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Abstract: Fish are indicative species with a relatively balanced ecosystem. Underwater target fish
detection is of great significance to fishery resource investigations. Traditional investigation methods
cannot meet the increasing requirements of environmental protection and investigation, and the
existing target detection technology has few studies on the dynamic identification of underwater
fish and small targets. To reduce environmental disturbances and solve the problems of many fish,
dense, mutual occlusion and difficult detection of small targets, an improved CME-YOLOv5 network
is proposed to detect fish in dense groups and small targets. First, the coordinate attention (CA)
mechanism and cross-stage partial networks with 3 convolutions (C3) structure are fused into the
C3CA module to replace the C3 module of the backbone in you only look once (YOLOv5) to improve
the extraction of target feature information and detection accuracy. Second, the three detection
layers are expanded to four, which enhances the model’s ability to capture information in different
dimensions and improves detection performance. Finally, the efficient intersection over union (EIOU)
loss function is used instead of the generalized intersection over union (GIOU) loss function to
optimize the convergence rate and location accuracy. Based on the actual image data and a small
number of datasets obtained online, the experimental results showed that the mean average precision
(mAP@0.50) of the proposed algorithm reached 94.9%, which is 4.4 percentage points higher than that
of the YOLOv5 algorithm, and the number of fish and small target detection performances was 24.6%
higher. The results show that our proposed algorithm exhibits good detection performance when
applied to densely spaced fish and small targets and can be used as an alternative or supplemental
method for fishery resource investigation.

Keywords: densely spaced fish; small targets; CME-YOLOv5; attention mechanism; multiscale;
loss function

1. Introduction

Changes in fish stocks can directly reflect the status of river ecosystems. The General
Committee on fisheries in the Mediterranean counted the fishing indicators of fisheries
in the Mediterranean region from 1970 to 2017 and found that the ecosystem structure
had changed due to overexploitation, and the catch had been declining since 2010 [1].
Therefore, regular or irregular fishery resource studies and assessments are needed to
confirm the status of ecosystems. It is important for responsible fishing and environmental
protection. Early investigations of fishery resources used electric fishing, artificial spray-
net fishing, ground cage, and prick-net methods [2–5] to collect fish samples. However,
there are several problems with traditional fishery resource survey methods: 1. their
excessive dependence on manual operations makes them time-consuming and laborious;
2. they result in greater disturbance of fish and aquatic ecosystems; and 3. small target
fish are easily missed [6]. Traditional research methods have difficulty meeting increasing
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requirements for environmental protection and monitoring. Therefore, it is necessary to
use the latest technology to implement fishery resource studies.

In recent years, in the era of artificial intelligence, computer information technology
has developed rapidly, and there have been advances in computer vision [7]. As its core
field, object detection technology has made a major breakthrough [8]. An increasing number
of deep-learning object detection methods have been applied to underwater object detection.
Pei Qianqian et al. [9] applied the deep learning object detection algorithm YOLOv3 [10] in
an engineering fishway and conducted real-time detection of passing fish in the fishway,
but the model is too single, the water quality of the fishway will change with the season,
and the target detection effect is poor when the background fluctuation is relatively large.
Youssef et al. [11] proposed an object detection algorithm to improve the clarity of water
images. The multiscale Retinex (MSR) algorithm [12] was used to enhance the blurred
water image or video in the system to increase its clarity, and then the YOLOv3 object
detection algorithm was used to identify the enhanced image. The detection accuracy was
significantly improved. However, the MSR algorithm is an image enhancement algorithm
based on a physical model, which has a slow processing speed and a correspondingly
slow image recognition speed. Fan Weiya [13] improved the Faster R-CNN [14] algorithm
by increasing the number of anchors in the RPN network, changing the deformation
convolution and adding three single fully connected channels. The detection accuracy
was improved by 6.23% to 92.44% compared to that of the original model algorithm,
improving the applicability of the fish object detection algorithm. However, the Faster
R-CNN algorithm is a two-stage target detection algorithm, and the processing speed of
the algorithm is slow. If the number of anchor points and channels is added, the calculating
model parameters will be aggravated, which will lead to a significant decrease in the model
processing speed. Yao et al. [15] used the object detection algorithm of YOLOv4 [16] for
underwater target recognition, replaced the upsampling module in the original model with
a deconvolution module, removed the SPP layer, and added depth detachable convolution
to reduce network computations. The results showed that compared with the original
YOLOv4, the improved mAP reached 75.34, which was nearly 12% higher than YOLOv4.
Qiang et al. [17] proposed an improved SSD [18] algorithm based on ResNet instead of VGG
and proposed depth-separable deformation convolution, which improved fish detection
accuracy and speed in complex water environments. Wu Rui et al. [19] improved the
YOLOv5 model [20] by introducing the convolutional attention mechanism module, and
the results showed that the improved method greatly improved the identification accuracy
and speed of benthic organisms in coral reefs. In summary, the above method studies are
based on static individual identification or the detection of conventional targets that are
only applicable to general scenes. There are few studies on the dynamic identification of
fish and small targets, and the identification of dense underwater fish and small targets still
has a high rate of missed detection and error. There are challenges of mutual occlusion and
shadows cast by densely spaced underwater fish [21], and small object detection has always
been one of the key difficulties in the object detection field [22,23], with the problems of less
effective image features information, fuzziness and other difficulties. The needs of fishery
research cannot be met due to the limited ability of current target detection technology to
overcome the problems of fish occlusion and the difficulties with small target detection.
This situation needs to be improved by advancing image recognition.

To address the above issues, in this paper, we propose a CME-YOLOv5 algorithm.
Based on the YOLOv5 object detection algorithm, the CA attention mechanism is improved,
the detection layers are expanded to 4 according to the characteristics of small objects, and
the GIOU loss is replaced with EIOU loss. The problems of poor underwater detection of
dense fish swarms, small target positioning, and few pixels and low accuracy are solved,
and the accuracy of the algorithm for dense fish swarms and small targets while ensuring
real-time performance effectively improved. This technology can become an alternative or
supplementary method for fishery resource studies.
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2. Efficient Object Detection Network Design
2.1. YOLOv5 Object Detection Model

The YOLOv5 algorithm framework is divided into four parts: the first part is the
input layer, and the input size is 640 × 640’s three-channel image; the second part is the
backbone network, which uses the Darknet-53 network framework as a model to extract
the image features; the third part is the neck module, which is located between backbone
and the last output layer, includes spatial pyramid pooling-Fast (SPPF) using the maximum
pooling method and a path aggregation network (PANet) under an instance segmentation
framework, and repeatedly features the fusion and extraction of the shallow and deep
information in the three feature layers to make full use of the context information; the
fourth part predicts and decodes the three generated 20× 20, 40× 40, 80× 80 feature maps
(YOLO Head) and directly obtains the position of the prediction box in the image and class
of each object.

In the YOLOv5 model, there are four models with different network depths and
widths. According to the cost-performance ratio in Table 1, YOLOv5 l with small calcula-
tion parameters, high accuracy and high speed was selected as a basis for improvement
and experimentation.

Table 1. Parameters of different YOLOv5 models [20].

Model Size
(Pixels) mAPval

0.5:0.95 mAPval
0.5

Speed
CPU b1

(ms)

Speed
V100 b1

(ms)

Speed
V100 b32

(ms)

Params
(M)

FLOPs
@640 (B)

YOLOv5s 640 37.4 56.8 98 6.4 0.9 7.2 16.5
YOLOv5m 640 45.4 64.1 224 8.2 1.7 21.2 49
YOLOv5l 640 49 67.3 430 10.1 2.7 46.5 109.1
YOLOv5x 640 50.7 68.9 766 12.1 4.8 86.7 205.7

2.2. Improved CME-YOLOv5 Recognition Method

YOLOv5 has the characteristics of fast detection, high efficiency and flexibility in target
recognition. Underwater images generally have the problems of low contrast, blurring,
color deviation, and obscuration, which lead to poor quality and difficulty with the detec-
tion and identification of fish in dense schools. This affects the multiobject recognition of
underwater schools of fish and is disadvantageous for small object fish detection. Therefore,
it is necessary to further improve the YOLOv5 network to improve detection accuracy
and network performance. In this paper, a dense fish school and small object recognition
algorithm for the CME-YOLOv5 network are proposed; the model is shown in Figure 1. The
innovative features of the model are as follows: (1) The C3 structure converged attention
mechanism coordinate attention (CA) in the YOLOv5 network is used to form the C3CA
structure instead of the C3 structure in the backbone extraction network to increase the
model’s attention to key information, reduce the interference of invalid object information,
and enhance the feature expression ability of small objects in the detection network by
focusing on essential information from extensive amounts of available information. (2) The
number of detection layers in the YOLOv5 detection module (YOLO Head) is expanded
from 3 to 4 to better capture global information and rich context information, improve
the ability of the model to capture different dimensions information, and improve the
detection performance of the YOLOv5 network to multiscale objects, to extract features
better in dense schools of fish and improve the ability of the model to deal with small
object detection. (3) The EIOU loss function, which considers overlapping area, center
point distance, length, width and side length true difference, and adds focal loss to solve
the sample imbalance problem in bounding box regression, is used instead of the GIOU
loss function, thus addressing the problems of the slow convergence of the GIOU loss
function in the horizontal and vertical direction and its inability to optimize the case when
the predicted bounding box and ground-truth bounding box do not intersect.
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Figure 1. This is a figure that showing CME-YOLOv5 network structure. The numbers 1 to 30 in the
figure represent the layers of the CME-YOLOV5 model.

2.2.1. CA Attention Mechanism Module

Coordinate attention (CA) [24] (as shown in Figure 2) is a lightweight and efficient
mechanism in the channel and X and Y spatial directions, through which channel attention
is decomposed into two different spatial directions for aggregating features in a one-
dimensional feature coding process. It captures long-term dependencies in one space,
retains precise location information in the other, and forms a pair of direction-aware and
position-sensitive feature maps so that these feature maps can be used complementary to
enhance the representation of effective information.
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Figure 2. Schematic diagram of the CA mechanism module.

In CA, full average pooling of the input feature maps in the height and width directions
is first carried out to obtain the feature maps (Zh

C(h), Zw
C (w)). Then, the feature maps are

split in the height and width directions together to obtain the feature maps after convolution,
batch normalization and nonlinear sigmoid activation, where σ is a sigmoid function. Next,
the feature map F is convolved with the original height and width to obtain feature graphs
Fh and Fw, respectively, with the same number of channels as the original. After the sigmoid
activation function, the attention weight in height and width and the attention weight in
the width direction of the feature map (gh, gw) are obtained. Finally, the feature map with
attention weight in the height and width direction is obtained by multiplicative weighting
calculation on the original feature map, which can enhance the important information and
help the model locate and identify the target more accurately.



Water 2022, 14, 2412 5 of 12

2.2.2. Multiscale Detection Layer

Three detection layers of network feature maps, 20 × 20, 40 × 40, and 80 × 80, are
obtained after the initial YOLOv5 network structure passes through the backbone network
and the neck enhancement module, which are used to detect large, medium and small
objects, respectively. For conventional detection, it may be possible to achieve the desired
effect, but for dense groups of fish with individuals of different sizes, there are often
omissions or poor detection accuracy, especially for small objects. Therefore, to detect
individuals in dense underwater fish schools, a detection layer that can detect smaller
objects is added based on the original three detection layers. The model is shown in
Figure 1. The convolution is carried out at the 17th convolutional layer, which originally
needs to be downsampled and then upsampled, and the feature concatenation is carried
out at the 20th and 2nd layers so that the network actively learns, adaptively fuses features
and concatenates the process information, thus increasing the sensing field. Then, the
160 × 160 network feature map is obtained through convolution. YOLO Head1 is a new
detection layer introduced in our method. The second detection layer (YOLO Head2) of
80 × 80 is obtained through convolution after feature concatenation of layer 23 and layer
18. The third detection layer (YOLO Head3) of 40 × 40 is obtained through convolution
after feature concatenation of layer 26 and layer 14. The 29th layer and the 10th layer are
concatenated with features, and then the 4th detection layer (YOLO Head4) of 20 × 20 is
obtained through convolution.

2.2.3. Optimized Loss Function

The loss function calculates the difference between the forward calculation result
and the real value of each iteration of the neural network and evaluates the difference
between the predicted value and the real value of the model. Generally, the better the loss
function, the better the model’s performance. At present, object detection regression loss
functions include IOU [25], GIOU [26], DIOU [27], CIOU [28] and EIOU loss [29]. The
original YOLOv5 loss function is GIOU loss. GIOU loss uses closure as a penalty term,
which may lead to the problem of nonconvergence of the results in the model training
process. Therefore, we use EIOU loss to calculate regression loss.

LEIOU = LIOU + Ldis + Lasp = 1− IOU +
ρ2(b, b2)

c2 +
ρ2(w, w2)

c2
w

+
ρ2(h, h2)

c2
h

, (1)

ρ2(b, bgt) = √(bx − bgt
x

)2
+
(

by − bgt
y

)2
, (2)

In the formula, intersection over union (IOU) is the intersection and union ratio be-
tween the predicted bounding box and ground-truth bounding box; Equation (2) represents
the Euclidean distance between the center point of the predicted bounding box and ground-
truth bounding box; b is the center point of the predicted bounding box; bgt is the center
point of the ground-truth bounding box; w is the width of the predicted bounding box;
wgt is the width of the ground-truth bounding box; h is the height of the predicted bound-
ing box; hgt is the height of the ground-truth bounding box; C is the diagonal distance
of the minimum closure region that can contain both the predicted bounding box and
ground-truth bounding box.

The EIOU loss function consists of IOU loss LIOU , centre distance loss Ldis and side
length loss Lasp, which can optimize the convergence speed and positioning accuracy and
reduce the likelihood of inaccurate regression results.

3. Dataset

The experimental dataset in this analysis consisted of 1500 pictures, of which 65% were
images of underwater fish and small target fish collected from 4 coexisting hydropower
stations and 1 fish breeding station in Xinjiang and Tibet. To enhance the robustness of the
training results and improve the detection effect of the model, 35% were datasets (labeled
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fish in the wild) provided by NOAA, which included images of large numbers of fish
and small target fish. LabelImg was used to label the datasets one by one. The labeling
requirements were as follows: (1) in the dense fish group, fish visibility of more than 1/5
should be labeled; and (2) in the small target image, to prevent overfitting and reduce
misidentification, the image pixel can be labeled if it does not reach the lost frame rate.
After the annotation was complete, scripts were used to convert it into files required for
YOLOv5 training, and the datasets were randomly divided into training sets and validation
sets at a ratio of 8:2.

4. Experimental Protocols and Evaluation Measures
4.1. Experimental Platform and Protocols

This experiment was implemented with the Windows 10 operating system, Intel TM
i7-11800 h CPU processor, GeForce RTX3080 GPU graphics card, 16 GB video memory,
CUDA11.1 for training acceleration and the PyTorch 1.9 deep learning framework for
training. The image input size was 640 × 640, the initial learning rate was 0.01, the final
learning rate was 0.1, the SGD optimization model was used, and the training batch size
was 8. The specific model parameter configuration is shown in Table 2.

Table 2. Model parameter configuration table.

Parameters Configuration Parameters Configuration

operating system Windows10 initial learning rate 0.01
CPU i7-11800H final learning rate 0.1
GPU GeForce RTX3080 optimizer SGD

CUDA 11.1 optimizer momentum 0.937
image-size 640 × 640 batch size 8

4.2. Model Evaluation Measures

To verify the detection and recognition ability of our proposed model for images of
densely spaced underwater fish and small objects, precision was adopted to estimate the
correct proportion of all objects predicted by the model. Recall that the model predicts the
correct proportion of objects among all real objects. The average accuracy (mAP), the area
under the P-R curve, measures the performance of the model.

Precision =
TP

TP + FP
, (3)

Recall =
TP

TP + FN
, (4)

AP =
∫ 1

0
P(r)dr, (5)

mAP =
1
n ∑n

i=1 APi, (6)

TP, TN, FP, and FN are abbreviations for true positive, true negative, false positive,
and false negative, respectively. Positive and negative represent the predicted results of the
model. If the IOU value is greater than the threshold (set to 0.5), the prediction is positive; if
the IOU value is less than the threshold, the prediction is negative. True and false indicate
whether the predicted result is the same as the real result; if the results are the same, the
assessment is set to true; and if they are different, the assessment is set to false, as shown in
Table 3 below:
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Table 3. Division of positive and negative samples.

Real Value
Predicted Value

Positive Negative

Positive True Positive (TP) False Negative (FN)

Negative False Positive (FP) True Negative (TN)

5. Results and Discussion
5.1. Results Analysis
5.1.1. C3CA Ablation Experiment

To assess the efficiency of the C3 structure, we conducted a test replacing the C3
structure with C3CA at different locations and used mAP as an evaluation index. According
to the C3CA ablation experiment, it can be seen from Table 4 that the replacement method
of Framework 1 exhibited the largest accuracy improvement, which is 1.5 and 1.1% higher
than those of Framework 2 and Framework 3, respectively. As a result, the first method
was adopted.

Table 4. C3CA ablation experiment.

Framework Backbone Neck mAP

Framework 1
√

93.2
Framework 2

√
91.7

Framework 3
√ √

92.1

5.1.2. CME-YOLOv5 Ablation Experiment

To assess the effectiveness and progressiveness of the algorithm proposed in this paper,
8 groups of ablation experiments were conducted with the same verification set to evaluate
the images of different improvement schemes on the detection performance of the model.
The accuracy, recall, average accuracy, average detection time and model loss value of
each model were used to evaluate the impact of different modules on the YOLOv5 target
detection algorithm under the same experimental conditions. The lower the model loss
value, the better the regression of the model. The objective evaluation index results are
shown in Table 5 and the map is shown in Figure 3. According to the data in Table 5, after
the CA attention mechanism was fused with the C3 structure, compared with the initial
YOLOv5 model, mAP@0.50 increased by 2.7 percentage points, and the detection time
increased by 6.1 ms. Although the detection time increased, the model detection accuracy
effectively improved, indicating that this method can improve the extraction ability of target
feature information, suppress the interference of invalid feature information, and maximize
the utilization of feature information. After expanding the 3 detection layers of YOLOv5 to
4, map_0.5 increased by 1.6 percentage points, the model detection accuracy improved, the
small target detection performance increased, and the method was able to detect objects on
different scales. Replacing GIOU loss with EIOU loss lowered the training loss value of the
model, reduced the average detection time, and slightly improved mAP@0.50, indicating
that EIOU can optimize the convergence speed and positioning accuracy and reduce the
phenomenon of nonconvergence of regression results. The final results showed that each
enhanced method introduced in this paper exhibited a different performance improvement
over YOLOv5. The proposed algorithm mAP reached 94.9%, which was 4.4 percentage
points higher than that of YOLOv5 compared with mAP@0.50. The proposed algorithm
was inferior to YOLOv5 in average detection speed, and the detection time of a single
image increased by 8.5 ms. However, the algorithm introduced in this paper can meet the
requirements of real-time detection, and the detection accuracy is greatly improved.
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Table 5. This is a table that evaluates the impact of different improvement schemes on model detection
performance: Models 1–3 are single module improvement experiments, Model 1 integrates the CA
attention mechanism, Model 2 expands the detection layer, Model 3 uses the EIOU loss function, and
Models 4–6 are the improvement experiments of the two modules. Model 4 is the fusion CA attention
mechanism and the extended detection layer, Model 5 is the fusion CA at-tention mechanism and the
use of the EIOU loss function, and Model 6 is the extended detection layer and the use of the EIOU
loss function.

Order
Number Model CA

Multiscale
Detection

Layer
EIOU Precision

(%)
Recall

(%)
mAP@0.50

(%)

Average
Detection
Time (s)

Model
Training

Loss

0 YOLOv5 83.9 84.7 90.5 14.3 0.0240
1 Model 1

√
89.7 87.0 93.2 20.4 0.0305

2 Model 2
√

86.4 86.1 92.1 17.0 0.0308
3 Model 3

√
87.8 84.4 91.1 14.1 0.0209

4 Model 4
√ √

89.8 90.4 94.3 23.2 0.0354
5 Model 5

√ √
90.1 86.5 93.8 20.4 0.0257

6 Model 6
√ √

85.5 88.2 93.0 16.9 0.0275

7 CEM-
YOLOv5

√ √ √
92.3 88.1 94.9 22.8 0.0316
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5.1.3. Comparison of Experimental Results

To assess the detection performance of our algorithm in representative experiments
of the detection of more difficult images, the results of our method were compared with
those of YOLOv5. As seen in Figure 4, our algorithm greatly reduced the missing detection
of dense fish schools, improved the detection accuracy for small target fish with few
pixels and a lack of feature information, and reduced the extraction of useless image feature
information. The performance was better than that of the initial YOLOv5 model. Figure 4A1
shows the detection results of a photograph taken near a hydropower station. The image
has challenges, such as low contrast, blurred vision and occlusion. The YOLOv5 algorithm
exhibited serious missed detection on the right side of the figure. However, our algorithm
effectively detected small objects without feature information. As seen in Figure 4A2,
YOLOv5 failed to detect the abnormal angle of small target fish in the lower right corner
with fewer pixels. Our algorithm detected small objects with blurred vision and a lack of
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pixels on the upper right of the image (Figure 4A3). Figure 4B1 shows a small target fish
school. The detection performance of our algorithm was significantly higher than that of
YOLOv5, indicating that the model improves small target detection. In Figure 4B2,B3, there
are a large number of occluded objects in the image. Our algorithm effectively detected
target fish occluded by other fish, which demonstrated the ability of the method to detect
occluded and highly overlapping objects.
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Figure 4. This is a figure showing the prediction results of the model: (A1) detection result of an
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detection results; (B2) densely spaced fish and small target detection results; and (B3) fish and small
target detection results under exposure.

Table 6 shows the number of fish detected by our algorithm and YOLOv5. According
to the table, the total number of objects detected by our algorithm was 49 more than that
detected by YOLOv5, and the detection ratio increased by 24.6%. Our improved algorithm
had better detection performance for densely spaced fish and small objects.
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Table 6. Model prediction.

Model Picture 1 Picture 2 Picture 3 Picture 4 Picture 5 Picture 6 Total
Number

YOLOv5 15 12 13 33 68 58 199
CEM-YOLOv5 17 13 14 47 83 74 248
Quantity ratio 113.3% 108.3% 107.7% 142.4% 122.1% 127.6% 124.6%

5.2. Discussion

To verify the effectiveness and progressiveness of the CIM-YOLOv5 algorithm pro-
posed in this paper for densely spaced and small target fish, the same dataset was used to
compare its performance to that of the SSD, Faster R-CNN, YOLOv4 and YOLOv5 target
detection algorithms. As seen in the data in Table 7, compared with the SSD, Faster R-CNN,
YOLOv4 and YOLOv5 detection algorithms, the accuracy of CME-YOLOv5 achieved the
optimal level. mAP@0.50 was 18.4, 15.3, 10.0 and 4.4 percentage points higher than SSD,
Faster R-CNN, YOLOv4 and YOLOv5, respectively. The algorithm proposed in this paper
uses C3CA instead of the C3 module based on YOLOv5, expands the detection layer from
3 to 4, and replaces the EIOU loss function, which can allow the model to achieve better
detection performance, focus more attention on key information areas, and improve its
ability to detect small objects. However, it is worth noting that adding the CA attention
mechanism and expanding the detection layer led to an increase in the number of model
parameters; compared with the original YOLOv5 algorithm, the computation of the model
also increased, resulting in an increase in the average detection time.

Table 7. Model prediction.

Model mAP@0.50 (%) Average Detection Time (ms)

SSD 76.5 36.5
Faster R-CNN 79.6 61.5

YOLOv4 89.2 30.7
YOLOV5 90.5 14.3

CME-YOLOv5 94.9 22.8

The model proposed in this paper is only certified in small target detection of un-
derwater fish, but it does not affect the application of the model to small target scenes in
other academic/industrial fields or datasets, such as UAV aerial photography and dense
crowds. In the future, the application of computer vision technology to actual scenes is the
trend and focus of current research, but many models currently focus more on improving
accuracy and their detection speed will be limited. In fact, many model structures will have
some redundant modules, which will lead to more useless calculations when the network
is transmitted forwards/backwards, and this will not increase our accuracy. At present,
the distillation and pruning of the network may improve these problems. In the future,
we plan to develop a model with better performance and dynamic high-speed detection
of targets.

6. Conclusions

To address problems such as many fish, density, mutual occlusion and small targets
with little effective information and fuzziness, in this paper, we propose a method for
densely spaced fish and small target recognition based on YOLOv5. Compared with other
models, it has stronger advantages in various indicators.

First, aiming at the problems of poor positioning and less effective information in
underwater target detection, this paper proposes that first, the attention mechanisms Ca
and C3 structure are fused to increase the ability of the network to extract key information;
second, aiming at the problem of large number and intensive detection tasks, the 3 detection
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layers of YOLOv5 were expanded to 4. Finally, EIOU loss was replaced by GIOU loss to
optimize convergence speed and reduce inaccurate regression results.

The experimental results showed that the improved algorithm proposed in this paper
had different effects on different indicators; mAP@0.50 reached 94.9%, which had better
accuracy. The number of image detections reached 248, which was 49 more than that of
YOLOv5, and the detection effect was 24.6 percent higher. Target detection performance
improved. In summary, our proposed algorithm had higher accuracy and detection per-
formance for densely spaced fish and small objects and is more suitable for underwater
fishery resource studies.
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