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Abstract: Seasonal dynamics and the vertical stratification of multiple parameters, including water
temperature (WT), dissolved oxygen (DO), pH, and chlorophyll-a (Chl-a), were analyzed in Lake
Chenghai, Northern Yunnan, based on monitoring data collected in 2015 (October), 2016 (March, May,
July), 2017 (March, June, October), 2018 (August), and 2020 (June, November). The results indicate
that the lake water was well mixed in winter and spring when the water quality was stable. However,
when WT becomes stratified in summer and autumn, the Chl-a content and pH value changed
substantially, along with the vertical movement of the thermocline. With rising temperature, the
position of the stratified DO layer became higher than the thermocline, leading to a thickening of the
water body with a low DO content. This process induced the release of nutrients from lake sediments
and promoted eutrophication and cyanobacteria bloom. The thermal stratification structure had some
influence on changes in DO, pH, and Chl-a, resulting in the obvious stratification of DO and pH. In
summer, with an increase in temperature, thermal stratification was significant. DO and pH achieved
peak values in the thermocline, and exhibited a decreasing trend from this peak, both upward and
downward. The thermocline was anoxic and the pH value was low. Although Chl-a maintained a low
level below the thermocline and was not high, there was a sudden increase in the surface layer, which
should be urgently monitored to prevent large-scale algae reproduction and even local outbreaks in
Lake Chenghai. Moreover, Lake Chenghai is deeper in the north and shallower in the south: this
fact, together with the stronger wind–wave disturbance in the south, results in surface WT in the
south being lower than that in the north year-round. This situation results in a gradual diminution
of aquatic plants from north to south. Water quality in the lake’s southern extent is better than that
in the north, exhibiting obvious spatial heterogeneity. It is recommended that lake water quality
monitoring should be strengthened to more fully understand lake water quality and take steps to
prevent further deterioration.

Keywords: Lake Chenghai; Yunnan; water quality parameters; seasonality; spatial heterogeneity

1. Introduction

Eutrophication has been a major problem affecting water resources and the environ-
ment around the world, which has profound effects on water quality and safety, as well as
aquatic ecosystem health [1]. In the context of global change, the study of the mechanism
of the effect of increasing temperature and eutrophication on the thermal stratification of
lakes and reservoirs, as well as its ecological and environmental effects, has become one of
the most prevalent issues of current international research [2,3]. Lake thermal stratification
and thermal cycling are important factors governing various physicochemical processes
(such as dissolved oxygen (DO) distribution, nutrient exchange, microbial activity, nutrient
release from the bottom sediment, etc.) and dynamical phenomena (such as upper and
lower water mixing and convection in lakes), which are important indicators affecting
the biological production and ecosystem evolution of lakes [4,5]. For deep-water lakes
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(including reservoirs), with extreme and persistent temperature differences, the vertical
distribution and variation patterns of water temperature determine the vertical stratifica-
tion and mixing exchange of chemical factors as well as biological factors (phytoplankton,
animals, etc.), which in turn profoundly affect the lake ecosystem [6,7]. Therefore, a deep
understanding of the significance of deep-water lake hydrochemical parameters requires
an in-depth study of the seasonal thermal stratification of lakes [8]. Meanwhile, the vertical
variation of lake thermal stratification affects the vertical distribution of water chemistry
parameters, such as lake water temperature (WT), DO, chlorophyll-a (Chl-a), pH, and
electrical conductivity (EC), and this seasonal stratification of water chemistry parameters
caused by water temperature changes is a typical feature of deep-water lakes. Therefore,
an in-depth study of the thermodynamic stratification of lakes can help to improve the
understanding of physical, chemical, and bioecological processes in lakes, and thus help to
improve the health of lake ecosystems.

Over the last few decades, the hydrological conditions of many lakes have changed to
the extent that the lakes have fundamentally altered in appearance [9] or in their stratifica-
tion patterns. However, the effects of climate change on stratification phenology remain
largely unexplored on a global scale [10]. Some scholars have conducted in-depth sys-
tematic studies of the seasonal stratification and hydrochemical characteristics of many
natural deep-water and shallow-water lakes and large artificial reservoirs, such as Lakes
Taihu, Tianmu, Fuxian, Wanfeng, Qiandao, Lugu, and Hongfeng [11,12]. Studies have
shown that WT, DO, Chl-a, pH, EC, the cell densities of cyanobacteria, turbidity, and other
parameters are prone to vertical seasonal stratification in summer, especially in deep-water
lakes and reservoirs [13,14]; the vertical variation of lake thermal stratification affects the
top-to-bottom distribution of DO, pH, Chl-a, and other hydrochemical parameters, and the
seasonal stratification of hydrochemical parameters caused by variation in WT is a feature
typical of deep-water lakes [15–17]. Stratification occurs quickly, causing hypoxia in the
uniform temperature layer of water bodies, and algae grows and reproduces rapidly in
the temperature change layer, disrupting balanced aquatic ecosystems and worsening the
water quality. However, studies of the seasonal thermal stratification and the hydrochemi-
cal parameters of plateau deep-water lakes are few. Therefore, understanding changes in
hydrochemical parameters, such as lake temperature, Chl-a and DO concentration, and pH
value, is not only of practical significance for lake eutrophication prevention and water
quality protection, but also has very important implications for local and even global
climate change research.

Lake Chenghai is an important freshwater resource, supporting the productivity and
lives of people around the lake. It is rich in animal and plant resources, and more impor-
tantly, Lake Chenghai is one of only three natural growth areas of Spirulina cyanobacteria
in the world and is famous for producing high-quality S. (Arthrospira) platensis [18,19].
However, with the increasing human populations around the lake and the gradual develop-
ment of industry and agriculture, the water quality of Lake Chenghai has deteriorated [20].
Especially since the beginning of the artificial cultivation of Spirulina, the eutrophication
of the water body has become increasingly serious, and the perennial outbreak of algal
blooms has a significant impact on the ecology and environment of the lake [21]. Most of
the previous studies analyzed the eutrophication of Lake Chenghai from the perspective
of aquatic plants and zooplankton, and the analytical studies of water quality parameters
were only based on short-term and small-scale monitoring data, while long-term sentinel
monitoring data of water quality parameters were rarely published or reviewed [22,23]. As
an important deep-water lake in the southwest monsoon region, we still lack a detailed
understanding of Lake Chenghai and lack detailed studies on the seasonal stratification of
its temperature and vertical variation of water chemistry parameters. Faced with such a
situation, we monitored Lake Chenghai from October 2015 in order to reveal the seasonal
stratification characteristics and patterns of Lake Chenghai’s WT, and to further explore
the environmental effects brought about by the seasonal vertical stratification of the lake’s
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WT, providing a scientific basis for the conservation of high-quality freshwater lakes in
the plateau.

2. Data and Methods
2.1. Background of Lake Chenghai

Lake Chenghai is located on the contiguous Qinghai–Tibet and Yunnan–Guizhou
Plateaus at 100◦33′ to 100◦45′ E, 26◦25′ to 26◦40′ N, and in Yongsheng County, Yunnan
Province. Lake Chenghai is located in the Chenghai Fracture Zone, and is a tectonically
fractured lake with a small catchment area and no distant river input or outflow [24].
The results of water chemistry analysis of the lake water show that the total ions of the
lake water reach 933.2 mg/L [25], and that the lake water is yellowish green; is weakly
alkaline; has high hardness; is rich in Ca2+, CO3

2−, and HCO3
− plasma; and can easily form

autogenous carbonate mineral precipitation [26]. The soil around the lake is dominated
by red loam and red-brown loam, and the basin has a wide variety of bedrock, including
basalt, sandstone, dolomitic limestone, and shale [27,28]. The lake lies at an elevation of
1502 m a.s.l., its watershed area is 318.3 km2, and the lake area itself is 75.97 km2. Oval
Lake Chenghai is oriented roughly north–south with a long axis measuring 19.15 km, a
maximum east–west width of 5.21 km, and a maximum water depth of 35.87 m, with an
average of 24.98 m. Lake Chenghai is one of the typical plateau deep-water lakes and
has a water capacity of 1.98 million m3. The lake was formed in the middle Quaternary
period (ca. 1.2 Ma) in a fault graben formed by the Himalayan orogeny [29]. The drainage
area has a subtropical climate, with an average temperature of 18.7 ◦C and without frost
throughout the year. Lake Chenghai is an inland closed plateau deep-water lake, where
surface evaporation is approximately three times greater than watershed precipitation [30].
Lake Chenghai used to be an outflow lake; the water flows 30 km southward into the Jinsha
River through the Cheng River, but it is a closed lake at present and mainly recharged by
groundwater and precipitation. Due to its location in the dry and hot valley of the Jinsha
River, the evaporation is approximately three times greater than the precipitation in the
basin, resulting in a continuous decline in the water level.

Lake Chenghai is the fourth largest among nine plateau lakes in Yunnan, one of
the only alkaline lakes in the world, and one of only three lakes in which Spirulina can
grow naturally [31,32]. The water level of Lake Chenghai has dropped by 3.97 m in the last
decade due to high evaporation in the basin and agricultural water use surrounding the lake.
Human activities have long aimed to obtain economic benefits and have often overlooked
the fragility of lacustrine ecosystems. In recent years, due to the continuous demographic
and economic development of the Lake Chenghai watershed, rapid population growth,
and water pollution, eutrophication has become increasingly serious. In addition to the
“point source”, i.e., pollution from Spirulina farming wastewater, the most important source
of contamination is domestic sewage from villages, agricultural non-point sources, and soil
erosion [33]. At present, the environmental health of Lake Chenghai is rated as Class IV, its
water quality is mesotrophic, and it faces the threat of eutrophication.

2.2. Sampling

Controlled by the tectonic background, the water depth of Lake Chenghai is character-
ized by a north–south oriented feature, and is deeper on the western side than the eastern side.
Therefore, in this study, four sampling points were set up along the deep-water axis of the lake
from north to south, marked as A (100◦39′07′′ E~26◦35′26′′ N), B (100◦38′41′′ E~26◦33′23′′ N),
C (100◦38′37′′ E~26◦31′33′′ N), and D (100◦38′45′′ E~26◦29′30′′ N) (Figure 1). On-site moni-
toring was carried out in 2015 (October), 2016 (March, May, July), 2017 (March, June, October),
2018 (August), and 2020 (June, November). Sampling locations were established by means of
a satellite-based global positioning system (GPS) and water quality parameters (including WT,
DO, and Chl-a concentration; pH value; and phycocyanin concentration; among others) were
measured with a Xylem Analytics YSI-6600 multi-parameter sonde. One vertical line was
established at each site to monitor water quality at different depths. Data were first collected
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between 0.1 and 1 m below the water surface and the last data were monitored 0.5 m above
the lake bottom, with additional data collected at one-meter intervals. To ensure accuracy,
each depth was measured six times.
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2.3. Analysizing Methods
2.3.1. Comprehensive Nutrition State Index

According to lake and reservoir eutrophication evaluation methods and grading tech-
nical regulations, total phosphorus (TP), permanganate index (CODMn), DO, Chl-a, and
transparency are the main indicators of nutrient levels in water [34]. To systematically
understand water quality and the eutrophication level of Lake Chenghai, the comprehen-
sive nutrition state index was used to evaluate lake eutrophication levels under various
scenarios. The comprehensive nutrition state index (TLI) is given as:

TLI
(
∑
)
=

m

∑
j=1

wj·TLI(j) (1)

where TLI (∑) is the integrated trophic level index, TLI(j) is the trophic level index of j, and
Wj is the correlative weighted score for the trophic level index of j.

Wj =
r2

ij

∑m
j=1 r2

ij
(2)

where Wj is the correlative weighted score for the trophic level index of j and rij is a
relative coefficient.

In Chinese lakes and reservoirs, the correlation coefficient for Chl-a to other parameters
is presented in Table 1 [35]:

Table 1. Correlation coefficient for Chl-a to other parameters in Chinese lakes and reservoirs.

Parameter Chl-a TP TN SD CODMn

rij 1 0.84 0.82 −0.83 0.83

r2
ij 1 0.7056 0.6724 0.6889 0.6889
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The computational formula for each eutrophication index is:

TLI(Chla) = 10(2.5 + 1.086 ln Chla) (3)

TLI(TP) = 10(9.435 + 1.624 ln TP) (4)

TLI(TN) = 10(5.435 + 1.694 ln TN) (5)

TLI(CODMn) = 10(0.109 + 2.66 ln CODMn) (6)

TLI(SD) = 10(5.118− 1.94 ln SD) (7)

A series of 0~100 continuous values were adopted for grading the eutrophication
level: trophic level index TLI (∑) < 30, oligotrophic; 30 ≤ TLI (∑) ≤ 50, mesotrophic;
TLI (∑) > 50, eutrophic; 50 < TLI (∑) ≤ 60, weak eutrophic; 60 < TLI (∑) ≤ 70, middle
eutrophic; and TLI (∑) > 70 hypo-eutrophic.

2.3.2. Lake Quality Level

River water quality classification was based on national quality standards (GB 3838-
2002) [36]. According to the environmental functions and protection objectives of surface
waters, it is divided into five categories on a functional level (Table 2).

Table 2. Water function and standard classification.

Water Quality Classification Scope of Application

Class I Mainly applicable to source waters and national nature reserves.

Class II Mainly applicable to centralized drinking water, surface water sources,
first-class protected areas, etc.

Class III Mainly applicable to secondary protection zones, fisheries, and
swimming areas of centralized drinking water surface water sources.

Class IV Mainly applicable to general industrial water use areas and recreational
areas where the human body is not in direct contact with water.

Class V Mainly applicable to agricultural water use areas and general
landscape requirements.

2.3.3. Correlation Analysis Method

Pearson’s correlation coefficient is a metric used to describe relationships among
variables. This method uses the covariance matrix of data to evaluate the strength of the
relationship between two vectors. Normally, the Pearson’s correlation coefficient between
two variables, βi and βj, can be calculated as shown in Equation, where cov(βi, βj) is the
covariance, var(βi) is the variance of βi, and var(βj) is the variance of βj [37].

R
(

βi, β j
)
=

cov
(

βi, β j
)√

var(βi)× var
(

β j
) (8)

3. Results and Discussion
3.1. Vertical Stratification and Seasonal Temperature Fluctuations

In large deep-water lakes, WT changes vertically due to inconsistent warming and
cooling of the upper and lower water bodies. The vertical distribution of WT in March, May,
July, and October at each sampling locus in Lake Chenghai clearly shows that seasonal
variation of WT in the lake is excellent, and the vertical temperature gradient of the
water body is obvious in May, July, and October. The depth of the thermocline gradually
changes over time (Figure 2). With the increase in solar radiation and air temperature, the
surface water body rapidly warmed up, the temperature difference with the deep-water
body gradually increased, and the water body appeared as a stratification phenomenon.
According to the standard definition, a thermocline is a water layer whose temperature
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gradient is more than 0.2 ◦C/m [38]. The air temperature of Lake Lugu reaches the highest
in May, which makes the external heat continuously transfer downward from the surface
layer, the maximum temperature difference decreases, the depth of the temperature leap
layer moves up, and the temperature stratification phenomenon is obvious. The WT of Lake
Chenghai reaches its highest in summer and autumn, which leads to the continuous transfer
of external heat from the surface layer to the deeper layer, a decrease in the maximum
temperature difference, and an increase in the depth of the thermocline, showing a clear
temperature stratification. Changes in temperature always lead to the thermal stratification
of lakes, during which period the WT decreases slowly in the epilimnion and hypolimnion
and sharply in the thermocline with increasing depth [39,40].
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Figure 2. Vertical profile of water temperature (WT) in Lake Chenghai, Yunnan.

The overall temperature of the lake in October 2015 was relatively high, with the
temperature in the south higher than that in the north. Vertically, there was an obvious
thermocline of 20 to 26 m depth at Locus A, with a concomitant temperature increase
of around 4 ◦C. At Locus B, there was a clear thermocline 23 to 27 m in depth and a
temperature rise again of 4 ◦C. There was no obvious thermocline at Locus C and D, where
the water is shallow. The WT in March 2016, the lowest monitored, was higher in the
north than in the south, which may be related to the larger thermocline in the deeper lake
area. There was no apparent stratification at the four sampling loci from north to south,
and the temperature only slowly fell with increasing depth. In May 2016, the lake WT
was evenly distributed horizontally, and the WT in the north and south was relatively
consistent. Vertically, temperature increases were recorded at all four monitoring points. In
the north, in the deep-water area, a 3 ◦C temperature jump appeared at Locus A between
21 and 24 m. In the deep-water area, a 2.4 ◦C temperature increase appeared at Locus
B between 16 and 24 m in depth. The thickness of this layer reached 8 m. In the south,
a layer of increased temperature measuring 2.4 ◦C appeared at Locus C at 17 to 24 m
depth. At Locus D, between 8 and 14 m depth, a modest 1.2 ◦C temperature increase was
recorded. The average temperature of the lake water in July 2016 was the highest at all
four monitoring locations, especially in the upper water layer, with a maximum value of
25.5 ◦C. Horizontally, surface WT in the north was higher than that in the south, while
vertically all four loci showed obvious temperature increases. Between 13 and 22 m depth, a
temperature increase layer of 6.8 ◦C formed at Locus A, while below 22 m, the temperature
decreased slowly. A thermocline appeared at 7 to 23 m depth at Locus B, reflected by a
temperature increase of 7.1 ◦C. Below 23 m, the temperature decreased slowly. At Locus
C, the temperature barely changed in the 0 to 11 m depth range, and small temperature
changes were recorded between 11 and 15 m, with a clear thermocline apparent at 15 to
23 m. At 5.5 ◦C, the temperature below 23 m decreased slowly with increasing depth, and
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the temperature at Locus D hardly changed in the top 10 m of the water column. Below
10 m to the bottom of the lake (ca. 18 m), the temperature dropped sharply.

The WT decreased between 0 and 5 m by 0.4 ◦C at Locus A in March 2017. The
trend of change was smoother between 5 and 20 m, with WT remaining at around 15.3 ◦C,
and an intensified decreasing trend from 25 to 30 m. In June 2020, Locus A exhibited a
temperature increase between 0 and 15 m, with a temperature increase of 2.1 ◦C. Below
15 m, the temperature dropped sharply by 3.4 ◦C. At Locus B, the WT increased with depth
as the temperature decreased by 0.89 ◦C between 0 and 5 m. From 5 to 10 m, the change
trend was smooth, and from 10 to 30 m, the temperature decreased by 1.69 ◦C. In June,
Locus A yielded a WT of 25.59 ◦C, the highest in 2017. From 0 to 15 m, WT remained stable,
near 24 ◦C, but WT decreased sharply to 16.8 ◦C with increasing depth between 15 and
30 m, a decline of 8.79 ◦C. In October 2017, Locus B exhibited a thermocline from 7 to 23 m
depth, reflecting a temperature increase of 5.96 ◦C, while WT decreased slowly below 23 m.
The October temperature trend at Locus A, as with June, showed a significant thermocline
between 14 and 25 m depth with a temperature jump of 6.4 ◦C, while the WT between
0 and 30 m dropped slowly by 6.8 ◦C. In 2020, the temperature at Locus A tended to be
stable from 0 to 7 m in June, and decreased by 4.06 ◦C below 10 m. The WT at Locus B was
nearly constant from 0 to 11 m depth, and there was a significant thermocline indicated by
an increased temperature of 6.4 ◦C between 15 and 27 m.

From the change trend of Lake Chenghai’s WT (Figure 2), it can be seen that the
seasonal stratification feature of Lake Chenghai’s WT is obvious. The stratification of water
bodies is characterized by mixing in winter and stratification in summer and autumn, and
the lake belongs to a single mixed type of lake. With the rapid decline in temperature in
winter, the temperature of the upper water layer decreases, the upper and lower water
layers are mixed, and the stratification phenomenon disappears; the temperature difference
between surface water and bottom water is small, forming a more uniform water tempera-
ture. Lake Chenghai enters the mixing period in winter, and the water temperature gradient
changes minimally, especially in the range of water depth below 10 m. In Lake Chenghai,
in the summer, after the temperature rose rapidly with the enhancement of the surface
layer temperature, it began to gradually increase; the surface layer and the bottom of the
water temperature gap began to increase, the lower layer of water temperature change was
minimal, and the water body gradually demonstrated a water temperature stratification
phenomenon. After October, the surface layer temperature difference gradually became
smaller, and the variable temperature layer became thicker, which is due to the fall as the
temperature decreases; the reservoir surface temperature gradually decreased, the higher
temperature of the bottom layer of water received the cooling of the upper layer of water,
and the temperature stratification gradually weakened.

3.2. Seasonal Variation Characteristics of the Water Quality Profile
3.2.1. Dissolved Oxygen (DO)

DO is a proxy of primary productivity and hydrodynamic conditions in lacustrine
environments, and it is inversely proportional to salinity and temperature but positively
proportional to the intensity of lake wave action; additionally, the level of DO is related
to the photosynthesis of algae [41–43]. Seasonal variations in DO in Lake Chenghai are
obvious, exhibiting distinct characteristics in different months (Figure 3). Our monitoring
data show that the DO content of Lake Chenghai was not high in October 2015. The DO
content at Locus A, the deep area in the north, increased slightly and then decreased at
a depth of 0 to 7 m, with a maximum of 9.6 mg/L at a depth of 1 m. The DO content
decreased slowly from 7 to 16 m, maintained a value of 5.3 to 4.6 mg/L, and then decreased
rapidly from 16 to 21 m and finally maintained a concentration of approximately 0.3 mg/L.
At Locus B, DO decreased between 0 and 7 m, and then remained stable at 5 mg/L to a
depth of 22 m. Between 22 and 25 m, the DO content dropped sharply. The DO content
at Locus C and D in the southern lake area decreased slowly with increased depth, but
no sharp changes were observed. Horizontally, the DO content in the north was much
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higher than the south. The average DO content at 0 to 12 m depth was 6.5 mg/L at Locus
A, 6.1 mg/L at Locus B, 5.7 mg/L at Locus C, and 4.5 mg/L at Locus D, showing a general
decreasing trend from north to south.
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The amount of DO in Lake Chenghai in March 2016 was relatively high, with the
amount at Locus A decreasing slowly as the depth increased. A maximum of 7.58 mg/L
was recorded at the surface, and a minimum value of 6.92 mg/L at the bottom. At Locus B,
DO also decreased slowly from 0 to 19 m, and rapidly below 19 m in depth. The maximum
DO content was recorded on the surface (7.43 mg/L), and the minimum at the bottom
(4.23 mg/L). The DO content between 0 and 20 m at Locus C decreased slowly and then
increased sharply. A maximum value was recorded at the surface (7.47 mg/L) and a
minimum value at the bottom (3.12 mg/L). Due to the shallow depth at Locus D, the
amount of DO slowly decreased with increased depth. The maximum value (6.96 mg/L)
occurred in the surface layer, and the minimum value (6.07 mg/L) was recorded in the
lower layer. Horizontally, the DO content in the north was much higher than in the south.
The average DO content at a depth of 0 to 12 m was 7.3 mg/L at Locus A, 7.3 mg/L at
Locus B, 6.9 mg/L at Locus C, and 6.3 mg/L at Locus D.

The highest DO content in Lake Chenghai was observed in May 2016, and the DO
content of the upper water column was higher than that of the lower water column at
Locus A. The DO content first increased and then decreased from 0 to 6 m in water depth,
reaching a maximum of 9.71 mg/L at a depth of 2 m. The DO content decreased slowly
from 6 to 19 m, and then decreased sharply at 19 m to 0.3 mg/L. The DO content at Locus B
decreased rapidly between 0 and 4 m, and maintained a stable state from 7 to 13 m. Below
13 m, the DO content decreased continuously, forming a stable hypoxic environment below
22 m. At Locus C, the DO content decreased gradually with increasing water depth from
0 to 11 m, and increased sharply between 11 and 14 m. The DO content remained stable
from 14 to 19 m, and decreased sharply below 19 m, creating a stable hypoxic environment
below 27 m. The amount of DO between 0 and 10 m depth at Locus D decreased steadily
as the water depth increased, and the amount of DO at depths greater than 10 m decreased
sharply. The DO content in the north was much higher than that in the south. The average
DO content between 0 and 12 m was 8.8 mg/L at Locus A, 8.7 mg/L at Locus B, 8.4 mg/L
at Locus C, and 6.9 mg/L at Locus D. The DO content of Lake Chenghai in July 2016 was
low, but higher between 0 and 3 m at Locus A and almost unchanged between 3 and 11 m
water depth. The DO content decreased sharply from 11 to 16 m and remained below
0.3 mg/L at a depth of 16 m. The DO content in the depth range of 0 to 6 m at Locus B
was basically maintained above 7 mg/L, and the DO content in the depth range of 6 to
11 m decreased sharply and stabilized below 0.3 mg/L below 11 m. The DO content in
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the depth range of 0 to 11 m at Locus C decreased slowly with increasing water depth and
stabilized below 0.3 mg/L below 17 m. The DO content in the depth range of 0 to 9 m at
Locus D in the southern shallow lake area was basically stable at approximately 7 mg/L,
and then decreased sharply from 9 to 12 m. However, the DO content below 12 m slowly
decreased as the water depth increased. The DO content was relatively high at Locus A
and D and comparatively low at Locus B and C in the horizontal direction. In winter, the
DO and WT in Chenghai water were characterized by uniform mixing at the same time.
The reason for this change can be inferred from the fact that, in winter, the DO in Chenghai
water is reduced due to the vertical exchange of water bodies, the consumption of DO in
water by reducing substances, and the upwelling of anoxic water bodies in the lower layer,
which consumes more oxygen than reoxygenation, causing the DO to decrease and reach
anoxia in severe cases. In summer and autumn, the DO concentration decreases with the
increase in water depth and decreases sharply in the depth range of the thermocline; below
the thermocline, the DO is basically constant.

Generally, it can be seen that in the vertical direction, the variation trend of DO is
obvious (Figure 3), and the lake shows a generally decreasing trend with the increase in
water depth. This might be attributed to the photosynthesis of planktonic algae. When
photosynthesizing in the surface layer, O2 is released, which increases the oxygen content
in the water body; when respiration occurs in the bottom layer, O2 is consumed in the
water body, which results in decreased oxygen content in the water body. The DO in
the rainy season is always higher than that in the dry season, which might be due to the
increase in algae activity when the WT increases. On the other hand, with the increase
in precipitation in the rainy season, the enhanced hydrodynamics and lake wave action
cause the DO content in the surface water column to increase rapidly, and at the same time,
along with the water level rising, the respiration of bottom plants increases, and so does
the oxygen consumption.

3.2.2. pH Value

The pH of water bodies is one of the most important indicators of chemical and
biological changes in lake systems and is a major influence on inland water bodies and
associated ecosystems [44]. Our monitoring data indicate that the lake experiences obvious
seasonal changes (Figure 4). There is a general lacustrine phenomenon in which, due to
the strong photosynthesis of algae in surface water and the high consumption of CO2, the
pH values are high. On the other hand, the photosynthesis of bottom-dwelling algae is
weak. High algal die-off causes CO2 to accumulate in large quantities. In addition, the
decomposition of organic matter produces aids, which reduce the pH values [45,46].
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In October 2015, the pH of Lake Chenghai was relatively high, with significant vertical
reductions near the thermocline at Locus A and B in the northern deep-water region, and
a jump gradient of approximately 0.4. Locus C and D, located in the southern lake with
shallow depth, exhibited small vertical changes, and the pH values of the samples taken
in the south were higher those that in the north. The pH value of lake water in March
was relatively stable and there was almost no detectable change vertically, and the pH
values in the northern lake were higher than those in the southern lake. The pH value
of the lake water dropped significantly near the thermocline at Locus A and B in May
2016, with a jump gradient of approximately 0.4 and a steady drop at Locus C. The pH
decreased sharply at Locus D between 0 and 4 m water depth, which is the shallowest
location in the south. The vertical pH values at Locus A dropped sharply from the surface
to a depth of 3 m in July 2016, with a jump amplitude of 0.6. The pH value first increased
slightly and then decreased slowly between 3 and 17 m water depth, finally becoming
stable. The pH values at Locus B decreased slowly with increasing depth between 0 and
14 m, and then stabilized. At Locus C, the pH values decreased slowly with increasing
depth from 0 to 17 m, and then increased slowly with growing water depth. The pH values
at Locus D decreased slowly between 0 and 11 m water depth. Horizontally, the pH values
in the northern lake area were higher than those in the south. In general, the pH change
in Chenghai is not a significant change. The changes in pH in the Lake Chenghai water
column are mainly related to the photosynthesis of the algae growth process; the surface
water algae consume CO2 in water through photosynthesis. The accumulation of CO2
under the thermocline in the stratified water column slightly reduces the pH of the water
column, because the light cannot penetrate the thermocline and the CO2 in the lower water
column is not consumed by photosynthesis.

From the pH variation curves in Figure 4, it can be seen that the pH varies very little in
the vertical direction in Lake Chenghai, and all data measured at the four sites are between
8.18 and 10.65. The overall decreasing trend with increasing water depth may be related
to the respiration of planktonic algae. The surface planktonic algae photosynthesize and
absorb CO2 from the water, thus increasing the pH value; the bottom algae mainly respire
and exhale CO2, thus decreasing the pH value due to the decrease in sunlight transmission.

3.2.3. Chlorophyll-a (Chl-a)

The Ch-a content is an important proxy of phytoplankton biomass in lakes [47]. Our
study results show that there are 175 species of algae in Lake Chenghai, and mainly
diatoms, green algae, and cyanobacteria dominated quantitatively, with cyanobacteria
showing typical eutrophic cyanobacterial characteristics. The spatio-temporal content of
Chl-a in Lake Chenghai varied greatly (Figure 5).
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Our monitoring results show that the Chl-a content in Lake Chenghai was relatively
high in October 2015, exhibiting a top-down increase and then a sharp decrease between
0 and 7 m at Locus A in the northern deep waters of the lake, with a maximum value
(15.4 µg/L) observed at 1 m depth. The Chl-a content decreased slowly with depth between
7 and 26 m and showed a slight increase below 26 m, mainly due to algal death and
sedimentation. The Chl-a content between 7 and 26 m decreased slowly with depth, and
showed a slight increase below 26 m. This may be due to the death and sedimentation of
some algae, and a maximum value of 11.4 µg/L was recorded at Locus B between 0 and
6 m. The Chl-a content stabilized at 8 µg/L between 6 and 16 m, decreased again between
16 and 19 m, and stabilized from 19 to 24 m water depth. The Chl-a content at a depth of
29.5 m changed three times at Locus B, indicating that the algal species in this position were
relatively abundant and the population size was relatively large. At Locus C, Chl-a first
increased at a depth of 0 to 6 m and then decreased sharply, reaching a maximum value of
9.5 µg/L at a depth of 2 to 3 m, and then decreased slowly below 6 m. The Chl-a content
gradually increased at Locus D between 0 and 3 m and then slowly decreased below 3 m.
The maximum recorded Chl-a value was 5.6 µg/L at 3 m. Horizontally, the Chl-a content
gradually decreased from north to south, and the average Chl-a content in the 0 to 12 m
depth range was 9.4 µg/L at Locus A, 8.4 µg/L at Locus B, and 7.3 µg/L at Locus C. The
average Chl-a content at the 0 to 12 m water depth was 9.4 µg/L at Locus A, 8.4 µg/L at
Locus B, 7.3 µg/L at Locus C, and 4.9 µg/L at Locus D.

The Chl-a content in Lake Chenghai was relatively low in March 2016; the surface
content of Locus A was low and increased rapidly between 0 and 3 m water depth, after
which changes were small. The Chl-a content increased slowly between 3 and 16 m water
depth, and decreased from 16 to 26 m, with a maximum value (7 µg/L) recorded at 16 m.
The Chl-a content between 0 and 12 m decreased and then increased again with depth,
with the lowest value (0.3 µg/L) occurring at a depth of 1 m. The Chl-a content gradually
decreased from north to south, with the average Chl-a content between 0 and 12 m at
Locus A being 0.3 µg/L. The average content of Chl-a was 5.4 µg/L at Locus A, 4.4 µg/L
at Locus B, 3.2 µg/L at Locus C, and 1.8 µg/L at Locus D. The vertical content of Chl-a
varied greatly in May 2016, with Chl-a content between 0 and 2 m rising rapidly from
3.1 µg/L to 8.3 µg/L at Locus A, and then remaining constant around 8 µg/L from 2 to
20 m water depth. Below 20 m, the Chl-a content decreased gradually, finally reaching a
minimum of 3 µg/L. The Chl-a content from 0 to 4 m at Locus B first decreased and then
increased rapidly, finally stabilizing at around 7 µg/L between 4 and 13 m water depth.
The Chl-a content from 13 to 24 m water depth continued to decrease, finally achieving a
minimum value of 3 µg/L between 24 and 28 m. The Chl-a content between 0 and 4 m
decreased and then increased rapidly, finally maintaining a value of approximately 7 µg/L
at the depth ranging from 4 to 13 m. The Chl-a content between 13 and 24 m decreased
continuously with increasing depth, and then increased slowly from 24 to 28 m, with a
minimum value of 2.2 µg/L recorded. At Locus C, the Chl-a content between 0 and 12 m
increased continuously downward, with a larger increase between 0 and 4 m. At Locus
C, the Chl-a content from 0 to 22 m increased continuously with water depth. From 12 to
22 m, the Chl-a content continued to decrease with water depth, and below 22 m, the Chl-a
content was essentially stable at 2.8 µg/L. In the southern part of the lake at Locus D, the
Chl-a content increased rapidly with water depth between 0 and 2 m, and then decreased
rapidly between 2 and 6 m, and continued to decrease steadily below 6 m. The average
content of Chl-a between 0 and 12 m decreased with water depth. The average content of
Chl-a at this depth was 7.9 µg/L at Locus A, 6.6 µg/L at Locus B, 5.4 µg/L at Locus C, and
5.3 µg/L at Locus D. The average Chl-a content in the water depth range of 0 to 12 m was
7.9 µg/L at Locus B, 5.4 µg/L at Locus C, and 5.3 µg/L at Locus D.

The largest changes in the Chl-a content were observed in the vertical water column in
July 2016. For example, the Chl-a content increased sharply from 9.9 µg/L to 17.4 µg/L
from 0 to 2 m water depth at Locus A, and then decreased to 13.7 µg/L between 2 and 4 m
water depth. From 4 to 12 m water depth, the Chl-a content decreased slowly. The Chl-a
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content decreased from 10.2 µg/L to 2.2 µg/L at 12 to 17 m water depth, and remained
stable at 1.7 µg/L below 17 m depth. The Chl-a content was the maximum measured at
19.9 µg/L between 0 and 4 m water depth at Locus B, and remained stable at 16 µg/L from
4 to 6 m, while it decreased sharply to 1.9 µg/L between 6 and 15 m. The Chl-a content
increased and then decreased between 0 and 5 m at Locus C. From 1 to 3 m water depth,
the Chl-a content was maintained at a high level of 17 µg/L. The Chl-a content decreased
with depth from 5 to 10 m, and also from 10 to 17 m. However, below 17 m water depth,
the Chl-a content decreased sharply from 12.7 µg/L to 2.2 µg/L with increasing depth,
and remained at a low level of around 2 µg/L. The Chl-a content of the surface layer at
Locus D was 4.1 µg/L, which jumped to 12.5 µg/L at 1 m water depth, and remained
at approximately 12 µg/L between 1 and 10 m water depth. However, the Chl-a content
increased to 15 µg/L at 15 m depth and decreased sharply from 15 µg/L to 2 µg/L between
10 and 15 m. Horizontally, the Chl-a content was the highest at Locus C in the south,
followed by Locus A and B in the north, and the lowest appeared at Locus D, again in the
south, exhibiting strong spatial heterogeneity.

From the Chl-a curves in Figure 5, it can be seen that the trend of Lake Chenghai’s
Chl-a content is obvious and might be influenced by the wave and WT. The Chl-a content
showed a decreasing trend with increasing water depth. The results of correlation analysis
revealed that the Chl-a content had a significant positive correlation with WT. Meanwhile,
the differences in the Chl-a content in Lake Chenghai water bodies were larger in the dry
season and smaller in the rainy season, while the Chl-a content in the rainy season was
lower than that in the dry season. This may be attributed to the fact that the concentration
of toxins produced by the massive outbreak of Microcystis aeruginosa reached a certain
level during the rainy season, which had a lysis effect on other algae. On the other hand,
it may be related to the pH changes, as the increased water volume of Lake Chenghai in
the rainy season had a dilution effect, which reduced the Chl-a content, and the enhanced
hydrodynamics of the lake made the water body more homogeneous.

3.3. Correlation Analysis of Water Quality in Lake Chenghai

From the above discussion, it can be concluded that the spatial and seasonal changes
in the water quality are significant in Lake Chenghai. Based upon the correlation analysis
of the water quality parameters, including WT, pH, Chl-a, and DO (Table 3), there is a
significant positive correlation between various parameters. The correlation coefficient
between pH and DO is 0.55, the correlation coefficient between WT and Chl-a is 0.39, and
the correlation coefficient between pH and Chl-a is 0.39. This verifies that WT affects the
Chl-a content, while WT and Chl-a jointly influence both pH and DO.

Table 3. Vertical profile of chlorophyll-a (Chl-a) in Lake Chenghai, Yunnan.

pH WT Chl-a

DO 0.55 ** 0.24 ** 0.28 **
pH 0.24 ** 0.39 **
WT 0.39 **

** Significant correlation at 0.01 level (bilateral).

Based on the analysis of monitoring data from Lake Chenghai and meteorological data
from Yongsheng County, it can be concluded that the feedback sensitivity of the lake water
to the temperature is low, the temperature change in the water body always lags behind the
air temperature change, and the precipitation has a strong influence on WT. The average
monthly air temperature was 2.3 ◦C lower in October 2015 than one year later due to the
larger number of rainy days in October 2016. Throughout the year, the average temperature
of the southern lake area was higher than that of the northern lake area in both summer and
autumn; however, during winter and spring, the average WT of the northern lake area was
higher than that of the southern. The surface water temperature of the northern lake area
was higher than that of the southern area. This is mainly due to the perennial prevalence of
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a southerly wind in Lake Chenghai. The mixing of shallow lake water in the southern area
was uniform and heat exchange was frequent, while the northern deep-water lake area was
stable. At Lake Chenghai, during summer and autumn, due to the obvious stratification
in the deep-water area in the north, convection exchange between the upper and lower
water bodies is hindered, and the distribution of nutrients such as N and P and light in the
water body is affected, thus impacting the DO concentration and the vertical distribution
of aquatic organisms, which then affects the pH, resulting in changes in water quality. In
2020, the water quality of Lake Chenghai was listed as Class IV, meaning slightly polluted,
and this does not meet the requirements of the water environment function [48]. The lake’s
nutritional status index was 45.9, and the nutritional status was medium (Figure 6).
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The Chl-a content in clear water correlates positively with WT. As WT rises, the
amount of phytoplankton increases and multiple peaks occur in different depth ranges,
indicating the diversity and complexity of aquatic plant species [49,50]. Differences in pH
occur principally because of changes in CO3

2− and HCO3
−; thus, when the temperature

rises in the spring, the pH values increase with the growth of phytoplankton. However, in
Lake Chenghai, a different situation occurred. In May and July, the WT was significantly
higher than in March, but the pH value was lower than in March, which may be due to the
end of multiple algal blooms occurring during this period and the decomposition of algae,
such as cyanobacteria of the genus Anabaena.

3.4. Limitations and Implications

Human activities are also one of the main reasons for the large changes in the water
quality in Lake Chenghai, which should be given special attention in the future. First,
in this study, the seasonal dynamics of WT and its vertical stratification structure were
analyzed based on monitoring data, and the seasonal stratification characteristics of the
water chemical properties in Lake Chenghai were discussed. However, there was a lack of
long-term and high-frequency observations on the thermal stratification transformation
and its critical period regarding the hydrodynamic profile, nutrients, and phytoplankton.
Second, due to the limited number of monitoring sites, the results possibly cannot represent
the situation in the whole lake. With improvements in the monitoring system and methods,
this problem may be solved in the near future. Third, the impact of human activities on
the water quality of Lake Chenghai in the context of urbanization was not analyzed. In
addition to climate change, human activities (population, GDP, impervious area, industrial
structure, non-point pollution, etc.) also cause water quality changes in Lake Chenghai. In
the context of complex climate change and anthropogenic disturbances in the future, there
is still much work to be carried out in order to gain a more comprehensive and in-depth
understanding of the thermal stratification characteristics of the water column in Lake
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Chenghai and other similar lakes in the region, and their ecological and environmental
effects (e.g., to reveal their effects on changes in the phytoplankton community structure
and even the driving mechanisms of water blooms).

4. Conclusions

The stratification of Lake Chenghai seawater is characterized by mixing in winter and
stratification in summer and autumn, with the lake being a single mixed lake. In winter,
the lake water of Lake Chenghai is in a state of mixing, and complete water convection
exchange causes the bottom water to maintain a high level of DO. Thermal stratification in
summer and autumn directly hinders the exchange of substances between the temperature
change layer and the stagnant water layer, resulting in the formation of stratified DO levels.
The higher the lacustrine WT, the closer stratification of DO is to the water surface. In other
words, with a thicker and more anoxic water body, coupled with the long-term effects of
reducing substances and microorganisms, such as sulfides, nitrites, and ferrous ions in
the sediment, an anaerobic zone is formed near the sediment, leading to the accelerated
release of nitrogen and phosphorus from the sediments, deteriorating the bottom water
quality. With the seasonal formation and disappearance of the thermal stratification of Lake
Chenghai, there will be an impact on the water quality of the lake. Therefore, to protect the
ecosystem of Lake Chenghai, water quality monitoring should be conducted in summer
and autumn, and a rapid emergency response mechanism should be developed in advance.

In terms of Lake Chenghai, though the lake remains at a mesotrophic level, it will still
face the risk of accelerated eutrophication and algal bloom outbreaks. Especially under
the influence of complex climate change and human activities in the future, a great deal of
work is still needed, and it would be worthwhile to understand the thermal stratification
characteristics of Lake Chenghai’s water column and its ecological effects (e.g., to reveal its
driving mechanism on the structural changes of the phytoplankton community and even
the occurrence of water blooms) in a more comprehensive way. Therefore, in a subsequent
study, the monitoring of water quality parameters in Lake Chenghai needs to be continued
and supplemented with observations from other seasons and months in order to fully
reflect the thermal stratification in the lake in different seasons and months, as well as
the spatial differences and potential influencing factors of the stratification parameters.
Meanwhile, the seasonal variations in lake thermal stratification (depth, intensity, and
thickness), nutrient salinity, sediment phytoplankton biomass, and their influencing factors
will be explored.
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