k 1 2 . . . n

1 C1.1 C1,2 . . . C1,k
2 C2.1 In, j . . .

. . . . . . . . . . . . . . .
n Ck,1 . . . . . . Ck,k

Based on Table 7, where k = {1, 2, . . . , n} while each element Ci, j represents the number
of tuples predicted to be class i but belong to class j. At the same time, the sum of all the
elements in the confusion matrix is equal to the sum of the N samples given to the classifier.
From the confusion matrix of the various classes, the number of true positive predictions of
TP for each class k is given by Equation (2):

TPk = Ck,k (2)
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where k is a reference to an individual class.
Next, the number of false negative predictions of FN (Type II error) for each true class

k can be obtained based on the following Equation (3):

FNk =
n

∑
i=1,i 6=j,j=k

Ci,j (3)

where n = total number of classes, i = predicted class row, and j = correct class column.
The number of true negative predictions of TN for each class k can be calculated

according to the following Equation (4):

TNk =
n

∑
i=1, i 6=k

n

∑
j=1, j 6=k

Ci,j (4)

Next, the number of false positive predictions of FP (Type I error) for each class k is
given by the following Equation (5):

FPk =
n

∑
j=1, j 6=i,i=k

Cj,i (5)

The experiment results of ANN, DT, and SVM are recorded and analyzed to see the
performance of each multiclass classification model. These multiclass classification models
were developed to classify four class labels, namely ‘CLASS I’, ‘CLASS II’, ‘CLASS III‘, or
‘CLASS IV’, for water quality assessment of the Sungai Langat Basin.

Three classification algorithms are compared in this study, which are ANN, DT, and
SVM. Each classifier is tuned using different tuning parameters to produce highly accurate
results. This study utilized the search grid approach to determine the optimal parameters
for the classification model to optimize the model’s performance. A series of experiments
were conducted to get the optimal values of each classifier. The performance between
the three classifiers is then evaluated and compared. Table 8 shows the optimum param-
eter setting after the model parameter optimization experiment for the ANN, DT, and
SVM. The investigation revealed that the optimal ANN parameters are the activation
function = rectifier, learning rate = 0.2, and annealing rate = 0.5. Meanwhile, for the DT
model settings, the experiment showed the gini_index is the criteria that determines the
separation of attributes, with the minimum value to separate the node being 0:09 and the
confidence value being 0.12500005. Additionally, Table 8 shows the optimum parameter of
the SVM model, in which the kernel function for the model is the linear function, while the
constant complexity C is set as 100.0. The parameter polynomial by binomial classification
is used to expand from binary to multiclass classification, and the technique 1 against 1 has
been selected.

Table 8. Parameter setting results for the ANN, DT, and SVM model.

Parameter Parameter Optimum Machine Learning Model

activation Rectifier
ANNlearning_rate 0.2

rate_annealing 0.5

criterion gini_index

DT
apply_pruning false
confidence 0.12500005
minimal_gain 0.09

kernel_type dot
SVMC 100.0

polynomial by binomial lassification 1 against 1
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Table 9 shows the results of TP, FP (Type I error), TN, and FN (Type II error) values
for each predicted class. Based on Table 9, the ANN model correctly classified the data
with the true positive (TP) values represented by TPI, TPII, TPIII, and TPIV, where TPI = 14,
TPII = 163, TPIII = 301, and TPIV = 22, according to Equation (2). Meanwhile, the DT model
correctly classified the data at the TP rate as TPI = 16, TPII = 146, TPIII = 307, and TPIV = 21.
Furthermore, the SVM model correctly classified the TP rate with TPI = 22, TPII = 158,
TPIII = 305, and TPIV = 23.

Table 9. Confusion matrix for ANN, DT, and SVM.

True
CLASS I II III IV

Predicted

I 14ANN; 16DT;
22SVM

1ANN; 3DT;
2SVM

0ANN; 0DT;
0SVM

0ANN; 0DT;
0SVM

II 14ANN; 12DT;
6SVM

163ANN;
146DT; 158SVM

17ANN; 11DT;
12SVM

0ANN; 0DT;
0SVM

III 0ANN; 0DT;
0SVM

5ANN; 20DT;
9SVM

301ANN; 307DT;
305SVM

10ANN; 11DT;
9SVM

IV 0ANN; 0DT;
0SVM

0ANN; 0DT;
0SVM

1ANN; 1DT;
2SVM

22ANN; 21DT;
23SVM

Based on the confusion matrix results shown in Table 9, the rate of TP for models
ANN, DT, and SVM is compared and analyzed in the graph, as shown in Figure 4. The
model that reaches the highest TP for ‘Class I’ is the SVM model, with a TP of 22 correctly
classified versus the DT model of 16, followed by the ANN model of 14. The next model to
reach the highest TP for ‘Class II’ is the ANN model with 163 correctly classified versus the
SVM model of 158, followed by the DT model of 146. On the other hand, the highest TP for
‘Class III’ is the DT model, with the TP of 307 correctly classified versus the SVM model of
305, followed by the ANN model of 301. While the model to reach the highest TP for ‘Class
IV’ is the SVM, with a TP of 23, versus the ANN model of 22, followed by the DT model
of 21.

Figure 4. Comparison of TP between NN, DT, and SVM models.

Table 10 compares the three models’ TP, FP (Type I error), and FN (Type II error). The value
of FN (Type II error) for each true class can be calculated according to Equations (3) and (5),
respectively, by adding all the classification errors in the respective class column. Table 10
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shows that for the ANN, the value of FN (Type II error) and FP (Type I error) is 48. While
for the DT, the value of FN (Type II error) and FP (Type I error) is 58. Whereas for the
SVM, the value of FN (Type II error) and FP (Type I error) is 40. In contrast, each class’s
true negative (TN) can be calculated by following Equation (4). As for the comparison of
the three models, the model to reach the highest TP is the SVM, with a total number of
TP of 508 correctly classified as compared to the ANN of 500 and followed by model DT
of 490. The results show that the SVM classifier performs better in classifying data into
different classes.

Table 10. Comparison of TP, FP (Type I error), and FN (Type II error) between ANN, DT, and
SVM models.

ANN DT SVM
CLASS TP FP FN TP FP FN TP FP FN

I 14 1 14 16 3 12 22 2 6
II 163 31 6 146 23 23 158 18 11
III 301 15 18 307 31 12 305 18 14
IV 22 1 10 21 1 11 23 2 9

Total 500 48 48 490 58 58 508 40 40

In order to select the best model, the confusion matrices were used to measure accuracy,
precision, recall, and F1-Score by using macro average and micro average approaches.
ROC curves are also a good method for evaluating models, but the classification model
developed in this study is based on an imbalanced dataset; consequently, the ROC curve is
not a good visual representation of imbalanced data because decision thresholds are not
explicitly depicted in the ROC curve, and the distinction between the models is difficult
to define [32]. Consequently, we present the total performance of classification models
using macro-averaged scores to avoid bias for major categories in the imbalanced data
associated with micro-averaged scores. This is because we are particularly concerned
with the performance of minor categories. Macro averaging assumes all classes are equal
and important, while micro averaging favors a larger class. Because of the imbalanced
data, macro averaging is used to evaluate the performance of the classifier model for each
class, while micro averaging is used to evaluate the performance of the classifier model
as a whole. The macro averaging and micro averaging of accuracy, precision, recall, and
F1-Score can be calculated according to the following Equations ((6)–(13)):

Micro Average Accuracy =
∑n

k=1 TPk

N
(6)

Micro Average Precision =
∑n

k=1 TPk

∑n
k=1(TPk + FPk)

(7)

Micro Average Recall =
∑n

k=1 TPk

∑n
k=1(TPk + FNk)

(8)

Micro Average F1− Score = 2 ∗ Micro Average Recall ∗Micro Average Precision
Micro Average Recall + Micro Average Precision

(9)

Macro Average Accuracy =
∑n

k=1
TPk+TNk

TPk+FNk+FPk+TNk

n
(10)

Macro Average Precision =
∑n

k=1
TPk

TPk+FPk

n
(11)

Macro Average Recall =
∑n

k=1
TPk

TPk+FNk

n
(12)
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Macro Average F1− Score = 2 ∗
∑n

k=1
Recallk ∗ Precisionk
Recallk+Precisionk

n
(13)

Table 11 shows the performance of ANN, DT, and SVM based on the accuracy (Acc),
precision (Pr), recall (Rc), and FI-Score (F1) using macro and micro averaging. The model
that provides predictions with higher accuracy, precision, and recall can perform the
classification task.

Table 11. Performance of ANN, DT, and SVM models based on the accuracy (Acc), precision (Pr),
recall (Rc) values, and F1-Score (F1).

CLASS
ANN DT SVM

Acc Pr Rc F1 Acc Pr Rc F1 Acc Pr Rc F1
(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

I 97.26 93.33 50 65.12 97.26 84.21 57.14 68.08 98.54 91.67 78.57 84.62
II 93.25 84.02 96.45 89.81 91.61 86.39 86.39 86.39 94.71 89.77 93.49 91.59
III 93.98 95.25 94.36 94.80 92.15 90.83 96.24 93.46 94.16 94.43 95.61 95.02
IV 97.99 95.65 68.75 80.00 97.81 95.45 65.62 77.77 97.99 92.00 71.88 80.70
Macro averaging 95.62 92.06 77.39 82.43 94.71 89.22 76.35 81.43 96.35 91.97 84.89 87.98
Micro averaging 91.24 91.24 91.24 91.24 89.42 89.42 89.42 89.42 92.7 92.7 92.7 92.70

Figure 5 shows a comparison graph of model performance based on the percentage of
prediction accuracy, precision, recall, and F1-Score. The micro averaging accuracy shows
that SVM produces the highest micro accuracy of 92.7% compared to the ANN at 91.24%
and the DT at 89.42%. The same value for micro accuracy, micro precision, micro recall,
and micro F1-Score of each model, where Acc = Pr = Rc = F1, is shown in Figure 5.

Figure 5. Macro average percentage vs. micro average percentage.

Results of Pr micro and Rc micro are the same with precision micro when each data
point is only given to one class. This can be explained where the count value Pr micro and
Rc micro by Equations (7) and (8), and the rate of TP, FP (Type I error), and FN (Type II
error) for all label classes must be known in advance (refer to Table 10). Therefore, when
a data point from one class label is predicted, if the result is a false positive FP (Type I
error), then there will be a false negative FN (Type II error) and vice versa. For example, if
the label ‘CLASS I’ is predicted and the true class label is ‘CLASS II’, then the prediction
result or ‘CLASS I’ is false positive FP (Type I error) and false negative FN (Type II error)
or ‘CLASS II’. If the prediction is correct, the ‘CLASS I’ is predicted, and the class label is
‘CLASS I’, the results of the prediction are true positive TP.

Referring to Figure 5, SVM again shows the highest macro accuracy of 96.35% com-
pared to the ANN and DT models. Additionally, SVM shows the highest macro precision of
91.97%, macro recall of 84.89%, and micro F1-Score at 87.98% (refer to Figure 5) compared
to the ANN and DT models. The macro accuracy of ANN was at 95.62%, supported by the
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macro precision at 92.06%, macro recall at 77.39%, and macro F1-Score at 82.43%. Next,
the macro accuracy of DT results at 94.71% is supported by the macro precision at 89.22 %,
macro recall at 76.35%, and macro F1-Score at 81.42%.

Statistical Significance Tests

Comparing the machine learning algorithms and selecting the best model is a common
process in the machine learning task. In this study, the performance of algorithms is
compared using statistical tests, namely the paired corrected t-test on 548 instances of water
quality data. The ANN, DT, and SVM classifiers were evaluated against the water quality
data sets with a significant level of 0.05 (95%). In the t-test, ANN is used as a baseline
model. For the comparison with DT and SVM, 10-fold cross-validation is used.

From Table 12, the algorithm ANN, as the baseline for comparison, is marked as
(1) and has an accuracy of 95.62%. These results are compared with the DT algorithm
marked as (2) and the SVM algorithm marked as (3). The symbol ‘*’ next to the DT result
indicates that the result is different from the ANN result, but the score is lower. In contrast,
the symbol ‘v’ next to SVM showed that the SVM results are larger than ANN, and the
difference is significant, with an accuracy of 96.35%. This shows that the SVM is the best
multiclass classifier and is statistically significant at a 0.05 confidence level.

Table 12. The paired corrected t-test results. * indicates that the result is different from the ANN.

Tester Paired Corrected t-Test

Analyzing Percent_correct
Dataset 1

Result sets 3
Confidence 0.05 (two tailed)

Date 15/01/2020
Dataset (1) ANN (2) DT (3) SVM

Water quality 95.62 94.71 * 96.35 v
(v / / *) (0/0/1) (1/0/0)

4. Discussions

This study examines the use of machine learning algorithms for multiclass classifica-
tion models in assessing water quality in the Langat River Basin. A set of water quality data
for a period of five years (2012–2016) were used in this study. Three series of experiments
were conducted using a neural network algorithm, a decision tree algorithm, and a support
vector machine algorithm with six water quality parameters as model input, as well as four
WQI class labels as the target output.

In this study, the outcomes revealed that three machine learning models perform
well in predicting the WQI; however, SVM is the most accurate model developed using
a small dimensional space of 560 rows and 10 columns of dataset. According to previous
studies [5,33,34], the SVM is an efficient method and has outperformed artificial neural
networks in many studies related to the classification of water quality data. In prior studies,
the SVM algorithm effectively predicts water quality using small datasets, whereas the
ANN approach is superior for large, high-dimensional datasets. Moreover, it is necessary
to specify a kernel function of good quality to achieve an SVM with high classification
accuracy. The experimental results show that for the stated SVM parameter setting, the
linear kernel is found to be the best choice for the classification process. In this study, the
model used the kernel function to map input data into the high-dimensional feature space
and find the optimum hyperplanes to separate the two data classes. The experimental
results also show that the SVM model can achieve the highest performance using the
1 against 1 multiclass approach.

Furthermore, the ANN model achieved better accuracy in classifying given input
data based on the water quality parameters of the Sungai Langat Basin compared to
DT. The experimental results show that the ANN model can improve the accuracy of
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water quality class classification and model the complex non-linear relationship between
the input and output data compared to other conventional techniques. Several studies
have also supported this; ANN shows high-performance accuracy compared with other
conventional methods in modeling and predicting the water quality index in a tropical
environment [11,19–22,33–35]. In addition, the DT model is good for identifying the WQI
class label because it is simple to comprehend and implement. It is capable of facilitating,
analyzing, and classifying water quality data. However, further investigations are required
to improve the accuracy of the DT model.

The classification model developed in this study involves an unbalanced dataset
because the number of data points in each class is different. In other words, one class
label has a very large number of observations whereas the other has a very small number
of observations. According to Haixiang et al. [31], an imbalanced dataset is referred to
as the dataset in which one or more classes have a larger number of samples than the
other. The class with the highest number of samples is called the majority class, while the
lowest number of samples is called the minority class. Nevertheless, in this study, each
class is important because it refers to the type of water class and the suitability of the type
of water use as outlined by the National Water Quality Standards. Therefore, to address
the imbalanced dataset problem, a confusion matrix can be used to show a more detailed
breakdown of the true and false classifications for each class. The confusion matrix used
includes a column matrix representing true class labels, while the row matrix represents
predicted classes.

On the other hand, more detailed fractional information for correct classification and
incorrect classification for each class would be lost if model performance evaluations were
only measured using the overall accuracy of all classes. The overall accuracy of all classes
will give a less accurate picture because larger classes will dominate the results. Therefore,
the model performance evaluation for each class was measured using the average of each
class’s accuracy because there were different numbers of data for each class in the dataset
used in this study. The average of each accuracy class is also known as accuracy using macro
averaging. The evaluation based on macro averaging is important when the study dataset
has unbalanced classes. Since we are highly concerned with the performance of every
category, particularly the minor ones, we present the overall performance using macro-
averaged scores to prevent bias for major categories in the imbalanced data associated
with micro-averaged scores [36]. Other metrics, such as accuracy, recall, and F1-score, are
frequently used in the research community to evaluate models trained on imbalanced
data [37]. Therefore, the confusion matrix, together with accuracy, precision, recall, and
F1-Score (based on macro and micro averaging), is used as the performance measure. In
general, for a given class label, different combinations of precision and recall represent
the following meanings; (1) high precision and high recall indicate that the class label is
handled perfectly by the classifier model; (2) high precision and low recall indicate the
class label cannot identify the class label well but is very reliable when it occurs; (3) low
precision and high recall indicate the class label is well identified, but the classifier model
also identifies other classes in it; and (4) low precision and low recall indicate the class label
is not well handled by the classifier model.

Thus, the experimental results and model evaluation based on the multiclass confusion
matrix, including accuracy, precision, recall, and F1-Score using macro averaging, show the
SVM model is the best multiclass classifier compared to ANN and DT. The t-test results
have also shown that the SVM model is the best multiclass classifier, and the test results are
statistically significant at the 0.05 confidence level. The findings strengthen the argument
that machine learning models, particularly SVM, may be used to forecast WQI with a high
accuracy level, hence enhancing water quality management. Overall, the experimental
and evaluation results of the models presented could change the way WQI classes are
classified, and water quality monitored in the future, thus enabling better water resources
management by reducing costs and time involved in monitoring and evaluation processes.
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Although this study was successful in accomplishing its objectives, there is still an
opportunity for continuous improvement to be carried out. This is because, when develop-
ing classification and prediction models, the primary focus is on how to generate better
models and results. The use of larger datasets to predict water quality classes is one of
the recommended enhancements. Using larger datasets involves training on historical
data and developing classifier models to predict new data. Furthermore, using larger
datasets allows for the discovery of more hidden patterns. The models generated can be
improved by conducting more detailed investigations into the associations between water
quality measures. At the same time, the experimental design for model configuration can
be modified automatically to give additional functions such as loss function optimization,
utilizing search methods such as random search that explore over hyperparametric space
to find a desirable configuration value.

Next, the use of feature selection algorithms can be introduced in future studies to test
the prediction and accuracy of classification models based on various scenarios consisting
of different water quality parameters. In addition, supervised machine learning algorithms
can be utilized for time series prediction problems on the raw water quality dataset of a
time series dataset. Several supervised machine learning algorithms have recently been
developed for the R and Python programming environments. This opportunity can be
taken to explore algorithms developed to solve time series prediction problems.

5. Conclusions

This paper presents the experimental results of the model development phase that has
been implemented. The experimental results were analyzed comparatively based on the
multiclass confusion matrix, followed by accuracy, precision, and recall using macro and
micro averaging to evaluate the performance of the ANN, DT, and SVM models. Overall,
the experimental results show that the ANN, DT, and SVM performance is good while
having advantages and disadvantages, respectively.

Next, the performance of each classification model was measured and compared
using evaluation metrics that include confusion matrix, accuracy, precision, and retrieval to
determine the best multiclass classification model. Comparative analysis based on accuracy,
precision, and retrieval using macro and micro averaging showed that all three models
had achieved more than 85% performance. The best model that achieved the highest
classification performance was SVM, with an accuracy rate of 96.35%, supported by a
precision value of 91.97% and a recovery of 84.89% based on macro averaging. The SVM
model is also a multiclass model that is good at classifying data from different classes based
on a confusion matrix. As a result, the SVM model was selected as the best classifier model
in this study, and the t-test showed that the test results were statistically significant at the
0.05 confidence level.

This study succeeded in identifying the best techniques and algorithms among the
three models developed to classify the suitability of water use types according to the
standards as outlined by SKAN. Earlier, monitoring data recorded over five years from
January 2012 to December 2016 from seven rivers managed by DOE were processed in
this study using data preprocessing techniques. The classification model developed has
successfully identified water quality from various classes based on clean and quality Langat
River Basin data.

Moreover, the multiclass classification model developed using the decision tree algo-
rithm in this study has achieved higher accuracy with six optional parameters determined
by the expert panel as compared to the decision tree model developed in the previous study
by Ho et al. [3]. As a result, as compared to utilizing the traditional IKA-JAS formula, the
research strategy based on data mining and machine learning approaches reduced the cost
and complexity of calculating sub-indices of six water quality parameters and classifying
water quality.

One of the most important tasks in developing a machine learning model is evaluating
its performance to assure the classifier model’s success and the study’s effectiveness. This
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study has mediated the use of metric evaluation based on micro and macro averaging
to address the classification problem of various classes and unbalanced datasets. The
effectiveness of the study has indirectly contributed to the improvement of water quality
management by providing data mining approaches and machine learning techniques
that offer a variety of classification and forecasting methods to meet the specific needs of
policymakers, environmental experts, and the general public.

This study achieved its goals, yet there is room for improvement. When developing
classification and prediction models, the focus is on improving results. For predicting water
quality classes, larger datasets are recommended. Training on greater historical data and
developing classifier models to predict new data are required when using larger datasets.
Larger datasets reveal more hidden patterns. More extensive research of water quality
measures can improve the models. The experimental design for model configuration can
be modified automatically to give additional functions such as loss function optimization
using search methods such as random search to explore hyperparametric space. Future
studies can use feature selection algorithms to test the accuracy of classification models
based on diverse water quality parameter scenarios.

Furthermore, supervised machine learning algorithms can be used to solve time series
prediction issues on a raw water quality dataset. Several supervised machine learning
techniques for the R and Python programming environments have recently been created.
This is an excellent opportunity to investigate techniques designed to handle time series
prediction challenges.
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