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Abstract: Because of the ongoing climate change, the frequency of extreme rainfall events at the
global scale is expected to increase, resulting in higher social and economic impacts. Thus, improving
the forecast accuracy and the risk communication is a fundamental goal to limit social and economic
damages. Both Numerical Weather Prediction (NWP) and radar-based nowcasting systems still
have open issues, mainly in terms of precipitation correct time/space localization predictability
and rapid forecast accuracy decay, respectively. Trying to overcome these issues, this work aims to
present a nowcasting system combining an NWP model (WRF), using a 3 h rapid update cycling
3DVAR assimilation of radar reflectivity data, with the radar-based nowcasting system PhaSt through
a blending technique. Moreover, an innovative post-processing algorithm named SWING (Score-
Weighted Improved NowcastinG) has been developed in order to take into account the timely and
spatial uncertainty in the convective field simulation. The overarching goal is to pave the way for
an easy and automatic communication of the heavy rainfall warning derived by the nowcasting
procedure. The results obtained applying the SWING algorithm over a case study of 22 days in the
fall 2019 season suggest that the algorithm could improve the predictive capability of a traditional
deterministic nowcasting forecast system, keeping a useful forecast timing and thus integrating the
current forecast procedures. Eventually, the main advantage of the SWING algorithm is also its
very high versatility, since it could be used with any meteorological model also in a multi-model
forecast approach.

Keywords: nowcasting; data assimilation; numerical weather prediction

1. Introduction

Heavy rainfall is often responsible for local hazards such as flash floods, debris flows
or landslides [1,2]. Thus, accurate intense rainfall forecasts and risk communication are
important to mitigate these natural hazards’ socioeconomic impacts. The Mediterranean
region, as a climate change hotspot, especially for the greatest warming in summer [3], is
frequently struck by severe rainfall events causing lots of casualties and several million
euros of damage every year [4]. In this region, the unusually complex terrain, surrounding
the western Mediterranean sea, characterized by steep coastal mountains (Alps, Apennines,
Massif Central, Pyrenees), often enhances or triggers deep convective processes originating
over the warm sea in the fall season [5–7]. Particularly, the complex Italian terrain, with
steep mountains close to the coastline and a large number of very small catchments, is
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frequently prone to flash floods. Thus, the adoption of high-resolution meteorological
forecasting approaches possibly combined with data assimilation is recognized to be
essential to provide timely and accurate short-range forecasts [8]. In this context, it is
well known in the literature that “convection-permitting” or “convection-allowing” NWP
simulations produce more skillful guidance than those from a coarser resolution model
employing convective parameterizations [9–12].

However, the use of NWP for nowcasting purposes is still a challenge for two main
reasons. The first reason is related to the model spin-up (3–6 h for convective-permitting
model resolutions) appearing when the model is initialized by interpolating a coarser
resolution analysis and due to the initial condition’s inability to represent the physical
processes at the convective scale. The second one is due to the fact that even if NWP models
may show some ability to forecast the convection initialization and mode, their accuracy
in the timing and location of convective structures very often cannot satisfy the needs of
nowcasting spatio-temporal scales [13].

To reduce the period required for model spinup, data assimilation with rapid update
cycles has been developed to enhance high spatio-temporal resolution predictive capability
with a “warm start” [14]. Several studies have shown the rapid update cycling benefit in
terms of improving convective precipitation forecast skills [8,14,15]. Although significant
progress has been made in using NWP models for nowcasting applications, there are still
many open issues such as the predictability of precipitation systems, the need for improved
mesoscale and microscale observation networks, and the improvement of rapid update
NWP and DA systems [13].

On the other side, radar-based nowcasting models can predict the rainfall pattern
evolution, even at a small spatial scale, starting from the latest observed radar rainfall
images to provide a very short-term forecast (usually a few hours [16]). The open issues for
such a radar-based procedure is that the forecast accuracy decays quite quickly for time
ranges higher than about 20–120 min [16,17]. The main reason of such behavior is that
radar nowcasting techniques do not model (or model them only stochastically) processes
such as the initation, growth and decay of precipitation that become important for longer
lead times. Thus, for a very short-term forecast (up to 2 h [18]), radar nowcasting usually
performs well, while for a longer forecast, NWP models can be more accurate.

In this context, the work aims to present a nowcasting system with an NWP model
(WRF) using a 3 h rapid update cycling 3DVAR of radar reflectivity observations and an
innovative post-processing algorithm named SWING (Score-Weighted Improved Nowcast-
inG) able to take into account the timely and spatial uncertainty in the convective field
simulation. The NWP model forecast is further combined with the radar-based nowcasting
system PhaSt [19] to improve the first two hours of forecast. The overarching goal is to pave
the way for an easy and automatic output communication of the heavy rainfall warning
derived by the nowcasting procedure. The algorithm is tested on a case study period of
22 days (10 in October and 12 in November) in the 2019 fall season.

The paper is therefore subdivided as follows: in Section 2, the case studies, the WRF
model setup, the nowcasting design, the SWING algorithm methodology, the observed data
used and the verification method are described. In Section 3, the SWING algorithm applica-
tion and validation is presented and eventually, Section 4 reports the concluding remarks.

2. Materials and Methods
2.1. Case Studies Description

The algorithm is tested over 22 rainy days of October and November 2019. The 9-day
time period between 14 and 22 October 2019 and the 10 days between 12 November and 24
November (excluding 20 and 21 November due to observational data problems) represent
a typical fall precipitation season time window in Italy. The non-persistence of strong
anticyclone areas over Europe permits having dynamic movements of troughs from the
Atlantic toward the Mediterranean basin. This synoptic configuration allows the interaction
of (mainly) cold fronts with the Italian orography, producing large-scale precipitation but
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also thunderstorms. During the selected time window, two extreme events recorded on
14 and 15 October and 21 and 22 October affected northern Italy. On 14 October, a trough
deepened in the western Mediterranean Sea, moving great quantities of moist unstable air
toward the Liguria coast. This trough remained stationary for about 12 h with a strong
southwest wind component above 2000 m and a southeast component below, at least in
eastern Liguria. In fact, close to the ground in the western part of the region, the flux had a
north component because it flew off the Po valley. This typical wind shear configuration is
able to keep stationary cells that form over the Gulf of Genova. Indeed, this happened, a
squall line formed during the night between 14 and 15 October, hitting the coast between
Savona and Genova with large precipitation amounts and strong intensity. In the morning
of 15 October, the cold front associated with the trough passed over North Italy, producing
new convective cells over Liguria but with less damages since they were not stationary [20].

On 20 October, a similar situation occurred. Again, a trough over Spain remained
stationary for about 24 h, producing a self-regenerating cell on 21 October which stayed
in place for 12–14 h, determining a typical V-shape system that brought very intense rain
at the border between Piemonte and Liguria. The system dissipated only in the morning
of 22 October [21]. This period is chosen as a use case to assess the SWING algorithm
impact because it includes different pluviometric regimes, both of type I (long-lived and
spatially distributed events such as the 21 and 22 October 2019 event) and type II (short
and localized, such as the 14 and 15 October event 2019), following the [22] classification,
including also normal rainy periods for a total of 22 days. This is done to assess the SWING
impact considering as many event types as possible, considering what could happen in a
daily operational framework. The aim of this work is to demonstrate the added value of
such algorithm on a wide portfolio of events. Moreover, both the events type I and type II
overreached the 400 mm of rainfall felt in 12 and 6 h, respectively. These kinds of events are
not rare in this part of Italy, which is very prone to flood and flash floods of such magnitude
due to the peculiar geographical configuration. The particular morphology leads to the
formation of meteorological patterns specific to the region, which are capable of producing
rainfall of relatively short duration and extremely high intensity (up to an average of
200 mm in one hour and 500–600 mm in 12 h, [23]). In fact, heavy precipitation is triggered
by the very steep topography of the coast: it occurs frequently that the monthly average
rainfall falls in just a few hours and/or a significant fraction (up to 30–40%) of the yearly
average falls in 1 day [24,25]. Such a scenario has often been observed in the last decade
when Liguria (NW Italy) and southern France have been repeatedly hit by severe floods:
2010 Varazze and Sestri Ponente (Liguria region), 2011 Cinque Terre and Genoa (Liguria
region), 2012 Marseille and Isle du Levant, 2014 Genoa and Chiavari (Liguria region), 2015
Nice, 2019 Genoa and surrounding (Liguria region), 2019 Liguria interland and lower
Piedmont region (NW Italy). These events have been largely studied and analyzed in
several works [5,7,8,23–30], firstly to assess that convective cells, embedded in such MCSs,
are triggered over the sea by the convergence of a warm and moist southeasterly flow and
a northerly much colder and drier one. These structures are then advected to the land
where the combined action of the aforementioned currents and the topography force them
to persist for several hours over a very localized area (e.g., about 100 km2, Parodi et al.,
2017). Those events are still hardly predictable, and their forecast is very important to
reduce the socioeconomic impacts. As an example, concerning the rainfall amounts, during
the 25 October 2011 flood that hit Cinque Terre and Genoa areas in the Liguria region, the
Brugnato rain gauge station registered up to 470 mm of rain in 6 h, one-third of the average
annual rainfall, with a peak of 150 mm in 1 h [5]. Nine days later, during the 4 November
2011 flood, the Genoa and Chiavari areas in Liguria were hit by a torrential rainfall event
with up to 450 mm of rain in 5 h [5]. Some years later, in 2014, the Genoa city has been
again hit by an intense flood on 9 October, with peaks of 130 mm, 200 mm and 400 mm in
1 h, 3 h and 24 h, respectively [7,30].

This kind of event has been recorded also in the past. Ref. [31] describes the San
Fruttuoso event of 1915 with rainfall depths that reached up to 400 mm in approximately
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4 h in some rain gauges [32]. Ref. [33] studied three Ligurian floods of the past (1953,
1970 and 1992) with similar amounts of rainfall in the same area. Thus, extreme events
are often observed in this region, although their frequency is rising with the ongoing
changing climate.

For these reasons, we have selected this particular period. It should also assess if
SWING is capable of detecting extreme rainfall events without having a high false alarm
rate during less intense events.

2.2. WRF Model Setup

The Weather Research and Forecasting (WRF) model v3.8.1 [34] was selected as the
numerical weather model. It is a compressible non-hydrostatic model with mass-based
terrain-following coordinates that was developed at the National Center for Atmospheric
Research (NCAR) in collaboration with several institutes and universities for operational
weather forecasting and atmospheric science research. For this study, three two-way nested
domains (Figure 1) have been used. The domains have, respectively, a horizontal grid
spacing of 22.5 (216 × 191 grid points), 7.5 (523 × 448) and 2.5 km (430 × 469) with
50 vertical levels (Figure 1; all domains top reach 50 hPa).

Figure 1. The three nested domains adopted for the WRF model.

All the simulations are performed with the same physical parameterizations set,
described hereafter, that has already been successfully tested in the study of similar
events [7,8,30]. The MM5 scheme is adopted as surface layer [35–37]. A convective velocity
following [38] is used to enhance surface fluxes of heat and moisture. The Rapid Update
Cycle (RUC) scheme is used as a multi-level soil model (6 levels) with higher resolution in
the upper soil layers (0, 5, 20, 40, 160, 300 cm). This soil model solves the heat diffusion
and Richards moisture transfer equations (with a layer approach) and in the cold season
considers phase changes of soil water [39,40]. The planetary boundary layer (PBL) dynam-
ics is parameterized with the diagnostic non-local Yonsei University PBL scheme [41]. The
WSM6 microphysics six-class scheme is adopted [42]. Lastly, the radiative processes are
parameterized by means of the longwave and shortwave RRTMG schemes [43].

The initial and lateral boundary conditions are derived from NCEP-GFS (National
Centers for Environmental Prediction Global Forecast System) analysis and forecast data
available at a horizontal grid spacing of 0.25◦ × 0.25◦ and a time resolution of 3 h.

The nowcasting has been implemented with a 3-hour cycle 3DVAR technique of radar
reflectivity data. The WRF data assimilation package WRFDA v3.9.1 is used. For the
applied 3DVAR [8], the reflectivity operator used is the modified direct operator. This
work adopts the Control Variable option 5 (CV5) of the WRFDA package for the B matrix
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calculation using the National Meteorological Center (NMC) method [44] (for more details,
refer to WRFDA User Guide). The NMC method was applied over the entire October 2015
month with a 24 h lead time for the forecasts starting at 00:00 UTC and a 12 h lead time for
the ones initialized at 12:00 UTC of the same day. The differences between the two forecasts
(t + 24 and t + 12) valid for the same reference time were used to calculate the domain’s
specific error statistics.

2.3. Phast Model Setup

In this work, the NWP nowcasting is improved with a radar-based probabilistic
technique, PhaSt [19]. PhaSt is a spectral-based nowcasting procedure based on the precip-
itation fields’ empirical nonlinear transformation provided by radar measurements and
on the stochastic evolution of the transformed fields in spectral space. This procedure
can provide an ensemble probabilistic nowcasting of precipitation fields up to a lead time
of two hours. In addition, the use of spectral space instead of physical space assures
that the spatial correlations of precipitation fields are preserved. The model requires two
initial precipitation fields, which are to be used as initial conditions. It takes an empirical
nonlinear transformation of the two rainfall fields used as initial conditions, r(x,y,t = 0)
and r(x,y,t = −∆t), and generates two Gaussian fields, g(x,y,0) and g(x,y,−∆t). The Fourier
transform of the Gaussianized fields are taken, and their Fourier spectra, ĝ(kx,ky,0) and
ĝ(kx,ky,−∆t) are obtained. From these, for each wavenumber (kx,ky), the Fourier phase,
Φ, and an estimate of the Fourier angular frequency are calculated. Fourier phases are
then evolved in time by a stochastic process, while Fourier amplitudes are kept fixed.
There are several stochastic models that can be used to evolve the Fourier phases. To
allow the presence of time correlations in the angular frequencies, a Langevin-type model
is used: the temporal evolution of the Fourier phase Φ(kx,ky) at a given wavenumber
(kx,ky) is written in terms of a linear Ornstein–Uhlenbeck stochastic process for the angular
frequency. The Ornstein–Uhlenbeck process generates angular frequencies that have a
Gaussian distribution with zero mean and variance σ2 and an exponentially decaying
temporal auto-correlation. The spectrum with the evolved Fourier phases is inverted to
generate a nowcasted Gaussian field at the time t of interest, g(x,y,t). This evolved field has
the same power spectrum as the initial Gaussianized field, g(x,y,0). Different realizations
of the stochastic process allow the generation of different evolution of the precipitation
field and the creation of an ensemble of precipitation nowcasts. Eventually, an inverse
nonlinear transformation is performed to pass from the evolved Gaussian field g(x,y,t) to
the nowcasted rainfall field.

As mentioned before, the algorithm can provide an ensemble of possible rainfall
fields for the upcoming hours; in this study, however, the algorithm has been used in its
deterministic version, switching off the noise related component.

2.4. Observational Dataset

The observational data used for the assimilation with the 3DVAR in WRF is the
reflectivity from weather radars. These data are provided by the Meteorological Radar
national mosaic operated by the Italian Civil Protection [45], CAPPI data on three levels
(2000, 3000 and 5000 m a.s.l.) covering the whole Italian territory. The reflectivity data are
assimilated with the modified reflectivity operator presented in [8].

The Phast algorithm uses Surface Rainfall Intensity adjusted (SRIadj) observations
to nowcast the precipitation evolution. The rainfall intensity product named SRIadjust is
provided by the Italian Civil Protection National Department. It is based on the National
Radar Network data, which are made by different systems: C and X band radar, polarimetric
and non-polarimetric radar. The algorithm to retrieve the radar quantitative precipitation
estimation (RQPE) uses both polarimetric and non-polarimetric data; it is described in [46]
and exploits other previous works [47,48]. The final product is obtained after adjusting
RQPE with rain gauge data in a near real-time framework. Rain gauge data are interpolated
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with a geostatistical method described in [49] and compared with RQPE on two different
accumulation time windows: 3 and 24 h.

For a certain instant t and for each pixel of the matrix grid, two Adjustment Factors
are estimated as AF = R/G, where R is radar rain while G is gauge rain.

The AF is calculated for the 24 h accumulation (AF24H) when G > 5 mm, if G < 5 mm
AF24H is not modified with respect to the previous estimation.

The AF is calculated for the 3 h accumulation (AF3H) when G > 2 mm, if G < 2 mm
is AF3H is posed equal to AF24H.

The final rain field is defined as SRIadjust = RQPE× AF3H; it has a spatial resolu-
tion of 1 km and a time resolution of 5 min.

Eventually, the simulation weights are calculated using the merging products between
RQPE and rain gauges observations cumulated over 3 h [49–51].

2.5. Swing Algorithm Methodology

To deal with the main open issues related to the use of NWP models for the nowcasting
applications highlighted in the Introduction, in this work, a new post-processing algorithm,
SWING, is built up.

The nowcasting procedure’s aim is to produce short-term forecasts, frequently updated
with observations, to provide the most reliable information on the atmospheric state in the
following few hours. This would allow, with the modern communication technologies, to
inform some hours in advance the population about the risks that potentially will affect a
certain area.

It is well known that in order to reach this goal, NWP models at km-scale resolution
need significant computational time and resources to produce on-time forecasts over large
geographical areas (e.g., see the innermost domain in Figure 1). Thus, to properly design
and test the nowcasting simulations for an operational purpose, it is important to consider
the available HPC architecture and the time needed to run each forecast.

Along these lines, a nowcasting scheme with a 3 h cycling 3DVAR and 12 h forecast
implemented to always use the most recent GFS global model available to force the NWP
runs with at least two assimilation cycles before the 12 h forecast has been implemented.
Figure 2 represents the nowcasting timing and forecast availability with the considered
model domains setup and HPC architecture available.

Figure 2. Nowcasting scheme with the operational timing obtained with the available HPC architecture.
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The main aim is to take into account the spatial and temporal uncertainties of the
meteorological model, including the consideration that the most recent simulation is not
necessarily the best one due to, for example, the spin-up process. To deal with all these
issues, it is important to refer to the availability time of each forecast reported in Figure 2.
From that scheme, it is possible to see that, in an operational-like mode, for each time instant
(dt = 3 h in this case) starting from a given time (hereafter called “now”), the nowcasting
design presented this section allows to have three simulations providing a 6 h forecast
(or two simulations providing a 9 h forecast) covering the same time window (Figure 3).
Furthermore, each forecast has at least 3 h of simulation “in the past” with respect to the
“now” instant (notice that the most recent simulation is weighted on the 3 h of forecast
before the last data assimilation cycle).

The new algorithm aims to consider not only the most recent simulation at each time
but all the simulations covering a given time instant and 6 h in the future. It is important to
notice that every 3 h, a new forecast is available, so the nowcasting forecast will be updated
every three hours starting from the “now” until the end of the use-case period.

The first time instants covered by three simulations in the chosen periods are 14 Oc-
tober 2019 at 06 UTC for October simulations and 12 November 2019 for the November
period. Using three forecasts for each time instant has the main advantage of having differ-
ent warm start times and different assimilation cycles for each of them. Each simulation
is weighted based on the 3 h of forecast “in the past” with respect to the “now”. This
weighting is performed through an object comparison between the simulated and observed
rainfall fields (observations are from the radar and rain gauges merged maps).

When a weight for each of the three forecasts is obtained, a probability rainfall map
for the following 6 h from “now” can be retrieved.

Figure 3. Ensemble example from timing reported in Figure 2.

Algorithm Steps Description

The procedure described above is implemented as follows:

• Simulations selection: For each time instant (named hereafter “now”), there should
be at least 3 h of simulation in the past used to evaluate the simulation behavior and
assign a weight; then, the 6 h of future forecasts will be used to generate the rainfall
probability maps.
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• Simulations weighting: First of all, given the observed 3 h accumulated rainfall field
Po, the observed rainfall objects Oi are isolated considering only the regions where
Po > Pthreshold (in this case, Pthreshold = 2 mm, Figure 4 panel A), obtaining the field
P′o . An object OOi, thus, is defined as a connected region (in the sense of spatially
adjacent cells) of the P′o field in which values are different from 0. Then, a Gaussian
filter GF with σ equal to five grid points (to take into account a possible model spatial
uncertainty) is applied to the observed objects to merge together those belonging to
the same rainfall structure (Figure 4 panels B,C, Equation (1)).

PoG = GF(P′o, 5σ) (1)

Then, the original data are restored into the identified objects (rainfall field Po), and
the convex hull of each object is calculated (Figure 4 panels D,E). Eventually, the
observed objects convex hulls map PO

CH is produced to be used as a benchmark for
modeled objects. The modeled objects OMj are isolated in the same way used for the
observed ones (Figure 5 panel A). In the modeled field PM, instead of using a Gaussian
filter to merge contiguous objects, the observed convex hulls PO

CH are used to merge
together the modeled objects OMj inside the same structure (Figure 5 panels B–D).
The correspondence between the observed and the modeled objects (i is the index of
observed objects, while j is the index of modeled objects) is made through the various
objects characteristics scores and comparison calculation that follows:

– The rainfall volumes Vi, Vj;
– The areas Ai, Aj;
– The distance between the centers of gravity DCG(OOi, OMj);
– The objects orientation αi, αj;
– The objects intersection IA(OOi, OM).

All possible objects couples (i,j, i = 1,. . . ,NO, j = 1,. . . ,NM, with NO number of observed
objects OOi and NM number of modeled objects OM) are tested, and all these parame-
ters are weighted and calculated among given thresholds, allowing to obtain a proper
match of observed and modeled objects. Figure 6 in panel A shows an example of
objects matching. Thus, the scores above introduced are also combined in an Overall
Field Score (OFS) in order to weight each simulation (Equation (2)).

OFS =
SCG ×WCG + SA ×WA + SV ×WV + SIA ×WIA + Sα ×Wα

WCG + WA + WV + WIA + Wα
(2)

where SCG is the score distance between the center of gravity, and its weight is WCG = 1,
SA is the area ratio score whose weight is WA = 0.25, SV is the rainfall volume score
and its weight is WV = 0.5, SIA is the polygon intersection score, and its weight is
WIA = 1, and eventually, Sα is the object orientation score and its weight is Wα = 0.5.
In the final forecast weight, the OFS is combined with a missed object score MOS
(observed objects not present in the model, range 0–1):

MOS = 1−
imatched

∑
n=1

Ai /
NO

∑
n=1

Ai (3)

and a false alarm score FAS (modeled objects not present in the observation, range
0–1):

FAS = exp(0.1×
iNOTmatched

∑
n=1

Ai /
imatched

∑
n=1

Ai) (4)

into an overall Reliability Score (RS):

RS = OFS×MOS× FAS. (5)
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This final score is eventually used to weight the forecast for the hazard scenario pro-
duction.

• Rainfall hazard scenarios production: The previously described procedure assigns
the Reliability Score (RS) to each map that will be used to weight the different forecasts.
Before the scenario generation, the first 2 h of the 6 h forecast are corrected using the
Phast radar nowcasting and blended with the NWP prediction presented in Section 2.3
(Figure 3). Then, the accumulated rainfall field over the 6 h is calculated from the
blended Phast and WRF model output. For each forecast, the rainfall depth in each
cell is then classified according to a scale of four severity classes derived from three
rainfall thresholds taken from the Italian Civil Department rain gauges warning system
(Figure 6, panel B). Each precipitation severity map (PSk) is then multiplied by its
corresponding reliability score (RSk) above introduced: in this way, a unique spatially
distributed variable is obtained describing both forecast intensity and its reliability
combination. Given the three forecast maps available at a certain “now” timing, the
final product is the simple average of all the maps: for each pixel, thus, it represents a
level of forecast hazard that synthesizes all the available forecasts weighted with their
reliability (in terms, as previously described, of their ability in correctly reconstructing
the previous 3 h):

HS =
Nk

∑
k=1

PSk × RSk/Nk (6)

We describe this as a “rainfall hazard scenario forecast”, HS, being referred to a spe-
cific forecast time window (Figure 6, Panel D-second row, left panel). To compare
the forecast field with the observed one, the same procedure is applied to the radar
and rain gauges merging maps considering that they have 100% occurrence prob-
ability (RSO = 1, Figure 6, Panel D-first row, left panel). In this map, low values
can correspond to both a combination of low-intensity forecast with medium-high
reliability or high-intensity forecast with low reliability: this map was conceived to
yield a synthetic representation of all the information delivered by the forecast and
the available observations at the map production time. In order to classify these map
values, a matrix of hazard scenario intensities is provided in Figure 6, panel C, in
which both rainfall forecast severity and reliability axis are represented.

• Automatic warning system: The Italian Civil Protection Department manages the
hydro-meteorological warning in terms of alert areas. The Italian territory is subdi-
vided into 170 alert areas (Figure 6, panel D, second column). Currently, the Italian
Civil Protection and regional civil protection departments alert system is based on a
daily bulletin issued each day before 13 UTC reporting the forecasted situation for the
following 36 h for each alert area of each Italian region. In this system, a forecaster
interprets the models outputs and converts them in a warning bulletin depending also
on its experience (the so-called expert forecast). This approach is compatible with a
common forecast delivery timing (24–48 h), while the nowcasting procedures have
necessarily very frequent output (every 3 h for the SWING algorithm) with shorter
forecasts (6 h in this work). Thus, the scenarios obtained with the SWING algorithm
are converted automatically into warnings on the alert areas using a procedure that
retrieves the warning color considering the colored pixels inside each area trying to
overcome the human interpretation (Figure 6, panel D, second column).
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Figure 4. SWING procedure on observed objects: Panel (A) observed objects, Panel (B) Gaussian
filter with sigma = 5, Panel (C) Merged observed object, Panel (D) observed object grouped together,
Panel (E) convex hulls around grouped objects, Panel (F) map of merged object.
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Figure 5. SWING procedure on modeled objects: Panel (A) modeled objects, Panel (B) grouped
modeled object over observed convex hulls, Panel (C) modeled convex hulls, Panel (D) observed and
modeled convex hulls comparison.

Figure 6. SWING hazard scenarios generation. Starting from the forecasts weightings with respect
to observations (Panel (A)) and the rainfall thresholds from the Italian Civil Protection Department
warning system (Panel (B)), the hazard level for each rainfall object is retrieved from the hazard
severity table (Panel (C)). Eventually, the hazard scenario maps and the warning on the alert areas
are obtained (Panel (D)).
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2.6. Verification Method

As mentioned before, the modeled scenarios are automatically converted into warn-
ings over the alert areas. Then, the same procedure is applied to the observed scenario, and
eventually, the forecast is validated through a comparison between the warnings given
by observations and forecasts. The alert areas warnings are provided in a colored-scale
way (green, yellow, orange, red and white for no-rain areas). Thus, to validate the model’s
performances, the alert areas colored by rainfall observations HSO,a are compared to the
ones filled with the model outputs HSM,a where a that is the alert areas index. In this way,
it is possible to highlights different behaviors:

• Correct negatives: No-rain both in modeled and observed scenarios: HSM,a = HSO,a = 0.
• Correct forecast: Same color both in modeled and observed scenarios: HSM,a = HSO,a.
• Over/underestimation by 1: The modeled area is colored by one color more/less with

respect to the observed one: HSM,a − HSO,a = +/−1; i.e., the observed area is yellow
and the modeled one is orange (overestimation by 1) or green (underestimation by 1).

• Over/underestimation by 2: The modeled area is colored by two colors more/less
with respect to the observed one: HSM,a − HSO,a = +/−2; i.e., the observed area is
yellow and the modeled one is red (overestimation by 2) or white (underestimation
by 2).

• Over/underestimation by 3: The modeled area is colored by three colors more/less
with respect to the observed one: HSM,a − HSO,a = +/−3; i.e., the observed area is
green and the modeled one is red (overestimation by 3), or the observed area is red
while the modeled one is green (underestimation by 3).

Over/underestimations by four colors HSM,a − HSO,a = +/−4 (i.e., red observed area
and white modeled area) are included into over/underestimations by three, respectively. It
is worth noticing that in the Italian early warning system, the maximum alert level given
for thunderstorms is orange. Thus, in an automatic procedure such as the one built in this
work, orange and red alerts are counted together in the validation process, which classifies
forecasts as correct when the modeled areas are orange and the corresponding observed
ones are red. The validation results for each color are expressed as the percentage of the
observed area of that color.

To verify the SWING algorithm performances and investigate its added value, the
validation is compared with a simpler nowcasting only using only a single forecast every
3 h and with the same single forecast only corrected with the Phast nowcasting model in
the first two hours.

3. Results Discussion: SWING Algorithm Application and Validation

The SWING algorithm is applied in an operational-like mode to the 22 days of October
and November chosen as use cases. To evaluate the algorithm’s added value, the main
idea is to compare it with the scenarios obtained with a single run forecast. The SWING
algorithm is composed by two main parts; the first is the forecast correction with the Phast
nowcasting tool, and the second is the small ensemble forecast weighting. Thus, the impact
of each part of this system is evaluated separately. First of all, the warnings on the alert
areas considering only a single simulation every 3 h (always the most recent) without Phast
are evaluated (Figure 7). Secondly, to the first approach, the Phast correction is applied
(Figure 8). Then, the complete SWING algorithm using Phast and the three weighted
forecast is evaluated (Figure 9). Looking at Figures 7–9, it is possible to see that both
the use of Phast and the use of the complete SWING algorithm improves the nowcasting
performance in terms of better correct forecast and less over/underestimations. More in
detail, the use of Phast (comparison between Figures 7 and 8) results in a higher percentage
of correct forecasts (panel A of Figures 7 and 8). However, the over/underestimations
remain comparable with no significant changes with the exception of the underestimation
of orange/red (orange bar in panel D, Figures 7 and 8) that is reduced from 16.1% to
9.7%. The use of the SWING algorithm further improves some correct forecasts (green
and yellow in Figure 9, panel A). Despite a slightly decrease in the correct forecast of no
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rain and orange/red, the main improvement obtained by the SWING algorithm relies
on the strong reduction of orange/red false alarm (blue column of yellow warning in
panel C Figures 7–9). This means a false alarm reduction of 15.6% when the observed
forecast is just a yellow warning on the alert areas while the model was forecasting an
orange/red warning, overestimating the event. The reduction of such a false alarm is very
important for the public’s perception of danger when an orange/red warning is issued,
because false alarms may reduce confidence in future warnings, and thus, over-warning
can be problematic [52–54]. Furthermore, a quite general improvement is obtained with the
SWING algorithm for what concerns the underestimations (orange bars) with the exception
of the orange/red underestimation by 1 and 2 (panels B and C) that slightly increases.
However, there, the worst underestimation (by 3) is further reduced with the SWING
algorithm (panels D). The main issue still remains an underestimation by 2 (orange column
in panel C) of 34.4% of orange/red warnings: future works will be devoted to further
improve also this aspect.

Figure 7. Performance obtained using only a single run. In panels (B–D), overestimations are
represented in blue and underestimations are in orange, panel (A) represents the correct forecast per-
centage.

Figure 8. Performance obtained using only a single run corrected with Phast. In panels (B–D),
overestimations are represented in blue and underestimations are represented in orange, panel (A)
represents the correct forecast percentage.
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Figure 9. Performance obtained using the complete SWING algorithm. In panels (B–D), overestima-
tions are represented in blue and underestimations are represented in orange, panel (A) represents
the correct forecast percentage.

Another aspect worth evaluating is the forecast timing. In fact, the SWING algorithm
must provide a correct forecast in useful timing to be issued to the population sufficiently
in advance to allow some self-protective behavior. For this investigation, the analysis was
centered on the two most intense events: 14/15 October 2019 and 21/22 October 2019. The
first event is very localized in time and space; it is a typical organized thunderstorm [7,8,30]
that has more than 400 mm of rain fall down in about 6 h in a very small area. The rainfall
started between 22 and 23 UTC in the evening of 14 October (depending on the location) and
continued until 06 UTC. So, we will consider the last useful forecast that can be available:
the 21 UTC forecast (Figure 10). As it is possible to see from Figure 10, the modeled scenario
(panel C) is very close to the observed one (panel A). Furthermore, the automatic warnings
on the corresponding alert areas perfectly match (panel B observation, panel D model).
Referring to the timing of Figures 2 and 3, the 21 UTC forecast is available around 21:30
UTC. This means that with an automatic warning diffusion, people could be advised half
an hour to one hour before the event beginning.

The second intense event timing is more complicated to evaluate: in fact, it is a longer-
lasting event started on 19 October, with the most intense part during 21 October with
precipitation peaking up to 400 mm in 12 h in some Piedmont area [21]. Indeed, on 21
October, a first Mesoscale Convective System (MCS) moved from Marseilles and the French
coast to the Italian central Alps (Lombardy region) in about 6 h between 00 UTC and
06 UTC. After this first convective episode in the morning, a second very intense V-shape
MCS took place between Liguria and Piedmont regions starting from 12 UTC and persisting
over the same area for about 12 h with the most intense phase between 18 UTC and 00 UTC.
The above-mentioned dynamic makes the forecast timing very difficult, because MCSs
(especially V-shapes) have an intrinsic high difficult forecast capability, and the main issues
during 21 October are due to two such intense events persisting over areas with already
saturated soil from previous rainfall days. It is worth further noticing also that the V-shape
event of 21 and 22 October was completely missed by all the operational models available
for the daily forecast. To look at the first MCS passing from the French coast to the central
Italian Alps in the first 6 h of 21 October, Figures 11 and 12 show the 00 UTC and 03 UTC
forecasts for the next 6 h. In the 00 UTC forecast, the model tends to underestimate a bit
the event extension with less alert areas with orange/red color (Figure 11, panel D) with
respect to the observed ones (Figure 11, panel B). At 03 UTC, instead, the modeled area
with at least an orange warning (the maximum for thunderstorm in the current Italian early
warning system) is better covering the red observed areas (Figure 12, panels B and D).
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Figure 10. Scenario generated for the 14 October 2019 event at 21 UTC. Panels (A,B) refer to observed
scenario, panels (C,D) to the modeled one.

Figure 11. Scenario generated for the 21 October 2019 event at 00 UTC for the next 6 h. Panels (A,B)
refer to observed scenario, panels (C,D) to the modeled one.

The V-shape MCS that hits northwestern Italy in the afternoon is even more difficult
to be predicted. The beginning of this event at 12 UTC is shifted by the model to the north
with respect to the observed red warning (Figure 13). However, looking at the 18 UTC
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forecast (Figure 14), the model is able to warn with at least an orange warning the alert
areas most hit by the intense phase of this second event for the following six hours.

Figure 12. Scenario generated for the 21 October 2019 event at 03 UTC for the next 6 h. Panels (A,B)
refer to observed scenario, panels (C,D) to the modeled one.

Figure 13. Scenario generated for the 21 October 2019 event at 12 UTC for the next 6 h. Panels (A,B)
refer to observed scenario, panels (C,D) to the modeled one.
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Figure 14. Scenario generated for the 21 October 2019 event at 18 UTC for the next 6 h. Panels (A,B)
refer to observed scenario, panels (C,D) to the modeled one.

From the results presented, the SWING algorithm can improve the forecast capability
with respect to a traditional single run nowcasting and thus integrate the current forecast
procedures, allowing an automatic warning of people in case of extreme events with
an overall good performance also in case of hardly predictable events. The algorithm
improves the correct forecast, but above all, the results are very effective in the control
of over/underestimation that could affect the forecast reliability perception by people.
However, the main advantage of this algorithm is its high versatility. In fact, here, it is
used with the WRF meteorological model, but it can be applied to every model output
also in the multi-model approach. Furthermore, the scenarios can be calculated on a larger
ensemble members number. Thus, it can pave the way for future improvements related
to the use of a multi-model approach or an ensemble members increase used to build
the scenarios (depending on computational resources). Eventually, depending on the
application, the warning can be calculated also on different areas such as municipalities or
provinces instead of the alert areas used here for conventional civil protection applications
or on different variables such as the lightning potential index (LPI [30]), to predict lightning
risk as an example.

4. Conclusions

In this work, starting from the actual NWP models’ capability in terms of nowcast-
ing and the always-growing needs for accurate short-range forecasts, the new SWING
algorithm is introduced. This system aims to combine the state-of-the-art nowcasting
knowledge with a new post-processing algorithm (SWING) able to take the best from the
combination of the Phast nowcasting model and the NWP model WRF improved with a
3 h rapid update cycling 3DVAR. This algorithm tries to take into account the timely and
spatial model uncertainty in the convective field simulation and to obtain the best correct
forecast as possible containing false alarms. Furthermore, it is worth noticing that in a
nowcasting context, with a rapid forecast update (every 3 h in this case), there is no time
for a forecast issued by an expert meteorologist. We are aware that there is still an added
value in the human forecast correction [55], but in such a framework, the time might be not
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enough. Thus, the SWING algorithm tries to provide a direct warning on the Italian Civil
Protection Alert Areas so that people could be informed of imminent dangers more rapidly.

The SWING algorithm is tested on 22 days during the fall season 2019, 14–22 October
and 12–24 November. This test provided good SWING performances statistics with differ-
ent rainfall regimes. Inside the 22 days, there are also two main extreme events allowing to
test the performances in a very intense and localized (in time and space) event (14 and 15
October 2019) and in more extended extreme events (21 and 22 October 2019). First of all,
the algorithm results are overall evaluated by comparing the SWING performances with
the use of a deterministic single simulation both with and without the Phast nowcasting
blended to the model. This first analysis revealed that the complete SWING algorithm use
is able to provide the best correct forecast performance, maintaining overestimation and
underestimation under control better than using a single deterministic forecast both with or
without Phast. Moreover, the use of Phast allows to further improve the forecast skill and
reduce the over/underestimation. In the second part of the discussion, another important
point is analyzed: the SWING forecasts’ useful timing. For this, the focus is moved only to
the two extreme events. In the 14 October event, thanks to the SWING algorithm, people
can be advised half an hour to one hour before the event beginning (depending on the
location). The second event (21 and 22 October 2019) was harder to predict, because it was
a longer (in terms of time) event with two main MCSs persisting over the same areas with
already saturated soil from previous rainfall days. In this case, the SWING algorithm was
almost able to properly capture the first MCS passage from the French coast to the central
Italian Alps, despite some underestimation in terms of area extension at the beginning.
The second MCS was a V-shape storm, which is even more difficult to predict. In this case,
the model is able to warn with at least an orange color the alert areas mostly hit by the
intense phase of this second event for the following six hours. However, in this case, the
V-shape beginning is shifted by the model a bit northern with respect to the observed red
warning areas.

From these results, the SWING algorithm can improve the predictive capability of
a traditional deterministic nowcasting forecast system, keeping a useful forecast timing
and thus integrating the current forecast procedures. This allows an automatic warning of
people in case of extreme events with an overall good performance also in case of hardly
predictable events.

However, the main advantage of the SWING algorithm is not only in the performances
here presented but also its very high versatility. It can be applied to every model output,
allowing also to test a multi-model approach, and the scenarios can be calculated with more
ensemble members (depending on computational resources). It can be used with different
assimilation techniques and different kinds of observations. Eventually, depending on the
application, the warning can be calculated also for different areas such as municipalities or
provinces instead of the alert areas used here for conventional civil protection applications
or on different variables such as the lightning potential index (LPI, [30]) to predict lightning
risk. The results obtained in this work with the SWING algorithm pave the way for
future research such as the use of a multi-model approach using both the simulations
from WRF and other models (i.e., ICON Model, [56]), the use of other observations for
the assimilation to further improve the forecast skill (such as lightning assimilation) or
the test of an ensemble with more members trying to obtain the best cost (computational
resources)–benefits (better forecast) as possible.
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