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Abstract: Ozone (O3) has been widely used for water and wastewater treatment due to its strong
oxidation ability, however, the utilization efficiency of O3 is constrained by its low solubility and
short half-life during the treatment process. Thereby, an integrated approach using novel nanobubble
technology and ozone oxidation method was studied in order to enhance the ozonization of ammonia.
Artificial wastewater (AW) with an initial concentration of 1600 mg/L ammonia was used in this
study. In the ozone-nanobubble treatment group, the concentration of nano-sized bubbles was
2.2 × 107 particles/mL, and the bubbles with <200 nm diameter were 14 times higher than those in
the ozone-macrobubble treatment control group. Ozone aeration was operated for 5 min in both
nanobubble treatment and control groups, however, the sampling and measurement were conducted
for 30 min to compare the utilization of O3 for ammonia oxidation. H+ was the by-product of the
ammonia ozonation process, thus the pH decreased from 8 to 7 and 7.5 in nanobubble treatment
and control groups, respectively, after 30 min of operation. The fast removal of ammonia was
observed in both systems in the first 10 min, where the concentration of ammonia decreased from
1600 mg/L to 835 and 1110 mg/L in nanobubble treatment and control groups, respectively. In the
nanobubble treatment group, ammonia concentrations kept the fast-decreasing trend and reached
the final removal performance of 82.5% at the end of the experiment, which was significantly higher
than that (44.2%) in the control group. Moreover, the first-order kinetic model could be used to
describe the removal processes and revealed a significantly higher kinetic rate constant (0.064 min−1)
compared with that (0.017 min−1) in the control group. With these results, our study highlights the
viability of the proposed integrated approach to enhance the ozonation of a high level of ammonia in
contaminated water.

Keywords: advanced oxidation process; ammonia oxidation; nanobubbles; water and wastewater
treatment

1. Introduction

Excessive ammonia in water is undesirable and usually causes environmental prob-
lems, such as surface water eutrophication and acute toxicity of aquatic biota [1,2]. Various
approaches, such as biological denitrification [3], air stripping [4], ion exchange [5], break-
point chlorination [6], and chemical oxidation [7], have been applied to the elimination
of ammonia from wastewater. In industrial-based wastewater, the ammonia content may

Water 2022, 14, 1865. https://doi.org/10.3390/w14121865 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w14121865
https://doi.org/10.3390/w14121865
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0001-7232-7668
https://orcid.org/0000-0001-5162-8103
https://doi.org/10.3390/w14121865
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w14121865?type=check_update&version=1


Water 2022, 14, 1865 2 of 9

achieve up to 1000 mg/L attributed to the sources of chemical fertilizer, coking, pharmaceu-
tical, and petroleum refining [8]. The treatment of such high-strength ammonia wastewater
is often challenging.

The biological process is sensitive to toxic loads (high initial ammonia level), and cold
weather conditions, and requires a relatively long retention time and large footprint [9].
For the ion exchange treatment, an extremely low concentration of solids in the wastewater
is required to prevent fouling [10]. To reach the chlorination breakpoint, sufficient chlo-
rine must be added and resulting in high costs [11]. The air stripping process has been
successfully used to treat higher ammonia concentrations (e.g., 1000 mg/L). The major
drawback of ammonia stripping is that the lime used for raising the pH often results in
unwanted calcium carbonate deposition fouling in the packed beds [10,12]. The use of
ozone is another well-known method for the oxidation of ammonia. Molecular O3 can not
only directly oxidize ammonia but also acts as a precursor to generate the hydroxyl radical
(
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of an advanced catalyst, such as MgO, CuO, and ZnO, ammonia can also be oxidized as
gaseous nitrogen [15]. However, the intrinsic characteristics of ozone limited the efficiency
of ozonation, such as low water solubility and half-life [16,17]. The low saturation in water
leads to undesired reaction concentration and low utilization efficiency of ozone [18]. The
half-life of ozone in water is less than 1 h (about 15 min at 298 K at pH = 7) which limits the
distance of the reaction zone away from the ozone injection point [19]. Therefore, efficient
techniques to enhance the ozonation process are especially desired for the treatment of
strengthened ammonia-contaminated wastewater.

Nanobubbles (NBs) are tiny bubbles with diameters less than 1000 nm, which have
increased attention due to special characteristics of high gas transfer efficiency and the
long lifetime of the bubbles [20–22]. The application of NBs as a burgeoning industry
valued by The Wall Street Journal at USD 10 billion in 2020 [23]. Previous evidence has
shown that bubbles with radii of 150–200 nm can remain stable for two weeks [24]. The
large surface area of NBs could enhance the mass transfer process between the liquid
and gas phases, which helps to facilitate chemical reactions [25]. Hydroxyl radicals (
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generated during the collapse of the NBs are strong oxidants in aqueous solutions, reacting
rapidly with a wide range of dissolved compounds [26]. The potential application of
NBs is speeded to many sectors, including the mining industry, water and wastewater
treatment [27], natural water restoration [28], surface cleaning [25], and agriculture [29].
Several recent studies revealed that ozone NBs can significantly increase the degradation
efficiencies against a variety of organic contaminants, such as dye molecules in dyestuff
wastewater [30], residual pesticides in vegetables [1], and trichloroethene in sands [31].
Currently, nanobubble technology in coupled ozonation treatment is mainly tested for
the oxidation of recalcitrant pollutants [32]. Whether, in particular to what extent, this
approach could contribute to other common pollutants, such as ammonia, still needs further
investigation prior to the implementation.

To address this knowledge gap, this study investigated the capability of ozone-
nanobubble technology for ammonia removal from water. Firstly, the bubble size and
distribution of ozone nanobubbles generated by a nanobubble generator were analyzed.
Then, the water quality and the removal efficiency of ammonia in high-strength synthesized
ammonia water were compared with the treatment of conventional ozone macrobubble.
The findings from this study could provide further insights into the feasibility of using
ozone nanobubbles, as an efficient and effective approach, for the removal of ammonia
from wastewater.

2. Materials and Methods
2.1. Ozone-Nanobubble Solution Preparation

The ozonator (OZ-5) was purchased from MAT Filtration Technologies™, which can
convert the oxygen to ozone by the corona-discharge method [33]. The output flow rate and
concentration of ozone produced by OZ-5 were approximately 5 g/h and 5 L/min using
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dried air as the gas source, respectively. In the nanobubble treatment group, the ozone was
then injected into the nanobubble generator (KMT, Nikuni Co., Ltd., Kanagawa, Japan)
and a ceramic diffuser, respectively, under the gas flow of 0.45 L/min. The nanobubble
generator was operated by recirculation of artificial wastewater at a flow rate of 1000 L/h.
The superficial liquid velocity in the column was 0.035 m/s, and the residence time in the
system was approximately 2.1 min. For the ozone-macrobubble control group, the ozone,
with the same inflow rate of 0.45 L/min, was passed through a ceramic diffuser for the
treatment. The experimental setup is schematically shown in Figure 1.
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Figure 1. Schematic of the experimental setup.

2.2. Experimental Prozcedure

To simulate the high concentration of ammonia wastewater discharged from landfills,
petrochemical industries, and piggeries, artificial wastewater (AW) was prepared by adding
the chemical of NH4Cl to tap water in order to obtain the final concentration of 1600 mg/L.
The tap water used in this study was supplied by Severn Trent Water Ltd. (Coventry, UK),
with ammonia≤ 0.5 mg/L, chloride≤ 250 mg/L, iron≤ 200 µg/L, manganese≤ 50 µg/L).
The pH of AW was then adjusted to 8 by 0.1 mol NaOH. Ten liters of AW were then poured
into the test (nanobubble treatment) and control (macrobubble treatment) systems at the
beginning of the experiment. Both treatment systems were reaction statical for 30 min
after the bubble generator running for 5 min. AW samples were collected at 0, 5, 10, 20,
and 30 min for analysis. The experiment was set up at room temperature (25 ± 2 ◦C) and
repeated three times.

2.3. Analytical Parameters Determination

The sizes and distributions of nanoscale bubbles (<1000 nm) in the 5 min AW samples
were determined through nanoparticle tracking analysis by ZetaView PMX 120 (Particle
Metrix, Meerbusch, Germany) and its corresponding software ZetaView 8.04.02. The
pH and dissolved oxygen (DO) of all AW samples were measured by Hach’s portable
meters (Hach, America). The ammonia concentrations in AW samples were determined by
an AQ400 nutrients autoanalyzer (Seal analytical, Southampton, UK) and subjected to the
dilution according to the detection manual [34]. All the experiments were done in a fume
hood with an ozone gas detector to ensure the environmental O3 concentration was lower
than 120 µg/m3.

2.4. Statistical Analyses

The first-order kinetics model (Equation (1): ln[C/C0] = −kt) was used to simulate the
removal process of ammonia in both treatment systems. The non-parametric test (Mann-
Whitney U test) was applied to compare the significance (p < 0.05) of the water quality and
ammonia concentration in both systems at a certain sampling time.

ln[C/C0] = −kt (1)
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3. Results and Discussion
3.1. Characterisation of the Bubble Size and Distribution

The potential uses of nanobubbles have spread to high-value applications, which
causes high efforts to develop generation methods [25]. Various methods have been
developed to produce nanobubbles, such as ethanol–water exchange, direct immersion,
temperature change, electrochemical reaction, and hydraulic cavitation [35]. Amongst
them, the hydraulic cavitation method was deemed the most effective approach, in terms of
nanobubble generation speed and stability, which was used in this study. The diameters of
the nanobubbles mainly ranged from 45 to 400 nm (Figure 2). The concentration of nanobub-
bles was 4 × 106 particles/mL in the macrobubble treatment control system (Figure 2a),
while a one-magnitude higher nanobubble concentration (2.2 × 107 particles/mL) was
observed in the nanobubble treatment system after 5 min operation (Figure 2b). Over 87.1%
of the bubbles could be categorized as bubbles sized <200 nm in the nanobubble treatment
system, while only 33.3% in the control system. The results of the nanobubble size and
distribution were similar to the previous study [36], where the ozone nanobubbles mainly
ranged from 32 to 460 nm with a concentration of 4.55 × 107 bubbles/mL based on the
hydraulic cavitation method.

Figure 2. Nanoscale bubbles size and distribution in macrobubble treatment control system (a) and
nanobubble treatment system (b).

3.2. The Changes in pH and Dissolved Oxygen (DO) during the Treatment

Previous studies have shown the efficiency of ozone oxidation of ammonia was higher
in an alkali environment compared with that in neutral or acid conditions [5]. In this study,
the initial pH of both systems was adjusted to 8, thus, the dissociation of NH4Cl in water
led to an equilibrium between the ammonium ion (NH4

+) and free ammonia (NH3), which
can be expressed in Equation (2). The equilibrium between ammonium form and free
ammonia depends on the pH of the solution. The ammonium form dominates at pH < 7,
whereas the free ammonia increased at pH > 7. In the initial part of this study, the pH of
AW was adjusted to 8 which facilitates the equilibrium tilt towards free ammonia [37]. As
shown in Figure 3a, during the ammonia ozonation process, the pH of the reaction medium
decreases with time due to the formation of H+ ions (Equation (3)). However, the rate of pH
descent in the nanobubble treatment system was faster than in the control system. At the
end of the study (30 min), the pH achieved 7.00 ± 0.09 and 7.52 ± 0.04 in the nanobubble
treatment and control systems, respectively.

NH4
+ + OH−
NH3 + H2O (2)

NH3 + 4O3→H+ + NO3
− + H2O + 4O2 (3)
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O3 + H2O→2O2 + H+ (4)
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Although one-unit ammonia can consume four-unit ozone during the process of am-
monia oxidation by ozone (Equation (3)), continuous aeration in both systems could deliver
excess ozone into the solution and produce oxygen following the chemical reaction in Equa-
tion (4) [38]. Therefore, the DO concentrations increased from 7.5 ± 0.1 mg/L to 10.8 ± 0.4
and 9.1 ± 0.3 mg/L in nanobubble treatment and control systems after 5 min of operation
(Figure 3b). It has been reported that the cavitation process for nanobubble generation
could induce super-saturation of gas in water [39], which supported the significantly higher
DO level in the nanobubble treatment group.

Previous studies have observed that nanobubbles in water can exist for up to several
weeks [40]. Zhang et al. detected the heterogeneous pressures inside nanobubbles by
atomic force microscopy (AFM), which was modeled in a molecular dynamics simulation
as a high-gas-density state [41]. The gas (O3 in this study) inside nanobubbles may exist
as an aggregation rather than the phase of the dissolved state in the solution [42], and the
diffusion of the O3 inside nanobubbles is likely to be slow and to take place over a long
period of time. Thus, the DO concentration decreased to 7.8 ± 0.2 mg/L, which was similar
to the original DO level in the control group after 30 min (Figure 3b). On the contrary,
the decrease in DO level in the nanobubble treatment group was much slower and kept
a significantly higher value (8.9± 0.2 mg/L) than that in the control group. It demonstrated
that the application of nanobubble aeration could potentially improve ammonia oxidation
due to a higher O3 utilization rate.

3.3. Ammonia Nitrogen Removal Performance and Kinetics

Ozonation has been applied to remediate organics, ammonia, and disinfection in water
and wastewater treatment since the 1970s [43,44]. For high-strength ammonia wastewater,
ozonation is also used to decompensate the recalcitrant form of nitrogen and enhance the
biodegradability of the wastewater [45]. In this study, the ammonia concentrations quickly
decreased from 1600 mg/L to 1380 ± 270 and 1510 ± 157 mg/L in nanobubble treatment
and control groups, respectively, at the first 5 min along with the operation of aeration
(Figure 4a). Although the aeration was stopped after 5 min, the dissolved O3 in both
systems could still contribute to ammonia oxidation, which resulted in the concentrations
of 835± 90 and 1110± 214 mg/L in nanobubble treatment and control groups, respectively,
after 10 min.
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It is well known that the ozone oxidation treatment was hindered by the low dissolv-
ability and O3 utilization efficiency in water [40]. The ammonia concentration in the control
group with macrobubble treatment only slightly decreased to 910 ± 144 mg/L with the
final removal efficiency of 44.2% at the end of the experiment. Due to the long lifespan of
nanobubbles and the capability of slowly releasing the filled gas into the surrounding water
(Figure 3b), the ammonia concentration in the nanobubble treatment group kept a fast-
decreasing trend to 277 ± 76 mg/L with the final removal efficiency of 82.5% at 30 min
(Figure 4a). Liu et al. reported the removal rate of ammonia by ozone could reach 80%,
however, with the presence of MgO catalyst [46]. It is hypothesized that the combination
of ozone-nanobubble treatment and the catalysis could achieve an even higher removal
capability of the ammonia from contaminated water. When using the ozone aeration with
the bubble sizes of micrometers, 99.1% of ammonia can be removed from the wastewater,
however, with continuous aeration of 570 min [47]. Notably, these results were gained
in a relatively lower initial concentration of ammonia in wastewater (50–100 mg/L). It
supported that the aeration of nano-sized ozone bubbles is potentially more efficient and
cost-effective for ammonia removal from water. Directly and indirectly, oxidation pathways
were probably involved in the oxidation of ammonia by ozone nanobubbles. Firstly, owing
to the long existence of the nano-sized ozone bubble in water, ozone could sustainably
diffuse to the surrounding water, thus ammonia would directly oxidize to nitrate by ozone
as shown in Equation (3) [5]. Secondly, the collapsing of ozone nanobubbles may deliver
hydroxyl radicals, which could act on ammonia oxidation. However, the occurrence of
hydroxyl radicals depends on the pH of the solution [48]. Takahashi et al. have shown that
hydroxyl radicals are formed from ozone microbubbles under strongly acidic conditions in
the presence of mineral acids [26]. As the pH decreased in our experiment, the mechanism
of oxidation of ammonia by ozone nanobubbles can occur either by direct oxidation or via
the hydroxyl radicals.

The removal dynamics of ammonia in both systems can be well described by the
first-order kinetics model (Figure 4b), which was supported by previous studies [49]. The
pseudo-first-order rate constant k = 0.064 min−1 was obtained for the slope of the regression
line for the ozone-nanobubble treatment group, which was 3.78 times higher than the
control group (k = 0.017 min−1). Overall, the result of the current study demonstrated
the high potential of coupling novel nanobubble technology with the traditional ozone
oxidation approach for strengthened ammonia-contaminated water treatment.
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3.4. Implementation Potential

Ozone has a high oxidation potential and has been applied in water treatment for
more than a century. In recent years, ozone has been increasingly applied for enhanced
municipal wastewater treatment [50]. However, the lifetime of ozone in water is short and
leads to low utilization efficiency of gaseous ozone and thus high operation costs [40]. The
generation of macrobubble mainly relies on agitation-induced shear forces to the dispersion
of the gaseous phases in water [51], which needs relevant lower energy input to compare
with the nanobubble generation via hydraulic cavitation process [36]. However, large
size bubbles have a much shorter lifetime and high buoyance that could lead to low gas
transfer efficiency compared with nanobubble aeration during the ozonation treatment. It is
estimated that the high utilization of the gas could compensate for the energy consumption
for nanobubble generation. The current study demonstrated that nanobubbles significantly
increase the efficiency of the ozonation process. Although the mechanisms have not been
quantified in this study, the potential drivers could be concluded as the large gas-liquid
interfacial area, the slow rising velocity with a longer lifetime, and a smaller amount of
ozone required due to the generation of hydroxyl radicals responsible for the oxidation of
pollutants [5,40]. The present study demonstrates the superior performance of ammonia
ozonation by ozone nanobubble. It is expected that ozone nanobubbles can be also used to
enhance the oxidation of organic micropollutants, e.g., pesticides, pharmaceuticals, and
personal care products [13]. The ability to generate free radicals during bubble collapse
potentially facilitates the degradation of a broad range of contaminates [27]. Nevertheless,
given the complexity of pollutants and environment parameters, ozonation reactions and
bubble dynamics in real wastewater bodies, further study on the impacts of background
matrix and hydraulics on the efficiency of ozonation by ozone nanobubble to the successful
application of ozone nanobubble in a water or wastewater treatment plant.

4. Conclusions

This study investigated the integrated approach using novel nanobubble technology
and the traditional ozone oxidation method for the treatment of high-strength ammonia
wastewater. Due to its higher dissolution ability and longer ozone retention time properties,
ozone-nanobubble treatment performed better removal of ammonia (82.5%) than that
(44.2%) in the control group with the ozone-macrobubble treatment. The first-order kinetics
model can be used to describe the removal of ammonia, and presented a significantly higher
removal rate constant (k value) of 0.064 min−1 in the nanobubble treatment group compared
with that (0.017 min−1) in the control groups. The ozone nanobubble could remain in the
water and slowly dissolute the gas and continually contribute to the ammonia oxidation,
which could further potentially reduce the operation cost. Overall, the result suggests that
ozone nanobubbles can be a more effective ozonation method for the treatment of heavily
polluted wastewater.
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