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Abstract: This study aims to evaluate the potential impact of climate and land use change on seasonal
dynamics of surface runoff within the Upper Tarlung watershed of 71.62 km2. Using the Soil and
Water Assessment Tool (SWAT), we simulated the surface runoff under the projections from four
global and regional combination models for two representative concentration pathways (RCP4.5
and RCP8.5) and three land use change scenarios. In addition, short (2020–2039), mid (2040–2069),
and long-term model simulations (2070–2100) were analyzed compared with a ten-year baseline
period (1979–1988). Ensemble SWAT outputs showed that, in spring, surface runoff could decrease
by up to 28% or increase by up to 86%, in summer can decrease by up to 69%, while in autumn and
winter, increases of approximately two to five times fold are expected. The decreasing tendency
is more pronounced under climate conditions, while the sharpest increases are estimated in the
comprehensive scenario of climate and land use change by 50%. Those results serve as a support
for local water, forest, and land managers in anticipating possible threats and conceiving adaptive
strategies to manage the studied watershed efficiently.

Keywords: seasonal surface runoff; climate change; land use change; SWAT; long-term projections;
small forested watershed

1. Introduction

Climate change generates important increases in global surface temperatures and
shifts in precipitation patterns that represent a significant concern for policy and decision-
makers. The latest projections of the IPCC include five new scenarios (SSP1-1.9, SSP1-2.6,
SSP2-4.5, SSP3-7.0, and SSP5-8.5) that cover a wide range of socio-economic, technological,
and political developments and are based on the Shared Socioeconomic Pathways (SSPs) [1].
According to these new narratives, 2021–2100, compared to the 1850–1900 period is very
likely to see increases in air temperature between 1.0–5.7 ◦C. The precipitation regime will
vary across regions, while heavy precipitation, heatwaves, and warm spell events will
become more frequent and intense [1,2]. These changes will trigger severe consequences
for water resources [3–6], forests [7,8], and human wellbeing [9]. Water is a key component
for ensuring the sustainable development of society [10,11] and is directly mentioned in the
SDG 6 ‘Clean water and sanitation’ and tangentially addressed in the SDG3 ‘Ensure healthy lives
and promote well-being for all at all ages’, SDG11 ‘Make cities and human settlements inclusive, safe,
resilient, and sustainable’, SDG12 ‘Ensure sustainable consumption and production patterns’, and
SDG15 ‘Protect, restore, and promote sustainable use of terrestrial ecosystems, sustainably manage
forests, combat desertification, and halt and reverse land degradation and halt biodiversity loss’ of the
Agenda 2030 for the Sustainable Development of the United Nations [12]. To make advances
in sustainability achievement and to strengthen society and environmental resilience as
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drivers of change, many European legislations were conceived to guide policy and decision-
makers toward sustainable management of natural resources (e.g., the European Green Deal
(https://ec.europa.eu/environment/strategy/biodiversity-strategy-2030_en; Accessed
on 30 June 2022), New EU Forest Strategy for 2030 (https://www.eesc.europa.eu/en/
our-work/opinions-information-reports/opinions/new-eu-forest-strategy-2030; Accessed
on 30 June 2022), EU Soil Strategy for 2030 (https://eur-lex.europa.eu/legal-content/
EN/TXT/PDF/?uri=CELEX:52021DC0699&from=EN; Accessed on 30 June 2022), EU
Biodiversity Strategy for 2030 (https://ec.europa.eu/environment/strategy/biodiversity-
strategy-2030_en; Accessed on 30 June 2022), and EU Action Plan: ‘Towards Zero Pollution
for Air, Water and Soil’ (https://eur-lex.europa.eu/resource.html?uri=cellar:a1c34a56-
b314-11eb-8aca-01aa75ed71a1.0001.02/DOC_1&format=PDF; Accessed on 30 June 2022).
Unfortunately, the COVID-19 pandemic has drawn back the progress recorded during
2015–2018 in achieving the SDG targets and indicators until unprecedented reversals for the
end of 2021, and more efforts will be needed to meet the ambitions of the 2030 agenda [13].

Water is the central pillar of the circular development of society [11,14]. There is
evidence that emphasizes climate and land use change as the main driving forces in
influencing the water resources availability [15–18]. Numerous publications have tackled
water resource dynamics under current and future challenges and have shown a decreased
tendency of water resources worldwide [19–23]. For instance, Guzha et al.’s [19] evaluations
of the impact of land use and land cover on surface runoff have found that forest reductions
lead to increases by up to 90% of surface runoff, while low flows can decrease up to 46%.
According to Ouyang et al. [20], surface runoff can decrease by approximately 29%, while
at the seasonal level, surface runoff can be reduced by up to 40%, and significant variations
of this parameter are expected during winter as a response to forest change.

Moreover, Sabbaghi et al. [21] revealed that climate change would lead to 4.3% and
8.1% decreases in discharges in 2040 and 2070, respectively. The authors also emphasized
the importance of proper water allocation within river basins to avoid climate change
negative effects. In this context, Gemechu et al. [23] reported decreases by up to 8.9%
of water yield for the 2030 and 2080 periods considering the RCP4.5 and 8.5 scenarios.
The authors also estimated important monthly changes when water yield can decrease to
27% and 32% in RCP4.5 and 8.5, respectively, and increase by up to 28% in RCP4.5. After
applying the SWAT model to evaluate the climate change impacts on runoff, Wu et al. [24]
estimated a reduction of 54.1% of surface runoff, while Wang et al. [25] reported an increase
of 11.87% due to land use change. Increases in surface runoff due to land use change
are also reported by Chilagane et al. [26] who estimated that forest reduction contributed
to surface runoff increases on an annual basis, while at the seasonal level, there were
expected decreases in the dry season (July–October) until 2040, thus emphasizing the need
of appropriate conservations strategies.

According to studies in [22,27], the prediction of water resource variations under
different challenges using different modeling tools is mandatory for short- and long-
term adaptive planning. Thereby, hydrological information is fundamental to watershed
behavior under growing pressures, thus avoiding uneven water allocation between socio-
economic and environmental users [28]. At the same time, water resources should be
accurately evaluated to ensure their future sustainability [29].

From this perspective, a comprehensive understanding of watershed responses under
various scenarios is imperative [9]. Such an achievement is tapped through hydrologi-
cal modeling, which is recognized as a valuable approach to understand and assess the
effects of different forcings (e.g., climate, land use) on hydrological processes within water-
sheds [30]. Hydrological models could predict the possible impacts of climate and land
use changes [31]. Estimating in a more realistic way the effects of those changes will allow
stakeholders to adopt proactive planning for sustainable watershed management [32].

Existing hydrological models facilitate the evaluation of different impacts on hydro-
logical processes in different-sized watersheds and over variable periods. In this context,
the Soil and Water Assessment Tool (SWAT) hydrological model is widely applied and
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very efficient for exploring the long-term impacts of a wide variety of forcings, including
climate and land use change on hydrological processes within watersheds [5,33]. SWAT
simulates many hydrological processes, such as evapotranspiration, percolation, canopy
storage, lateral and groundwater flow, surface runoff, and so forth. SWAT model-wide
use is very common in the discipline since it is an open-source software with a prede-
fined database that can be easily customized by the user [33]. This integrated model is
appropriate even in an ungauged watershed, where discharge data are missing [34–36].
Compared to other models, such as Mike-SHE (European Hydrological System Model) or
GSSHA (Gridded Surface/Subsurface Hydrologic Analysis) for example, SWAT requests
few input parameters that can be easily generated by the model if there are missing or
discontinuous data [37].

For sustainable management of these particular watersheds, the water’s spatial and
temporal dynamics are essential [38], particularly in the context of the combined effect
of increased temperature, changed patterns of precipitations, and increased frequency of
extreme events (floods, droughts, heatwaves) occurrence in southeastern Europe, including
Romania [3,39,40]. The combined effect of increased temperatures and the opposite trend
of precipitation may cause perilous natural hazards, especially in mountainous regions [41],
which are known to be areas sensitive to climate change [42]. Additionally, the changes in
land use categories can modify runoff processes, particularly in small watersheds [43,44].
Considering these issues and the consensus that in mountainous areas, the ongoing changes
in climate parameters trigger additional pressures on ecosystem management [6,45], special
attention should be devoted to mountainous, forested watersheds that accomplish the water
supply function [38,46]. There is evidence that surface runoff in a forested watershed is more
impacted by changes in land use categories than climate change [47]. As Ouyang et al. [20]
claims, most studies have considered evaluating the dynamics of hydrological processes on
an annual level, while the seasonal projections have often been overlooked. From this point
of view, there is a need to fill this gap by assessing seasonal surface runoff, particularly in
small mountainous, mainly forested watersheds.

Therefore, this study aims to provide information about seasonal surface runoff pro-
jected for the 2020–2100 period under comprehensive climate and land use change scenarios.
In this respect, two specific objectives were established: (i) to quantify future patterns of
temperature and precipitation under four local climate change scenarios, and (ii) to evaluate
future dynamics of seasonal surface runoff under compounded scenarios of climate and
land use change applied for the 2020–2100 period. By addressing those objectives, our
research will provide a scientific basis to guide stakeholders and decision-makers towards
more informed decisions and sustainable watershed management. First, we start with
a brief presentation of the study area and methodology used in Section 2. Second, in
Sections 3 and 4, we evaluate future projections of temperature and precipitation, and we
analyze and discuss the impact of various scenarios of climate and land use change on
seasonal surface runoff until 2100. Finally, a wide range of conclusions will be drawn at the
end of Section 4.
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2. Materials and Methods
2.1. Study Area Description

The Tarlung river basin is situated in the central part of Romania, between 45′30′56′′

N and 25◦48′13′′ E [48]. Covering a total area of 184 km2, it is an ungauged river basin
responsible for more than 90% of the water demand of the Brasov metropolitan area. From
the entire Tarlung river basin area, we chose the upper sector to be addressed in this
study (Figure 1). The Upper Tarlung watershed covers 71.6 km2 and its elevation ranges
between 874 and 1842 m a.s.l. The watershed has a length of the hydrographic network
of 216.49 km and the main stream length of 14.95 km [49]. The average slope within the
Tarlung watershed is 37%, and the main riverbed slope is 6%.
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The land within the Upper Tarlung watershed comprises 50% deciduous forests,
30% evergreen forests, 19% pastures, and 1% is covered by pastures with scattered trees,
meadows, water bodies, rocky lands, public roads, and built-up area (Figure 2). The main
soil types within the watershed are Dystric Cambosols, Prepodzols, and Eutric Cambisoils
which account for 60%, 16%, and 15%, respectively (Figure 3).



Water 2022, 14, 2860 5 of 20Water 2022, 14, 2860 5 of 20 
 

 

 
Figure 2. Land use (AGRL—Agricultural land; FRSD—Forest deciduous; FRSE—Forest evergreen; 
PAST—Mountain meadow; RNGB—Pasture with trees; RNGE—Meadows; SWRN—Rocky lands; 
URML—Built-up areas; UTRN—Roads; WATR—Water body) categories distribution within the 
Upper Tarlung watershed. 

 
Figure 3. Soil types (REND—Rendoll; EUTRT—Eutric cambisols typic; EUTRM—Eutric cambisols 
mollic; EUTRL—Eutric cambisols lithic; EUTRG—Eutric cambisols gleyc; EUTRS—Eutric 
cambisols stagnic; DYSTT—Dystric cambosols typic; DYSTU—Dystric cambosols umbric; 
DYSTL—Dystric cambosols lithic; HAPLL—Prepodzol lithic; HALPH—Prepodzol histic; 
UDORL—Litosol; DYSTRFL—Aluviosols dystric; DYSTRFLG—Aluviosols gleyic) distribution 
within the Upper Tarlung watershed. 

Figure 2. Land use (AGRL—Agricultural land; FRSD—Forest deciduous; FRSE—Forest evergreen;
PAST—Mountain meadow; RNGB—Pasture with trees; RNGE—Meadows; SWRN—Rocky lands;
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mollic; EUTRL—Eutric cambisols lithic; EUTRG—Eutric cambisols gleyc; EUTRS—Eutric cambisols
stagnic; DYSTT—Dystric cambosols typic; DYSTU—Dystric cambosols umbric; DYSTL—Dystric cam-
bosols lithic; HAPLL—Prepodzol lithic; HALPH—Prepodzol histic; UDORL—Litosol; DYSTRFL—
Aluviosols dystric; DYSTRFLG—Aluviosols gleyic) distribution within the Upper Tarlung watershed.
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2.2. Methodology Description

This study uses the SWAT2012 hydrological model and ArcGIS10.3 interface to sim-
ulate surface runoff. Developed by the USDA Agricultural Research Service (ARS) to
support water managers in investigating an extensive array of problems and continuously
improving since 1990, SWAT is continuous-time and semi-distributed which allows daily,
monthly, or yearly simulations [36]. SWAT uses an ArcSWAT interface of GIS software for
graphical and vectorial edits of the entire watershed that is divided into subwatersheds
and subsequently into Hydrologic Response Units (HRU) based on uniform land use, soil
types, and slope class [34,36]. In addition, the model requests certain inputs of spatial data,
namely: the digital elevation model (DEM), weather database, land use database, and soil
database (Figure 4).
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Table 1. Description of the scenarios used in the simulation.

Adopted Scenario Climate Change Current Land Use Land Use Change
by 25%

Land Use Change
by 50%

Scenario 1 X X
Scenario 2 X X
Scenario 3 X X

For this study, we used a DEM with a 10 m spatial resolution provided by the National
Institute of Hydrology and Water Management (INHGA) [48,49]. For the weather database,
we used two climate datasets from ROCADA V1.0 and INHGA, which are available for the
1961–2013 and 1974–2012 periods [48,49]. The land use database was customized at the local
specificity of the studied watershed based on the data collected from the Forest management
plan and Forest-pastoral management plan developed by the National Institute of Research
and Development in Forestry ‘Marin Dracea’ (INCDS) for the 1989–2013 period [48,49].
The soil database was created using data from the aforementioned management plans and
SPAW (Soil-Plant-Atmosphere-Water-Field and Pond Hydrology) software for estimating
parameters for which we had no data available (e.g., bulk density–SOL_BD, hydraulic
conductivity–SOL_K, and water content–SOL_AWC) [48,49]. Based on the DEM, the
stream network was generated, the subwatersheds were delineated (69 subwatersheds),
and HRUs were created (1001 HRUs) [49]. A detailed presentation of the SWAT database
customization, model setup, calibration, and validation are given in previous work [49].

The three land use change scenarios were hypothetically established based on the
assumption that a reduction of less than 20% of forested areas does not show significant
changes in the evolution of hydrological processes [50]. Therefore, the shift of land use
change categories from forest (FRSD and FRSE) to pasture (PAST) were randomly modified
without considering a certain location across the watershed or other characteristics of the
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compartment level units (e.g., surface, type of tree species) and was stopped once the
percentages (25% and 50%) were obtained [51]. The climate change scenarios used in this
study cover the 2020–2100 period and were developed based on a combination of two
global climate models, ICHEC-EC-EARTH and MPI-ESM-LR, with two regional climate
models CCLM4-8-17 and REMO at 0.11◦ × 0.11◦ spatial resolution and forced by RCP4.5
and RCP8.5 representative concentration pathways. These climate models were chosen
because they show years with drought periods (2–3 years), relevant for water managers
to provide a suitable water demand plan (below Q1

∼= 880 mm·Year−1 in historical data).
Additionally, these showed a reasonable evolution of the values of Quartile 1 (Q1) along the
projection; thus, bias toward very rainy and very dry models was avoided [52]. A detailed
presentation of the climate change scenarios development is given in previous work [53].
The adopted scenarios used in the simulation represent a combination of land use and
climate change scenarios, as given in Table 1.

The climate change scenarios included rainfall, temperature, solar radiation, wind
speed, and relative humidity data that were downscaled and bias corrected at a local level
using the Linear Scaling Method [54–56]. Each parameter dataset was used to rewrite the
weather database to conduct simulations and obtain future projections of surface runoff.
The time period considered in performing simulations was 2020–2100, in order to provide
information to warning decision-makers regarding future watershed management in the
context of future challenges (e.g., climate and land use) so that they can secure a long-term
management plan. Moreover, for the 1988–2020 period, in the study area, there were
no notable changes in terms of land use. Major changes appeared after 2015, due to the
fragmentation of land ownership through various retrocession laws that corroborated with
the intensification of extreme weather events and with the demographic development of the
area [57]. For comparison, the 1979–1988 period was chosen as a baseline. For this interval,
the flow measurements were continuous, and we identified periods with dry, average,
and rainy years which represents an essential condition to obtain accurate simulation
results [58]. The future changes in surface runoff were appraised at the seasonal level:
spring (March, April, May), summer (June, July, August), autumn (September, October,
November), and winter (December, January, February).

3. Results
3.1. Model Performance

The SWAT performance was carried out using the SWAT-CUP program under the SUFI-
2 (Sequential Uncertainty Fitting version 2) procedure and NSE (Nash Sutcliffe Efficiency)
function [59] on a monthly basis. First of all, we performed a sensitivity analysis to spot
those parameters that exert the most influence on hydrological processes [60]. This stage
is important for reducing the uncertainty of model results and accurately executing the
calibration and validation procedures [60]. Hence, the global sensitivity analysis included
12 parameters for which two variation methods were chosen, namely ‘v’—which implies
the replacement by a given value of the initial value of the existing parameter, and ‘r’—
which implies the multiplication by (1+ a given value) of the initial value of the existing
parameter [61]. The parameters considered for sensitivity analysis are given in Figure 5.
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After performing the sensitivity analysis, we carried out the calibration and validation
procedures. The best parameter values as well as their variation interval are given in Table 2.
These parameters provide the best values of the objective function.

Table 2. Parameters used in the calibration.

Parameter Description Variation Interval
Fitted ValueMinimum Maximum

V__REVAPMN.gw Threshold depth of water in the shallow
aquifer for revap or percolation 0.000000 500.000000 134.500000

R__OV_N.hru Manning’s “n” value for overland flow −0.200000 0.000000 −0.128600
R__HRU_SLP.hru Average slope steepness 0.000000 1.000000 0.613000
R__SOL_K(..).sol Saturated hydraulic conductivity −0.800000 0.800000 −0.776000
R__SOL_AWC(..).sol Available water capacity of the soil layer −0.200000 0.100000 −0.119900
V__GW_REVAP.gw Groundwater “revap” coefficient 0.020000 0.200000 0.025580
R__SOL_BD(..).sol Moist bulk density −0.500000 0.600000 0.312900
V__ESCO.hru Soil evaporation compensation factor 0.000000 1.000000 0.699000
V__LAT_TTIME.hru Lateral flow travel time 0.000000 180.000000 5.940000
R__CN2.mgt SCS runoff curve number −0.200000 0.200000 −0.016400
V__ALPHA_BF.gw Baseflow alpha factor 0.000000 1.000000 0.931000

V__GWQMN.gw Threshold depth of water in the shallow
aquifer for return flow 0.000000 5000.000000 75.000000

Overall, we obtained a good SWAT performance after calibration and validation
stages, which can be summarized as follows (see [49]: (i) NSE = 0.67, R2 = 0.79, RSR = 0.57,
PBIAS = 26.4, p-factor = 0.72, and r-factor = 0.91 for the calibration stage (performed for the
1979–1988 period); and (ii) NSE = 0.65, R2 = 0.66, RSR = 0.59, PBIAS = 2.1, p-factor = 0.75,
and r-factor = 1.46 for the validation stage (performed for the 2009–2012 period). A detailed
presentation of the SWAT database customization, model setup, calibration, and validation
are given in previous work [49].

3.2. Temperature and Precipitation

The temperature and precipitation projected for short (2020–2039), mid (2040–2069),
and long term (2070–2100) under the GCM–RCM combination models forced by RCP4.5 and
RCP8.5 representative concentration pathways are given in Figures 6 and 7 as percentual
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differences with the baseline period 1979–1988. Figure 6 shows an overall increasing
temperature trend projected until 2100. In the short term (Figure 6a), are projected increases
in temperature of 0.7 ◦C (in REMO4.5/autumn) and 2.5 ◦C (in CLM8.5/spring), the highest
values being estimated for spring and summer in REMO and CLM scenarios developed
by RCP8.5. Over the mid term (Figure 6b), the temperature is projected to increase by up
to 2.7 ◦C under REMO4.5/summer and up to 3.3 ◦C under REMO8.5/summer compared
with the baseline. In addition, substantial temperature increases are projected over the long
term (Figure 6c) when values of 1.9 ◦C (in REMO4.5/winter) and 4.7 ◦C (in CLM4.5 and
8.5/summer) higher than baseline are expected. Overall, by the end of the 21st century,
the temperature is projected to increase by 1.8–4.3 ◦C during spring, 1.7–4.7 ◦C in summer,
0.7–4.2 ◦C during autumn, and 1.1–4.0 ◦C in winter.
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Figure 6. Changes in temperature as percentual differences compared with baseline for: (a) short,
(b) mid, and (c) long term.

Instead, for the precipitation (Figure 7), the projections reveal an opposite trend
compared with the baseline, with increases by up to 68%, particularly during winter, and
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decreases by up to 52%, especially in the summer. Over the short term (Figure 7a), compared
with the baseline, precipitation is projected either to decrease by 1% (in CLM4.5/spring)
and 46% (in REMO8.5/summer) either to increase by 3% (in REMO8.5/autumn) and (in
REMO8.5/winter). The mid term (Figure 7b) shows decreases by up to 47% and increases
by up to 68%, both projected values in REMO and CLM scenarios developed from RCP8.5
for summer and winter, respectively. A slight 2% and 3% decrease is projected for the
autumn precipitation under the REMO8.5 and CLM8.5 scenarios. Over the long term
(Figure 7c), the precipitation is projected to increase between 4% (in CLM4.5/autumn) and
55% (in CLM8.5/winter) or to decrease by up to 52% under the REMO8.5 in the summer.
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Water 2022, 14, 2860 11 of 20

3.3. Seasonal Surface Runoff in the Short Term (2020–2039)

The seasonal surface runoffs projected in the considered scenarios are given in Figure 8a–d
as a percentage change compared to the baseline. The results show that, in spring, surface
runoff relative changes range from −2% (S1) to 86% (S3) (Figure 8b,c). In summer, the
surface runoff decreases, particularly in REMO8.5/S1, when values lower by 69% are
projected (Figure 8c). During autumn, increases between 69% (in CLM8.5/S1) and 244%
(in REMO4.5/S3) are estimated (Figure 8a,d). A similar trend is also observed for the
winter season, where increases of almost 3.2 times compared to the baseline are projected,
especially in scenario S3 (Figure 8b).
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Figure 8. Seasonal surface runoff (%) projected for 2020–2039 in: (a) REMO4.5, (b) CLM4.5,
(c) REMO8.5, and (d) CLM8.5.

3.4. Seasonal Surface Runoff in the Mid Term (2040–2069)

The mid-term simulation of seasonal surface runoff is given in Figure 9a–d. We can
observe that, for the spring, either a slight decrease of 1% in CLM4.5/S1 (Figure 9b) or an
increase by up to 37% is projected in REMO8.5/S3 (Figure 9c). During the summer months,
the surface runoff is expected to decrease between 14–57%, particularly in REMO scenarios
coupled with scenario S1. However, in autumn, the surface runoff increases, especially in
scenario S3 under REMO4.5 and CLM4.5, a situation that can also be noticed in the winter.
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Figure 9. Seasonal surface runoff (%) projected for 2040–2069 in: (a) REMO4.5, (b) CLM4.5,
(c) REMO8.5, and (d) CLM8.5.

3.5. Seasonal Surface Runoff in the Long Term (2070–2100)

Figure 10a–d illustrates the seasonal surface runoff projected for the long term and
shows that the decreasing trend of seasonal surface runoff is mainly projected in scenario
S1, while the increments arise particularly in scenarios S2 and S3. For spring, two trends can
be observed: increases by up to 15% in REMO4.5 and CLM4.5 (Figure 10a,b) and decreases
by up to 18–28% in REMO8.5 and CLM8.5 coupled with scenario S1 (Figure 10b,c). For
summer, the surface runoff is projected to decrease between 13–60%, while in autumn,
this parameter increases, particularly in REMO4.5 and CLM4.5 (Figure 10a,b). During the
winter, the most pronounced increases in surface runoff are projected, with values four
times higher than the estimated baseline (Figure 10d).
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Figure 10. Seasonal surface runoff (%) projected for 2070–2100 in: (a) REMO4.5, (b) CLM4.5,
(c) REMO8.5, and (d) CLM8.5.
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3.6. Surface Runoff Data Analysis

In order to assess the trends regarding surface runoff under climate and land use
scenarios, we use statistical analysis (based on STATISTICA 13.5.0.17) to capture the evo-
lution trend. We used One-Way ANOVA to test the influences. If the precondition of the
parametric test was not met, we applied the Kruskal–Wallis non-parametric test. Among
climate change scenarios, significant differences in surface runoff appear only in REMO8.5
(Table 3). The differences in the surface runoff between the other climate change scenarios
applied are insignificant.

Table 3. Testing influence of climate change scenarios on surface runoff.

Climate Scenarios REMO4.5 REMO8.5 CLM4.5 CLM8.5

Mean surface runoff
(thousand cm) 979 a 930 ab 933 a 903 a

Significant differences are indicated by different letters, and insignificant differences are indicated by the same
letters at p < 0.05.

Assessing the influence of land use scenarios (S1–S3), we noticed that, for the 2020–2100
period, significant differences in the surface runoff appeared only in the S1 scenario (Table 4).

Table 4. Testing influence of land use change scenarios on surface runoff.

Land Use Scenarios S1 S2 S3

Mean surface runoff
(thousand cm) 870 a 932 ab 1006 b

Significant differences are indicated by different letters, and insignificant differences are indicated by the same
letters at p < 0.05.

At the seasonal level, we noticed that significant differences in surface runoff appear
only during spring and winter (Table 5).

Table 5. Testing influence of season on surface runoff.

Season Winter Spring Summer Autumn

Mean surface runoff
(thousand cm) 1178 a 1197 b 249 c 319 c

Significant differences are indicated by different letters, and insignificant differences are indicated by the same
letters at p < 0.05.

4. Discussion and Conclusions

Worldwide, climate change triggers important modification that impacts water re-
sources. The projected increases in air temperature, the varied precipitation across regions,
and more frequent and intense extreme events will modify the water cycle and reduce
water availability in the future [29,62]. Furthermore, exacerbated by the changes in land use,
hydrological processes will be negatively affected both in the short, mid, and long term [5].
Thus, it is imperative to understand the watershed response to climate and land use change
and to establish adaptive measures for sustainable management. Nonetheless, for reli-
able projections, it is essential to use high-resolution models and methods that accurately
capture the local and regional conditions [63,64]. Considering the higher vulnerability of
small forested watersheds located in a mountainous area to climate change and land use
change [57,65–67], future assessments of those impacts on watershed hydrological balances
are imperative for sustainable management mainly due to the limited studies that address
seasonal dynamics of the hydrological process [20].

Therefore, in this study, we used the SWAT model to investigate the changes in the
seasonal surface runoff for a small forested watershed in a mountainous area in central
Romania which represents the main water source for approximately 473,000 inhabitants.
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After obtaining a good model performance to simulate hydrological processes within
the Upper Tarlung watershed [49], we developed future climate and land use change
scenarios [51,53]. Finally, these scenarios were embedded into the calibrated and validated
SWAT model for projecting seasonal surface runoff from 2020–2100 was divided into short
(2020–2039), mid (2040–2069), and long-term (2070–2100) periods.

4.1. Changes in Temperature and Precipitation

The future climate derived from GCM–RCM combination models for RCP4.5 and
RCP8.5 representative concentration pathways foresee increases in temperature by up to
2.5 ◦C in the short term, up to 3.3 ◦C in the midterm, and by up to 4.7 ◦C in the long
term which corresponds to global climate projections. This corroborates the findings of
Sfîcă et al. [68] who reported increases in air temperatures over 4 ◦C by the end of the
century within Romania. The highest increases are estimated under scenarios developed
from RCP8.5 and for the summer season. Those findings correspond with the results of
other studies carried out for our country, which emphasized that, in the future, the climate
will be warmer and heatwave frequency and intensity will increase [3,40,57,69], with more
pronounced tendencies towards the end of the century [57,70].

Unlike for temperature, the projected precipitation showed opposite trends, which
are similar to the findings of other studies [3,57,71]. However, those projections differ in
relation to the climate scenarios and the period of time or considered season. The highest
increases are expected during the winter, while the sharpest decreases are estimated for
summer, both tendencies being more pronounced in scenarios developed from RCP8.5.
Those findings contrast the results of other studies [62,72], which reported that precipitation
would increase during summer and decrease in winter. Decreases in summer precipitation
disagree with the results of other studies [46,62] that reported increases in summer amounts
but corresponded with the findings of [69] that obtained the sharpest decreases in the
RCP8.5 scenario by the end of the century. Instead, the projected changes show both
increases and decreases for spring and autumn, which can be noticed only in the short
and midterm. Those findings are consistent with the results of [70] that obtained a similar
seasonal variation of the precipitation projected until 2100.

4.2. Changes in Seasonal Surface Runoff

The model outputs show that seasonal surface runoff predicted in the short term
(Figure 8) is projected to decrease by up to 69% or an increase up to threefold compared with
the baseline value. In spring, the surface runoff may slightly decrease by 2% or increase
by up to 86%, which could be justified by the snowmelt process as stated in previous
studies [62,73]. The summer surface runoff decreases by up to 69%, the largest decrease
over the entire analyzed period (until 2100). This result disagrees with the projections
of [73], who estimated the sharpest decreases in summer runoff towards the end of the
century, probably caused by precipitation amounts in that period and lower groundwater
recharge during winter due to reduced snowpack. For autumn, we obtained increases of
surface runoff around twice at large compared to baseline, while during winter the surface
runoff can increase around threefold compared to the baseline, the highest increases being
obtained under the moderate RCP4.5 scenarios. We believe that winter runoff increases
are mainly due to the predicted changes in temperature and precipitation, which favors
the occurrence of more liquid and not solid rain and faster snowmelt that trigger a more
consistent surface runoff. This aspect was also mentioned in other studies [62,70,73,74].
Those increases can also be attributed to the land use change as it is well known that
the reduction of forested areas has a great potential to generate more intense surface
runoff [19,75,76]. For the entire considered period, it can be observed that the overall
decreasing trend is more accentuated in scenario S1, while scenario S3 can lead to the most
accentuated increases in surface runoff. Thus, we can state that land use change has a
much greater influence on surface runoff compared to changes in climate conditions, which
confirms the findings of [47].
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Regarding seasonal surface runoff projected for the mid term (Figure 9), we observe
that surface runoff during the spring shows a similar pattern as the previous period, except
for a lower increase (up to 37%). Opposing tendencies in spring runoff and the lowest
increases of surface runoff in spring from all seasons were also reported by [77]. In summer,
the surface runoff can decrease by up to 57%, which can be attributed to the increased
temperature that intensifies the evapotranspiration rate and the decreased precipitation
estimated for this period [3,62]. For autumn, increases in surface runoff twice as large as
the baseline are estimated—particularly in scenarios from RCP4.5. We noticed that the
most consistent increases are projected for the winter months, similar findings being also
reported by [77]. This situation could be related to the projected increases in temperature
(up to 2.6 ◦C) and precipitation (up to 70%) that generated a greater volume of liquid
precipitation and faster snowmelt, as suggested by other studies [62,74]. For the entire
period, we noticed that scenarios developed from RCP4.5 generated the most pronounced
surface runoff increases and decreases. Regarding the land use change, we observed
that scenario S1 generates the most significant decreases, while the increases are more
pronounced in scenario S3.

The modeled seasonal surface runoff over the long term (Figure 10) revealed that
for spring, there were projected increases by up to 15% or decreases by up to 28%. The
decreased tendency in spring runoff was also reported by [77] which estimated decreases by
up to 26%, while our projections show a reduction by up to 28%. Our findings correspond
with the results of [71] that reported for the 2071–2100 period a different behavior of surface
runoff for spring. Unlike their results, we obtained the increased trend of spring runoff
only in the scenarios developed from RCP4.5 [71], probably due to different watershed
characteristics and runoff regime. We found that the most significant decreases in spring
runoff were estimated in scenarios developed from RCP8.5. Similar findings were reported
in [73]. The decreased tendency of spring runoff can be attributed to reduced snowfall, as
suggested by [78]. In summer, the surface runoff can decrease by up to 60%, with a similar
result reported in other studies [73,77]. In autumn, surface runoff can increase by twice
as much as the baseline value, especially in scenarios developed from RCP4.5. In winter,
the increases of this parameter by 3.4–4.7 times compared to the baseline are projected, a
result that is in line with the findings of [73] but in disagreement with the results of [78]
that estimate the largest runoff increases for the spring season, justified by the authors as
a consequence of increased precipitation and snowmelt. However, increases in surface
runoff during autumn and winter and considerable decreases in the summer season were
also reported by [71]. The consistent increases during wintertime could be related to the
temperature and precipitation increases, as highlighted in previous studies [62,74,78].

Simulations performed for three future periods (2020–2039, 2040–2069, 2070–2100)
were analyzed compared to the reference period (1979–1988). The records of flow measure-
ment were available for the 1974–2014 period but in an incomplete format. For this interval,
we had continuous flow measurements and identified periods with dry, average, and rainy
years as is recommended in the literature [58]. Overall, climate and land use changes mod-
ify seasonal surface runoff regardless of the time period considered, and it can be seen that
the decreasing trend is more accentuated in scenario S1, which shows decreases of up to
69% of the surface runoff, while the increases are more pronounced, particularly in scenario
S3, when values up to five times fold are expected, especially during winter. Furthermore,
the modeling activities pointed out opposite tendencies for spring runoff, considerable
decreases during summer, and an increasing trend for autumn which will peak during
winter. The reduced values in surface runoff during the summer, up to approximately
70% lower than the reference values, suggest the possibility of droughts in the 2020–2100
period. Contrastingly, during autumn and winter especially, important increases in surface
runoff, when values five times fold approximately compared to baseline are projected,
can lead to flood occurrence of floods in those periods. Benefiting from these projections,
decision-makers can adopt certain measures to reduce or mitigate the occurrence of these
extreme events. Those findings contribute to an increased understanding of climate and
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land use change impact on surface runoff on a seasonal level in small forested watersheds,
which are important for local water managers that can anticipate and reduce the adverse
effects, such as floods or droughts. The results can be used as a basis to design adaptation
strategies related to climate and land use change impacts in a mountainous watershed
and are also important for forest managers in optimizing land use categories so that water
resources can be secured in the following years.

Although the SWAT model was initially developed for large river basins (>10,000 km2),
it was successfully applied in the studied watershed with an area of up to 100 km2. More-
over, we obtained a good model performance in simulating hydrological processes. Ad-
ditionally, the studied watershed is located in a mountainous area and is not equipped
with conventional gauges for continuous measurements of flows. In this context, the
SWAT model has the advantage of requesting few input data that are easily accessible
and provides easy access to information on hydrological parameters. Therefore, this study
delivers valuable insights for local decision-makers that are sustained to adopt coherent
strategies considering long-term climate informed decisions. Besides, to the best of our
knowledge, our study is so far the first one performed at a national level that customizes
soil and land use databases at the compartment level unit and applies SWAT in a watershed
with an area of up to 100 km2. In addition, this study tries to fill the gap in relation to the
limited number of studies that address seasonal surface runoff, the majority of them being
focused on annual evaluations. Therefore, our findings are useful and can support local
decision-makers responsible for watershed management in conceiving sound strategies
to avoid unwanted consequences brought about by changes in climate or land use. Even
if the reduction of the forest area is possible but improbable over the next eight decades,
this study highlights the importance of forests in mitigating the harmful effects of climate
change. Therefore, all institutions responsible for managing the land use within the studied
watershed should consider preserving the current land use categories as much as possible
and promote optimal management from the hydrological point of view. Moreover, in the
climate change context, decision-makers should advocate for increasing the forested areas
within the studied watershed, considering the fundamental role of forests in alleviating
the impact of climate change. The research outputs offer decision-makers the possibility to
spatially (at subwatershed level) and temporally (depending on decades with hydrological
risk) stagger the intervention with torrent control structures of the torrential hydrographic
network. At the same time, the modeling activities allow establishing the limits of land
exploitation considering the land use categories (animal husbandry, forest production,
clean water production, and biodiversity) to be established.
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