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Abstract: This study aims to assess the impacts of land use and land cover (LULC) changes on
the water quality of the Surma river in Bangladesh. For this, seasonal water quality changes were
assessed in comparison to the LULC changes recorded from 2010 to 2019. Obtained results from this
study indicated that pH, electrical conductivity (EC), and total dissolved solids (TDS) concentrations
were higher during the dry season, while dissolved oxygen (DO), 5-day biological oxygen demand
(BOD5), temperature, total suspended solids (TSS), and total solids (TS) concentrations also changed
with the season. The analysis of LULC changes within 1000-m buffer zones around the sampling
stations revealed that agricultural and vegetation classes decreased; while built-up, waterbody and
barren lands increased. Correlation analyses showed that BOD5, temperature, EC, TDS, and TSS
had a significant relationship (5% level) with LULC types. The regression result indicated that
BOD5 was sensitive to changing waterbody (predictors, R2 = 0.645), temperature was sensitive to
changing waterbodies and agricultural land (R2 = 0.889); and EC was sensitive to built-up, vegetation,
and barren land (R2 = 0.833). Waterbody, built-up, and agricultural LULC were predictors for TDS
(R2 = 0.993); and waterbody, built-up, and barren LULC were predictors for TSS (R2 = 0.922). Built-up
areas and waterbodies appeared to have the strongest effect on different water quality parameters.
Scientific finding from this study will be vital for decision makers in developing more robust land
use management plan at the local level.

Keywords: water quality; buffer zone; land use/land cover; Bangladesh

1. Introduction

Water is a vital resource for the maintenance of life, ecological functioning, biological
diversity, and social well-being. Despite its importance for life, in recent decades, exces-
sive human land use has severely harmed the quality and quantities of available water
resources [1]. In particular, it is well known that rivers function as integrators of land-water
connections, receiving pollutants from the surrounding landscapes [2], and river water
quality could be negatively impacted. Surma River, an important river in Bangladesh,
has been collecting pollutants from a wide variety of point and non-point sources along
its course from agricultural wastes, industrial effluents, menage wastes, and municipal
sewage [3]. Due to population growth, urbanization, and industrialization, the surrounding
landscape of the Surma river has been changing, and the riverside has experienced tremen-
dous development in terms of commercial, human settlement, and industrial development.
The population and urban sprawl have adverse effects on the quality of the Surma river
water; the increased urban area is responsible for generating large amounts of nonpoint
source pollution through runoff and degraded the river water quality.
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Land use and land cover (LULC) within the immediate environments of a waterbody
have a direct impact on the physicochemical and microbiological properties of water, and
such impact varies with the type, extent, location of human land uses, and the inputs from
the watershed. Water quality problems arise when the type and extent of human land
use exceed the natural ability of the watershed to mitigate accumulated land-use-related
stress [4]. Numerous studies have shown that human activities lead to landscape pattern
changes, which in turn had significant impacts on the conditions of river water [2,5,6].
LULC change, especially urbanization, has a major impact on hydrology, affecting water
quality and quantity on a range of spatial and temporal scales [7,8]. Zhu [9] found that water
quality degrading was particularly affected by alteration from farmland to commercial and
residential land, and the expansion in an urban area causes streamflow increase, carrying
more sediment, bank erosion, and nutrients in streams. Hossain [10] reported that water
quality variables are correlated with LULC change. As a consequence of the spatiotemporal
LULC change, the concentration of diffuse pollutants in streams varies as well as vegetation
types, and watershed climate are responsible for stream water quality change.

Landscape pattern has a complex, space- and scale-dependent effect on water qual-
ity [11,12], and different landscape characteristics play different roles in receiving water at
different spatial scales varying from the local to eco-regional scales [13]. Bhaduri et al. [7]
noted that the most significant human impacts on the hydrologic system and water re-
sources are caused by land-use changes on local, regional, and global scales, driven by a
rise in urban areas. Pollution from nonpoint sources (NPS) is a challenging problem to
solve as it comes from a variety of origins difficult to pinpoint, and it occurs in a variety
of environments; however, Geographical Information Systems (GIS) software provides a
more comprehensive description of land cover patterns and the spatial distribution of NPS
pollution [14] and has been commonly used. To explore the landscape pattern’s impacts
on the lakes and rivers water quality several studies have been conducted [15,16], and it
seems that the riparian buffer zone landscape patterns are more powerful in explaining
water quality variations [17]. Land use types have an influence on surface water quality
which can be analyzed by using statistical methods, remote sensing (RS), and geographic
information system (GIS) [18–21]. Li et al. [12] stated that in riparian zones, the landscape
category has a significant impact on water quality, and the alterations in the landscape
through urban spread have put a lot of pressure on undeveloped land. Ribeiro et al. [22]
found that water quality was worse in the sub-basin, also characterized by the presence of
more agriculture, permanent conservation area, lesser natural forest, and a greater drainage
area; however, the existence of agriculture negatively affect water quality in the riparian
area. As proven by numerous studies, water quality is closely correlated to landscape
pattern, which includes the landscape structure and spatial configuration [23–26].

So, it is essential to find out the spatiotemporal and future potential effect on water
quality by LULC change. Therefore, this study examines the LULC change in the riparian
buffer zone of the Surma river, over the period 2010 to 2019. The seasonal surface water
quality variation is analyzed next. The study aims to assess the impacts of land use and
land cover (LULC) changes on the Surma river surface water quality.

The outcomes of this study will make it helpful to acquire sustainability of land and
water resources. Additionally, it will facilitate other researchers’ pursuit of studies about
LULC change impact on water quality in the study area and similar regions.

2. Materials and Methods
2.1. Design of the Study

We have conducted this research work systematically and scientifically; the major
methods and techniques, which were followed very carefully, are illustrated in Figure 1.
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Figure 1. Research Design.

2.2. Study Area

In Bangladesh, Surma is an important river, as a part of the Surma–Meghna river
system, which originates when the Barak River in northeastern India and then splits into
two branches at the Bangladesh border as the Surma (a northern branch that flows west
and then runs southwest to the town of Sylhet) and the Kushiyara rivers [27]. Sylhet
Sadar Upazila and Dakshin Surma Upazila are two Upazilas of the Sylhet district, which
are located in the country’s north-eastern region. Upazila is an administrative region
in Bangladesh, equivalent to a county of Western countries. The study was conducted
in the Surma river portion, situated between Sylhet Sadar Upazila and Dakshin Surma
Upazila land, extending 1000 m toward both sides of the riverbank. It is situated between
24◦51′39.1′ ′ N to 24◦54′37.07′ ′ N latitude and between 91◦49′40.9′ ′ E to 91◦55′51.9′ ′ E
longitude (Figure 2).
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2.3. Water Sampling and Analytical Methods

This study considered both primary and secondary data on water quality. Water
quality data for the dry and wet season of 2010 was collected from the Department of
Environment (DoE), Sylhet Divisional Office, Sylhet, Bangladesh.

Water samples were collected from three (ST-1, ST-2, and ST-3) separate Surma river
sampling stations, each with a different geographic location, as shown in Table 1. Following
the collection, water samples were kept in an ice box and bought to the laboratory. Sampling
was performed in the dry season (2019) and the wet season (2019).

Table 1. Sampling stations with location.

Station No. Station Zone
Location

Flow Direction
Latitude Longitude

ST-1 Shahjalal Bridge 24◦52′54.408′′ N 91◦52′42.78′′ E
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ST-2 Keane Bridge 24◦53′14.244′′ N 91◦52′3.252′′ E

ST-3 Kazir Bazar 24◦53′16.26′′ N 91◦51′33.696′′ E

Eight water quality parameters were selected, including dissolved oxygen (DO), 5-day
biological oxygen demand (BOD5), pH, electrical conductivity (EC), temperature, total
suspended solids (TSS), total dissolved solids (TDS), and total solids (TS). All the water
samples of 2019 were analyzed in the Water Supply and Sewerage Engineering Laboratory
of Civil and Environmental Engineering Department, and Environmental Laboratory of
Geography and Environment Department, Shahjalal University of Science and Technology,
Sylhet, Bangladesh. DO and BOD5 were measured by the Winkler titration method, pH
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and temperature were measured by electrometric methods (pH meter, HANNA-HI 9125),
electrical conductivity (EC) was measured using an EC meter (HANNA-HI 98192); and
TDS, TSS, and TS were measured in the laboratory following standard methods [28].

2.3.1. LULC Change Analysis

For land use and land cover (LULC) change analysis, satellite images of 2010 (Landsat
5 Thematic Mapper) and 2019 (Sentinel 2 MSI), acquired from the United States Geological
Survey (USGS), were used to produce LULC classification maps for both years using
remote sensing (ERDAS IMAGINE 2014) and geographic information system (ArcGIS 10.8)
software. LULC classes are categorized into five major categories including, waterbody
(river, canals, pond, lakes, reservoirs), built-up (urban areas, human settlements, road
networks. Commercial and industrial areas), agricultural land (cropland, pasture, herb,
shrub, fallow land, permeable surface), vegetation (canopy, mixed forest, evergreen forest),
and barren land (bare soil, sand, rocks without vegetation). Satellite image preprocessing,
as well as geometrical rectification, registration of image, corrections viz. atmospheric and
radiometric, were conducted by ERDAS IMAGINE 2014. Supervised classification was
conducted to create LULC maps [29]. Accuracy assessment was conducted, indicating that
the overall classification accuracy of the 2010 image was 81.65% and a kappa statistics of
0.7524, and overall classification accuracy of the 2019 image was 94.50% and kappa statistics
of 0.9024, indicating a very good accuracy of the LULC map. By using ArcGIS 10.8 software,
land uses composition within the 1000-m buffer zones around the sampling stations was
extracted from the LULC map. A 1000-m buffer scale is stronger than smaller scales in
explaining land-use types and their water quality relations [30]. Percentages of these broad
LULC types were used to examine the relationship between water quality parameters and
LULC types.

2.3.2. Statistical Analyses

Descriptive statistics were used to explain the general characteristics of LULC and
water quality parameters. Karl Pearson’s correlation analysis was used to determine
correlations between LULC patterns percentage and water quality parameters (WQPs) at
statistical significance at a 5% level. Backward stepwise regression analysis was used to
identify the relationship between the percentage of land usage composition within the
1000-m buffer zone and water quality properties. WQPs showing significant correlations
with LULC types were considered for the backward stepwise regression analysis. In
regression analysis, water quality parameters (BOD5, temperature, EC, TDS, and TSS)
were considered dependent variables, while LULC types (waterbody, built-up, vegetation,
agricultural land, and barren land) were treated as independent variables. To identify
the best combination of land uses for water quality estimation regression equations were
compared with R2 values (value closer to one indicates a greater accuracy of the model).
The Statistical Packages for Social Science (IBM SPSS Statistics 20) for windows was used
to perform all statistical analyses.

3. Results
3.1. Water Quality

The quality of water throughout the dry and wet seasons in 2010 and 2019 are pre-
sented in Tables 2 and 3, respectively, and in Figure 3. DO levels ranged from 3.6 mg/L to
4.4 mg/L in the dry season and 7.6 mg/L to 11.6 mg/L in the wet season in 2019. In the
wet season, the highest DO was found at Kazir Bazar, while the lowest was found at Keane
Bridge in dry season. The DO level increased in all stations during the wet season. In 2010,
the DO level varied from 5.1 mg/L in the wet to 6.2 mg/L in the dry season. The Surma
river’s mean DO level in 2019 was higher than the DO level in 2010.



Water 2022, 14, 17 6 of 16

Table 2. Water quality during the dry and wet season in 2010.

Parameter DO
(mg/L)

BOD5
(mg/L) pH Temp.

(◦C)
EC

(µS/cm)
TDS

(mg/L)
TSS

(mg/L)
TS

(mg/L)

Season Dry Wet Dry Wet Dry Wet Dry Wet Dry Wet Dry Wet Dry Wet Dry Wet

Station
No.

ST-1 6 4.1 1.2 1.1 7.4 7.4 20 29 280 100 400 300 140 100 540 400

ST-2 6.2 5.1 1.3 1.2 7.4 7.5 20 30 290 120 500 310 100 90 600 400

ST-3 6.3 6.2 1 1 7.4 5.6 21 30 300 160 400 430 110 110 510 540

Average 6.2 5.1 1.2 1.1 7.4 6.8 20.3 29.6 290 126.6 433.3 346.6 116.6 100 550 446.6

Mean 5.65 1.15 7.1 24.95 208.3 389.95 108.3 498.3

Table 3. Water quality during the dry and wet season in 2019.

Parameter DO
(mg/L)

BOD5
(mg/L) pH Temp.

(◦C)
EC

(µS/cm)
TDS

(mg/L)
TSS

(mg/L)
TS

(mg/L)

Season Dry Wet Dry Wet Dry Wet Dry Wet Dry Wet Dry Wet Dry Wet Dry Wet

Station
No.

ST-1 4.4 7.9 1 2.8 7.96 6.47 27.6 26.6 280.5 54.46 140.3 27.23 48.4 730 188.7 757.23

ST-2 3.6 7.6 1 2 6.97 7.31 27.8 26.7 292.9 74.43 146.7 37.2 51.3 650 198 687.2

ST-3 3.7 11.6 0.9 3.2 7.14 6.94 27.9 26.8 322.7 75.81 161.4 37.91 47.9 470 209.3 507.91

Average 3.9 9.03 0.97 2.67 7.36 6.91 27.77 26.7 298.7 68.23 149.47 34.11 49.2 616.67 198.67 650.78

Mean 6.47 1.82 7.13 27.23 183.47 91.79 332.93 424.72

For BOD5, in 2019, the recorded average concentration of BOD5 for the Surma river
water was 0.97 mg/L and 2.67 mg/L in the dry and wet seasons respectively. The seasonal
comparison shows that during the wet season the BOD5 level was higher than the dry
season. The lowest and the highest were found at ST-3. In 2010, the average BOD5 level was
1.2 mg/L (dry season) and 1.1 mg/L (wet season). The mean BOD5 level slightly increased
in 2019 as compared with 2010.

In 2019, the measured pH amongst different stations varied between 6.97 and 7.96 in
the dry season, indicating almost neutral-to-slightly-alkaline water conditions. While in
the wet season, pH level varied between 6.47 and 7.31. The average dry season pH was
slightly alkaline, while the pH of the wet season was almost neutral. In 2010, Surma river
water was almost neutral, and pH varied from 7.4 (dry season) to 6.8 (wet season). The
mean value of pH was close to neutral in 2010 and 2019.

The average dry season water temperature was 20.3 ◦C in 2010 and 27.77 ◦C in 2019,
while the average wet season water temperature was 29.6 ◦C in 2010 and 26.7 ◦C in 2019.
Kazir Bazar had the highest dry season temperature in 2019 and Keane Bridge, as well as
Kazir Bazar, had the highest wet season temperature in 2010. The recorded lowest wet
season temperature was at ST-1 in the year 2010 and the lowest dry season temperature was
at ST-1 and ST-2 in the year 2010. The mean temperature in 2019 is higher than the mean
temperature in 2010. The temperature increased during the dry season from 2010 to 2019
but declined during the wet season. The maximum and minimum electrical conductivity
(EC) of the Surma river was 322.7 µS/cm at Kazir Bazar in the dry season of 2019 and
54.46 µS/cm at Shahjalal Bridge in the wet season of 2019. During the dry season, EC was
high. From 2010 to 2019, the mean EC level decreased.
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The results of TDS showed that in 2019 the mean TDS concentrations were 149.47 mg/L
(dry season) and 34.11 mg/L (wet season). In the dry and wet seasons, maximum TDS
was found at Kazir Bazar (ST-3) and minimum TDS was found at ST-1. The mean TDS
concentration in 2010 was significantly higher than the mean TDS concentration in 2019.
The average maximum (616.67 mg/L) and minimum (49.9 mg/L) TSS concentrations were
recorded during the wet and the dry season, respectively, in 2019. In 2019, the mean
concentration of TSS was higher than the concentration of the year 2010. From 2010 to 2019,
the TSS level increased, on the other hand, the TDS level decreases. In 2019, the recorded
total solids (TS) in the dry season varied from 188.7 mg/L at Shahjalal Bridge (ST-1) to
209.9 mg/L at Kazir Bazar (ST-3). The TS ranged from 507.9 mg/L (minimum) at ST-3 to
757.23 mg/L (maximum) at ST-1. The seasonal comparison of the average TS level showed
that the wet season’s concentration was higher than the dry season’s. In 2010, the average
TSS concentration varied from 446.6 mg/L during the wet season to 550 mg/L during
the dry season with a mean concentration of 498.3 mg/L that was greater than the mean
concentration in 2019.
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3.2. Descriptive Statistics of the Water Quality Parameters (WQPs)

The descriptive statistics of the WQPs of the Surma River from the year 2010 to 2019
are explained in Table 4.

Table 4. Descriptive statistics of the WQPs.

Water Quality
Parameters

Minimum Maximum Mean SD

2010 2019 2010 2019 2010 2019 2010 2019

DO (mg/L) 5.05 5.60 6.25 7.65 5.65 6.47 0.60 1.06

BOD5 (mg/L) 1.00 1.50 1.25 2.05 1.13 1.82 0.13 0.28

pH 6.50 7.04 7.45 7.22 7.12 7.13 0.53 0.09

temperature (◦C) 24.50 27.10 25.50 27.35 25.00 27.23 0.50 0.13

EC (µS/cm) 190.00 167.48 230.00 199.26 208.33 183.47 20.21 15.89

TDS (mg/L) 350.00 83.77 415.00 99.66 390.00 91.79 35.00 7.95

TSS (mg/L) 95.00 258.95 120.00 389.20 108.33 332.93 12.58 66.91

TS (mg/L) 470.00 358.61 525.00 472.97 498.33 424.72 27.54 59.24

3.3. LULC Change in the Buffer Zone

Land use change data, as the percentage of land of 1000-m buffer zone of monitoring
stations, were derived from LULC change analysis from 2010 to 2019, and they were linked
with water quality data. The results show that, in 2019, the central part was dominated by
built-up area, while in 2010, built-up area was not clustered at a specific zone (Figure 4).
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The LULC change in the buffer zones showed that the agricultural land area decreased
while the built-up area significantly increased from 2010 to 2019. During this period, the
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increase of barren land and decrease of vegetation area was also observed in the buffer
zones. In 2019 the highest built-up area was found at the buffer zone of station ST-2.

The analysis illustrated that in 2010, at ST-1 (32.4%) and ST-2 (39.9%), agricultural land
usage was dominant in the 1000-m buffer zones (Table 5). On the other hand, vegetation
cover (40.6%) was the dominant land area in 2010 at ST-3. In 2019, the built-up area
increased in all zones and become the dominant land-use type.

Table 5. LULC change within the 1000-m buffer zone of sampling stations.

LULC Type

Sampling Station

ST-1 ST-2 ST-3

2010 (%) 2019 (%) 2010 (%) 2019 (%) 2010 (%) 2019 (%)

Waterbody 6.3 7.5 5.4 6.9 5.8 7.1

Built-up 30.1 41.8 25.8 48.6 18.7 38.8

Agricultural
Land 32.4 23.8 39.9 18.1 32.3 18.3

Vegetation 27.8 20.7 26.7 22.3 40.6 32.2

Barren Land 3.4 6.2 2.2 4.1 2.6 3.6

By comparing land usage distribution from 2010 to 2019, all zones had shown a notable
decline in agricultural land area. For the built-up area, the ST-2 zone showed a maximum
increase (22.8%), while the ST-1 zone showed a minimum increase (11.7%), and at the
ST-3zone, 21.1% area increased.

3.4. Descriptive Statistics of the LULC Types

The descriptive statistics of LULC types within a 1000-m buffer zone at stations of the
Surma River area from 2010 to 2019 are reported in Table 6.

Table 6. Descriptive statistics of the LULC types.

LULC (in %)
Minimum Maximum Mean SD

2010 2019 2010 2019 2010 2019 2010 2019

waterbody 5.39 6.91 6.28 7.50 5.84 7.15 0.45 0.31

built-up 18.71 38.81 30.12 48.57 24.89 43.07 5.76 5.00

agricultural land 32.28 18.06 39.87 23.83 34.84 20.07 4.36 3.26

vegetation 26.72 20.67 40.62 32.26 31.73 25.10 7.72 6.26

barren land 2.17 3.58 3.36 6.18 2.70 4.62 0.61 1.37

In 2010, waterbody ranged from 5.39% to 6.28% with a mean value of 5.84% ± 0.45%.
In 2019, the range and mean of waterbody are 6.91% to 7.5% and 7.15%± 0.31% respectively.
The built-up area, from 2010 to 2019, ranged from 18.71% to 30.12% and from 38.81% to
48.57%, with a mean value of 24.89% ± 5.76% and 43.07% ± 5.00%, respectively. Agricul-
tural land use ranged from 32.28% to 39.87% in 2010, with a mean value of 34.84% ± 4.36%.
On the other hand, in 2019, agricultural land use ranged from 18.06% to 23.83% with a
mean value of 20.07% ± 3.26%.

Vegetation area in 2010 and 2019 ranged from 26.72% to 40.62% and from 20.67% to
32.26% with a mean value of 31.73% ± 7.72% and 25.1% ± 6.26%, respectively. Barren land
ranged from 2.17% to 3.36% in 2010, with a mean value of 2.7% ± 0.61%. On the other
hand, in 2019, barren land cover ranged from a minimum of 3.58% to a maximum of 6.18%
with a mean value of 4.62% ± 1.37%.
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3.5. Water Quality Relation with LULC
Correlation Analysis

A correlation analysis revealed that LULC patterns were correlated significantly with
one or more parameters of water quality within the 1000-m buffer zone scale (Table 7).
The analysis result reveals that only BOD5, temperature, EC, TDS, and TSS had a strong
and significant relationship at the 5% level of significance with the different LULC types.
Other parameters viz. DO, pH, and TS had both positive and negative relationships with
the LULC types but were not significant. BOD5 was found to have a positive significant
relationship with waterbody (0.82), which means that, if the waterbody should increase,
the BOD5 level will also increase at a significant level. At the same time, it was also found
that temperature had a positive significant relationship with waterbody (0.82) but it had a
negatively significant relationship with agricultural land (−0.90). This result reveals that,
with the increase in agricultural land area, temperature will decrease at a significant level
or vice-versa.

Table 7. Linear relationship (Pearson correlation, r) between WQPs and LULC types.

WQPs
LULC Types Waterbody Built-Up Agricultural Land Vegetation Barren Land

DO (mg/L) 0.38 0.12 −0.50 0.36 0.09

BOD5 (mg/L) 0.82 0.72 −0.74 −0.42 0.66

pH 0.03 0.34 0.18 −0.76 0.15

temperature (◦C) 0.82 0.79 −0.90 −0.32 0.63

EC (µS/cm) −0.74 −0.82 0.47 0.92 −0.84

TDS (mg/L) −0.94 −0.93 0.92 0.56 −0.79

TSS (mg/L) 0.92 0.90 −0.83 −0.64 0.89

TS (mg/L) −0.61 −0.63 0.75 0.16 −0.25

NB: Bold letters indicates a significant relationship at the 5% level.

Electric conductivity (EC) had about a perfect positive significant relationship with
vegetation (0.92) but a negative relationship with the land use types of built-up area (−0.82)
and barren land (−0.84). Total dissolved solids (TDS) had also a significant relationship
at the 5% level of significance, with three types of LULC types whereas total suspended
solid (TSS) had four types of LULC types. Pearson’s correlation result revealed that
with the increase of waterbody and built-up area TSS value will increase significantly (a
positive relationship) but the TDS value will decrease significantly (a negative relationship).
A different result was also found for agricultural land; agricultural land had inverse
relationships with the changes in TDS and TSS. The result reveals that, if agricultural land
increases, TDS (0.92) will also increase significantly at the 5% level of significance, but TSS
(−0.83) will decrease.

Vegetation cover was only correlated with the change of electric conductivity, which
had about a perfect positive significant correlation.

3.6. Fulfillment of Distributional Assumption of Dependent Variables

The median of BOD5 was found at 1.38, which was very similar to the average
BOD5 (1.48). The similarity between mean BOD5 and median BOD5 seems to follow the
symmetrical distribution of BOD5, which means that the dependent variable, BOD5, fulfills
the distributional assumption for the classical model.

The similarity between the mean (26.12) and median (26.30) temperatures indicates
that temperature seems to follow the normal distribution (Figure 5). There were no observed
outliers in temperature, thus we can proceed to the classical model with it. The variable
EC seems to follow a bell-shaped distribution, because its second quartile (194.63) lay
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in the middle of the first (185.25) and third (203.56) quartile. With the fulfillment of the
distributional assumption of EC, we can proceed to a classical model.
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The median of TDS was found as 224.83 and lay in the middle of the first quartile
(93.88) and third quartile (391.25). That’s why the small departure of median TDS from
mean TDS does not affect the symmetrical shape of TDS. Thus, we can proceed to a classical
model for TDS.

The small departure of median TSS from the middle position of the box may have a
small effect, an asymmetric shape, and also there was a difference between the mean TSS
(220.63) and the median TSS (189.48). This means that TSS may follow a slightly skewed
distribution. So, we can, but barely, proceed to the classical model with TSS.



Water 2022, 14, 17 12 of 16

3.7. Regression Analysis

Backward stepwise regression identified the relationship between WQP and LULC
types that determine the combination of land uses for water quality estimation (Table 8). For
the case of BOD5, only the waterbody was used as a predictor, which was found significant
in a Pearson’s correlation analysis. Waterbody was not found as an especially strong predic-
tor, as the adjusted r-squared value was 0.645. For temperature, waterbody and agricultural
land were used as predictors (R2 = 0.889). Similarly, for electric conductivity, built-up,
vegetation, and barren land were used as predictors (R2 = 0.833). For total dissolved solid,
waterbody, built-up, and agricultural land were used as predictors (R2 = 0.993). For TSS,
waterbody, built-up, and barren land were used as predictors at R2 of 0.922. From the
regression analysis, it could be concluded that BOD5 showed sensitivity to changing water-
body, whereas temperature was sensitive to changing waterbody and agricultural land. EC
showed sensitivity on built-up, vegetation, and barren land. TDS showed sensitivity on the
waterbody, built-up and agricultural land whereas, TSS for waterbody, built-up and barren
land. In this study, different parameters of water quality viz. biological oxygen demand,
electric conductivity, TDS, and TSS, tended to be most affected by built-up and waterbody
land usage types.

Table 8. Linear regression models of LULC types on the WQPs.

Dependent Variable (WQPs) Independent Variables
(Land Usage Type) Estimated Linear Regression Equations Adjusted R2

BOD5 Waterbody BOD5 = 0.737 + 0.594 × Y_2019 + 0.068 ×W 0.645

temperature waterbody, agricultural land Temp = 29.097 + 2.567 × Y_2019 − 0.546 ×W
− 0.026 × A 0.889

EC built-up, vegetation, barren
land

EC = 205.887 + 12.714 × Y_2019 − 0.802 ×
Bu + 1.332 × V − 7.369 × Ba 0.833

TDS waterbody, built-up,
agricultural land

TDS = 726.425 − 184.029 × Y_2019 − 45.117
×W − 2.988 × Bu + 0.039 × A 0.993

TSS waterbody, built-up, barren
land

TSS = 309.915 + 172.824 × Y_2019 − 68.363 ×
W + 1.890 × Bu + 55.799 × Ba 0.922

Y_2019 = year 2019 (dummy or indicator); Temp = temperature; W = waterbody, A = agricultural land; Bu = built-
up; V = vegetation; Ba = barren land.

The equation for BOD5 explains, that for a one-unit change of waterbody, BOD5
would increase 0.068 times. For temperature, it would decrease, both for waterbody and
agricultural land. In the same way, the equation for electric conductivity explains that, if
the built-up area increases by one unit, EC will decrease 0.802 times, and for barren land,
it will decrease 7.369 times. Yet, EC could increase 1.332 times if vegetation covers were
increased by one unit. For TDS and TSS, the changes were the same, as is quantified and
described in their equations.

4. Discussion

The water quality of any river is sturdily influenced by landscape characteristics,
including land use land cover types and their spatial patterns [31]. LULC change mainly
depends on how humans alter the natural landscapes and socioeconomic growth through
space and time. Land covers involve the physical features of the Earth’s surface that are
occupied by vegetation, water, soil, and other characteristics of the Earth’s surface created
through human activities, whereas land used by human beings for habitats concerning
economic activities is referred to as land cover [32].

River water qualities near the urban area changed due to several factors and LULC
change was the most significant among them. LULC change has had a major impact
on water quality. In the urbanization process, the built-up area increases rapidly. As a
result, the quality of surrounding river water deteriorates. The rapid expansion of human
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settlements in the urbanized area discharge huge volumes of sewage water, as the point
source of pollution, which includes a high level of nutrients and metals. Therefore, water
physicochemical parameters such as pH, dissolved oxygen, biochemical oxygen demand,
and chemical oxygen demand have significantly changed. The impact of land-use changes
on water quality is usually studied by analyzing the relationships between land use and
water quality parameters. Water quality differs according to location, time, weather, and
pollution sources [33,34], and contamination is generally determined by studying the
physical and chemical properties of the water bodies [35].

Findings from this study indicate that LULC types are considerably associated with
one or more water quality parameters in the 1000-m buffer zone scale. It also reveals that
only BOD, temperature, EC, TDS, and TSS had a strong and significant relationship with the
different LULC types. In comparison, Kerala observed the water quality parameters of the
Chalakudy river and compared them with diverse land use patterns over four seasons [36].
They found that urban land use was associated with poor water quality during the study
period when there were changes in land use and land cover patterns [37]. Moreover,
land use changes in the surrounding area of cities can modify the surface properties of
watersheds that influence runoff quality and quantity. The impact of LULC changes on
water quality involves analyzing the relationship between land use and water quality
indicators [38]. In this research, among five types of land use and land cover, waterbody
and built-up were the most significant variables in predicting water quality parameters.
The Pearson correlation suggested that BOD is positively correlated with waterbody and
built-up area but negatively correlated with agricultural land. A similar study by Tong and
Chen [39] observed the water quality of a watershed in relation to land use change in Ohio
State, USA, and their results indicate that BOD was positively correlated with residential
and commercial lands but had only a non-significant correlation with agricultural land.
Xiao et al. [40] conducted a multi-scale analysis of the relationship between urban river
water qualities with landscape patterns in different seasons in Huzhou City, China, and their
findings point out that, at a different scale, their relationships varied with the composition
of land-use types—but, built-up land was most significant. These results suggest that with
the development of different types of built-up land, water quality parameters change and
exacerbate contamination.

Regression analysis of the present study showed that BOD was sensitive to changing
waterbody, whereas temperature was sensitive to changing waterbody and agricultural
land. Urban land is a mixture of different land uses types, such as residential, industrial,
commercial, and other built-up areas. In contrast with other land use, wastewater is
generated more in urban areas, and also urbanization increased coverage by impervious
surfaces, which influences storm flow speed and runoff volumes [41]. Runoff and the
huge volume of storm and drainage water are mainly responsible for this relationship
between BOD and waterbody sensitivity because a higher BOD value indicates that a
greater amount of organic matter is present; thus, storm flows and drainage water deliver
more pollutants to the surrounding urban catchment, especially in a river. Due to the huge
volume of drainage and stormwater, the pollutant quantity increased for this reason in the
wet seasons, while BOD was high at a few stations.

The present study’s Pearson’s correlation results showed that, with the increase of wa-
terbody and built-up, TSS will increase significantly (a positive relationship) and backward
stepwise regression identified a relationship between WQP and LULC types, indicating
that TDS were sensitive to waterbody, built-up, and agricultural land, whereas TSS was
found sensitive for waterbody, built-up and barren land. Wang and Zhang [42] studied the
relationship between landscape types and water quality index (WQI), in a multi-scale anal-
ysis in the Ebinur Lake oasis; their findings revealed that, for different buffers, both positive
and negative relationships exist between certain land use and land cover (LULC) types
and the water quality index, but there was considerable correlation between water quality
index and landscape index. Li et al. [43] found a relationship between land use/cover and
water quality using correlation and regression analyses in the Liao River basin, China, also
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indicating that BOD5, COD, sediment, and hardness were considerably associated with
land use.

Although, in reviewing the literature, we found similar studies from different parts of
the world, but, considering that the present work is the first such kind of investigation for a
data-scarce region such as our study area, these results hold a lot of merit to both scientific
communities as well as policy makers. This scientific evidence will lay a foundation for
designing more robust adaptation and mitigation measures for water resource management
in a timely manner.

5. Conclusions

The study revealed the concentrations of several physicochemical parameters of river
water in relation to LULC changes. However, the result of the present investigation indicates
that LULC changes and seasonal variations (influences the concentration) have a significant
impact on water quality parameters. The results of the LULC change analysis indicate built-
up, waterbody, and barren land increased and agricultural land and vegetation decreased.
Built-up area is dominant in LULC types and the change of LULC pattern within 1000-
m buffer zones had a significant impact on the water quality parameters of the Surma
river. LULC information, in relation to the surrounding river water quality in urban areas,
is very important for planning, monitoring, and management of river water because, in
urbanized and densely populated cities, river water is also used for drinking purposes, after
treatment, and also for recreational purposes. LULC change causes severe environmental
problems worldwide and poses a threat to water quality. Spatiotemporal information
about LULC change patterns with water quality helps in finding a solution to this problem.
The study provides useful tools for future study, which, combined with LULC change
and its relationship with different water quality parameters, can help decision-makers in
formulating of rules and guidelines about sustainable land use, especially in city areas, and
aid in minimizing negative impacts on water quality.
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